质疑转基因的观点:请重点关注“绿色和平”组织的网站,还有反转斗士Jeffrey M.Smith的著作。赞同转基因的观点:请关注“孟山都”公司的网站,还有科普名人方舟子的博客。个人认为,支持转基因的公司或个人或多或少有商业利益在其中,而反对观点的科学性强一些。如果您有心作此方面研究,最好能调查一下,对于转基因食品(如大豆、玉米、玉米油等)1. 在我国鼓吹推广转基因最热心的专家看他们是否自己积极食用,2. 国家部委的子弟幼儿园是否积极食用,3. 看大型国际赛事和国际会议是否积极食用,也许,这才能够了解国家相关领导和专家对转基因食品的内心真实看法。
环状RNA(circular RNAs, circRNAs)是一类由mRNA 前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为环状 RNA 只是错误剪接的副产物,对circRNA的关注并不高。 随着高通量测序技术和生物信息学的发展,成千上万种circRNA被发现,围绕着circRNA的基础研究也越来越多。大量研究表明circRNA在哺乳动物细胞中具有内生、丰富、保守、稳定等特点,并经常表现出组织或时空特异性,可以通过多种机制参与机体生长发育调控,以及疾病的发生和发展。因此,近年来circRNA逐渐成为非编码RNA研究领域的热点。 根据circRNA序列的来源,可以分为3类: 1. 序列全部来源于外显子,称为Exonic circRNAs 2. 序列来源于外显子和内含子,称为EIciRNAs 3. 序列全部来源于内含子,称为ciRNAs。 circRNA是由mRNA前体(pre-mRNA)经反向剪接(back-splicing)形成的,目前报道的成环模型主要有以下3种: · 内含子反向互补序列驱动环化环化 外显子两端的侧翼内含子含有多对反向互补序列,反向互补序列促使内含子序列配对,使得下游的剪接供体(Splice-Donor)与上游的剪接受体(Splice-Acceptor)靠近,从而结合形成环状RNA。(图1.左) · RNA结合蛋白驱动环化 环化外显子两端的侧翼内含子含有RNA结合蛋白(RBPs)识别的基序,RBP分别与两翼内含子特异基序结合后,会形成二聚体,促进两翼内含子互相靠近,进而连接成环。(图1.右) · 套索驱动环化 mRNA前体剪接时,会发生外显子跳读事件,产生包含外显子和内含子的套索中间体,随后该中间体发生反向剪接,形成环状RNA。(图2.) circRNA最常见的功能是作为miRNA海绵体与miRNA结合,从而影响miRNA对基因的调控。比如研究得比较多的小脑退行性相关蛋白基因(CDR1)反义链转录的环状RNA分子: Cdr1as,它包含约70个miR-7 的结合位点和1个miR-671结合位点,其中与miR-7的结合方式是非完全互补,只是结合,不会被AGO2蛋白介导降解,而与miR-671的结合方式是完美的互补。当Cdr1as高表达时,miR-7被结合,无法抑制原癌基因的mRNA,从而上调原癌基因的表达,导致癌症的发生。当miR-671高表达时,Cdr1as被降解,miRNA得到释放,与原癌基因mRNA结合,起到基因下调的作用,抑制癌症的发生。(图3.) 很多环状RNA上含有蛋白结合的位点,可以作为蛋白的海绵体。如RNA剪切因子MBL,可结合亲本基因第二外显子,促使其环化形成circ-Mbl,circ-Mbl又能与MBL结合,降低MBL有效浓度,减少MBL生成。 除了作为miRNA及蛋白海绵体,circRNA还可以作为支架蛋白促进酶的共定位、结合转录因子抑制靶基因表达、参与亲本基因表达调控、在特定的情况下还可以翻译出多肽。根据参与的功能不同,circRNA所处的细胞定位也不同,如作为miRNA或蛋白海绵体时,circRNA需由细胞核运输到细胞基质起作用,而参与亲本基因表达调控或结合转录因子抑制靶基因时,circRNA常在细胞核中起作用。 (参考文献:Kristensen, L. S., Andersen, M. S., Stagsted, L. V., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691.) 随着越来越多内源性的circRNA被发现在人体组织中有着广泛表达,circRNA与疾病的关系逐渐成为焦点。目前研究最多的是circRNA与实体瘤之间的关系,促进肿瘤生成的一些circRNA,如头颈部鳞状细胞癌中的circPvt1;结直肠癌,食道鳞状细胞癌和肝细胞癌中的cirs-7(CDr1as)。抑制肿瘤的circRNA,如胶质母细胞瘤中的circsMARCA5 and circ-SHPRH。还有一些circRNA在不同组织或不同细胞所起的作用可能不同,如circHiPK3,在直肠癌中是原癌基因,但是在膀胱癌中又是抑制癌细胞的。 除了癌症,研究还发现circRNA与糖尿病,心血管疾病,慢性炎症和神经系统疾病都有密切的关系。相信随着生物技术的发展以及越来越多对circRNA的深入研究,circRNA的形成和作用机理可以更加清晰,在疾病预防,检测及治疗方面也可以起到重要的作用。 circRNA敲除方案比较难设计,一般会使用以下两种方法: 方案一:将两条gRNA分别设计在circRNA exon的两端,直接敲除环化的外显子序列。这种方案虽然敲除彻底,但是在敲除circRNA的同时,也会影响到编码蛋白的亲本基因,需要根据具体的实验目的考虑是否可行。 方案二:通过破坏circRNA成环来达到敲除的目的。需要先找到circRNA的成环元件,成环元件一般位于被环化外显子两端的长侧翼内含子中。找到成环元件后,在两端设计gRNA进行敲除,既不破坏编码基因的外显子,又可以实现circRNA的敲除(图4.) 应用案例: circ-HIPK3是人体细胞内含量丰富的一种环状RNA,它可以与多种miRNA结合,作为细胞生长的调节剂,影响肿瘤的形成。为了验证circ-HIPK3成环的机制,需要找到侧翼内含子中的成环元件,对上下游预测的两个成环元件分别设计一对sgRNA,利用CRISPR/Cas9系统将预测的成环元件进行敲除,检测circRNA表达情况是否发生变化。经过PCR和RT-QPCR验证,发现下游成环元件敲除后,circHIPK3表达明显下调,而上游成环元件敲除后,circHIPK3的表达不仅没有下调还有所升高。推测可能是上游的成环元件序列太多,预测的不准确。为了进一步验证是其他成环元件驱动的成环,将gRNA3或gRNA4分别与gRNA5或gRNA6共注射,敲除成环元件上游大片段内含子。RT-QPCR结果显示circHIPK3表达确实下降了,说明上游是由其他的成环元件起到成环的作用。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) 在研究circRNA功能的方法中,最经典的抑制circRNA的方法是通过RNAi的方式(shRNA)进行敲降。为了避免影响到mRNA,设计方案时需将干扰序列设计在反向剪接位点(BSS)处。 源井生物通过设计高效的shRNA,用慢病毒法将干扰载体转入细胞中,根据最佳药筛浓度对细胞进行药物筛选,直到对照组细胞全部死亡,获得circRNA敲降的稳定细胞株。 应用案例: 用siRNA进行敲降后,通过检测细胞增殖凋亡情况,说明circ-HIPK3敲除后抑制细胞增殖。首先设计三组实验,分别针对HIPK3 mRNA线性转录本、circ-HIPK3环状转录本和两种转录本共有部分设计siRNA,并在HEK-293 T细胞系上验证设计的siRNA只干扰相应的转录本。 利用增殖凋亡检测试剂盒:CCK-8和EdU进行细胞增殖凋亡检测,结果显示HIPK3 mRNA敲降后不明显影响细胞增殖,而circ-HIPK3敲降后,会明显抑制细胞增殖。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) circRNA过表达一直有成环效率低,容易错配成环等难点。通过优化侧翼成环框架,如成环元件、QKI等RBP的结合位点,使circRNA准确高效环化。过表达后仍需要检测是否成功成环,以及线性mRNA是否表达。为了研究一种新环状RNA 载体表达 系统的成环效率,选择小鼠circRtn4环状基因在多种细胞系(包括Hela,N2a,HEK293)中进行表达验证。根据不同细胞系中进行的RT-QPCR实验数据显示,新载体系统pCircRNA-DMo-Rtn4成环效率在几种不同的细胞系中均比普通的载体系统(pCircRNA-BE-Rtn4)要高效得多。Northern Blotting是检测circRNA的金标准,探针通常跨反向剪接位点设计。但由于Northern Blotting需要的circRNA量非常大,耗时间精力,而且探针一般是放射性标记,操作上比较困难。常用的检测方案还是用RT-PCR或者是RT-QPCR,引物设计在反向剪接位点两端。(图9.)
自 20 世纪 70 年代末开始,全球乳腺癌发病率一直呈上升趋势。美国女性乳腺癌的患病率高达12.5%。中国虽然不是乳腺癌的高发国家,但是近年来我国乳腺癌发病率的增长速度却高出高发国家 1~2 个百分点。同时,在卫计委公布的 2013 年年鉴中显示,我国在2004年到2005年间,乳腺癌的已经成为女性死亡率最高的生殖系统肿瘤。甚至有研究表明,现在在中国,与其他大多数国家一样,乳腺癌也成为了中国女性最常见的癌症。 多梳基因家族(polycomb group,PcG)蛋白PcG是一类表观遗传抑制因子,包括PRC1和PRC2两大复合物,在决定细胞命运以及肿瘤发生等方面发挥重要作用。PCGF1是多梳基因家族PRC1复合体的重要组成部分,该复合体主要包括PCGF蛋白、CBX蛋白,RING1蛋白和HPH蛋白。 前期研究发现PCGF1在多种肿瘤细胞中表达丰度较高,尤其以乳腺癌细胞和胶质瘤细胞表达尤为明显。以PCGF1序列为模板,设计sgRNA干扰序列,两端加入载体连接序列。通过DNA片段合成所需sgRNA序列。退火形成oligo二聚体序列后,使用T4 DNA连接酶重组干扰序列与pCAG-T7-Cas9-pgk-Puro-T2A-GFP质粒,最终成功构建 PCGF1 敲低载体。将pCAG-T7-Cas9-gRNA-pgk-Puro-T2AGFP重组载体通过脂质体转染MCF7细胞系。通过嘌呤霉素进行阳性克隆筛选,Western blotting检测PCGF1表达。结果显示成功得到了PCGF1稳定敲低的MCF7细胞系转染 MCF7 细胞系。 根据CRISPR/Cas9靶点设计原则,设计能特异性针对CDH1基因的sgRNA,以lentiCRISPR v2质粒为骨架构建能表达此sgRNA和Cas9蛋白的重组质粒.测序鉴定后,将重组质粒与逆转录病毒包装质粒VSVG,PAX2在氯化钙介导下共同转入HEK293T细胞进行病毒包装,转染48 h后收集病毒上清,直接感染人乳腺癌MCF-7细胞.采用嘌呤霉素筛选CDH1缺失的乳腺癌MCF-7细胞,通过DNA测序,Western印迹及免疫荧光染色实验验证获得的MCF-7细胞.结果:构建了靶向CDH1的CRISPR/Cas9质粒;DNA测序和Western印迹实验结果表明获得了稳定敲除CDH1的人乳腺癌MCF-7细胞.免疫荧光染色结果显示,相比对照组,稳定敲除CDH1的MCF-7细胞中已无法明显观察到E-钙黏蛋白的表达分布.结论:通过CRISPR/Cas9基因编辑技术构建了CDH1基因缺失的MCF7细胞系,为进一步研究CDH1在肿瘤免疫治疗中的作用提供了基础. ESR1突变已经被证实与乳腺癌内分泌治疗耐药密切相关,在经过至少一线内分泌治疗的转移性乳腺癌患者中,ESR1 LBD突变的阳性率在54%左右,研究证实Y537S位点突变型ER的活性最高,并且近几年的研究发现ESR1 Y537S突变不仅对传统的内分泌治疗耐药,也会对最新的CDK4/6抑制剂产生耐药。 为了解决晚期转移性患者在化疗期间遇到的一系列问题,空军军医大学西京医院李南林教授与来自哈佛大学Dana-Farber Cancer Institute 的乳腺癌专家Rinath Jeselsohn开展合作,最终发现氟维司群联合化疗在ER阳性、P53野生型乳腺癌细胞系中具有协同效应,同时拥有ESR1 Y537S突变的细胞系具有更高的协同效应分数;细胞G0/G1期阻滞和细胞凋亡增加可能是这两种药物发挥协同作用的主要机制。因此,对于ESR1 Y537S突变、P53野生型的乳腺癌患者,氟维司群联合化疗或许可以发挥更好的作用,但仍需进一步动物实验和临床试验研究证实。 参考文献: 闫睿, 樊嵘, 董瓅瑾,等. 利用CRISPR/Cas9系统构建PCGF1基因敲除MCF7稳定细胞系[J]. 武警后勤学院学报(医学版), 2017(04):11-14. 高伟健, 朱一超, 郑幽,等. 利用CRISPR/Cas9基因编辑技术构建CDH1基因敲除的人乳腺癌MCF-7稳定细胞系[J]. 生物技术通讯, 2020, v.31;No.158(02):33-37+117. Huang M , J Wu, Ling R , et al. Quadruple negative breast cancer[J]. Breast Cancer, 2020, 27(4).
环状RNA(circular RNAs, circRNAs)是一类由mRNA 前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为环状 RNA 只是错误剪接的副产物,对circRNA的关注并不高。 随着高通量测序技术和生物信息学的发展,成千上万种circRNA被发现,围绕着circRNA的基础研究也越来越多。大量研究表明circRNA在哺乳动物细胞中具有内生、丰富、保守、稳定等特点,并经常表现出组织或时空特异性,可以通过多种机制参与机体生长发育调控,以及疾病的发生和发展。因此,近年来circRNA逐渐成为非编码RNA研究领域的热点。 根据circRNA序列的来源,可以分为3类: 1. 序列全部来源于外显子,称为Exonic circRNAs 2. 序列来源于外显子和内含子,称为EIciRNAs 3. 序列全部来源于内含子,称为ciRNAs。 circRNA是由mRNA前体(pre-mRNA)经反向剪接(back-splicing)形成的,目前报道的成环模型主要有以下3种: · 内含子反向互补序列驱动环化环化 外显子两端的侧翼内含子含有多对反向互补序列,反向互补序列促使内含子序列配对,使得下游的剪接供体(Splice-Donor)与上游的剪接受体(Splice-Acceptor)靠近,从而结合形成环状RNA。(图1.左) · RNA结合蛋白驱动环化 环化外显子两端的侧翼内含子含有RNA结合蛋白(RBPs)识别的基序,RBP分别与两翼内含子特异基序结合后,会形成二聚体,促进两翼内含子互相靠近,进而连接成环。(图1.右) · 套索驱动环化 mRNA前体剪接时,会发生外显子跳读事件,产生包含外显子和内含子的套索中间体,随后该中间体发生反向剪接,形成环状RNA。(图2.) circRNA最常见的功能是作为miRNA海绵体与miRNA结合,从而影响miRNA对基因的调控。比如研究得比较多的小脑退行性相关蛋白基因(CDR1)反义链转录的环状RNA分子: Cdr1as,它包含约70个miR-7 的结合位点和1个miR-671结合位点,其中与miR-7的结合方式是非完全互补,只是结合,不会被AGO2蛋白介导降解,而与miR-671的结合方式是完美的互补。当Cdr1as高表达时,miR-7被结合,无法抑制原癌基因的mRNA,从而上调原癌基因的表达,导致癌症的发生。当miR-671高表达时,Cdr1as被降解,miRNA得到释放,与原癌基因mRNA结合,起到基因下调的作用,抑制癌症的发生。(图3.) 很多环状RNA上含有蛋白结合的位点,可以作为蛋白的海绵体。如RNA剪切因子MBL,可结合亲本基因第二外显子,促使其环化形成circ-Mbl,circ-Mbl又能与MBL结合,降低MBL有效浓度,减少MBL生成。 除了作为miRNA及蛋白海绵体,circRNA还可以作为支架蛋白促进酶的共定位、结合转录因子抑制靶基因表达、参与亲本基因表达调控、在特定的情况下还可以翻译出多肽。根据参与的功能不同,circRNA所处的细胞定位也不同,如作为miRNA或蛋白海绵体时,circRNA需由细胞核运输到细胞基质起作用,而参与亲本基因表达调控或结合转录因子抑制靶基因时,circRNA常在细胞核中起作用。 (参考文献:Kristensen, L. S., Andersen, M. S., Stagsted, L. V., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691.) 随着越来越多内源性的circRNA被发现在人体组织中有着广泛表达,circRNA与疾病的关系逐渐成为焦点。目前研究最多的是circRNA与实体瘤之间的关系,促进肿瘤生成的一些circRNA,如头颈部鳞状细胞癌中的circPvt1;结直肠癌,食道鳞状细胞癌和肝细胞癌中的cirs-7(CDr1as)。抑制肿瘤的circRNA,如胶质母细胞瘤中的circsMARCA5 and circ-SHPRH。还有一些circRNA在不同组织或不同细胞所起的作用可能不同,如circHiPK3,在直肠癌中是原癌基因,但是在膀胱癌中又是抑制癌细胞的。 除了癌症,研究还发现circRNA与糖尿病,心血管疾病,慢性炎症和神经系统疾病都有密切的关系。相信随着生物技术的发展以及越来越多对circRNA的深入研究,circRNA的形成和作用机理可以更加清晰,在疾病预防,检测及治疗方面也可以起到重要的作用。 circRNA敲除方案比较难设计,一般会使用以下两种方法: 方案一:将两条gRNA分别设计在circRNA exon的两端,直接敲除环化的外显子序列。这种方案虽然敲除彻底,但是在敲除circRNA的同时,也会影响到编码蛋白的亲本基因,需要根据具体的实验目的考虑是否可行。 方案二:通过破坏circRNA成环来达到敲除的目的。需要先找到circRNA的成环元件,成环元件一般位于被环化外显子两端的长侧翼内含子中。找到成环元件后,在两端设计gRNA进行敲除,既不破坏编码基因的外显子,又可以实现circRNA的敲除(图4.) 应用案例: circ-HIPK3是人体细胞内含量丰富的一种环状RNA,它可以与多种miRNA结合,作为细胞生长的调节剂,影响肿瘤的形成。为了验证circ-HIPK3成环的机制,需要找到侧翼内含子中的成环元件,对上下游预测的两个成环元件分别设计一对sgRNA,利用CRISPR/Cas9系统将预测的成环元件进行敲除,检测circRNA表达情况是否发生变化。经过PCR和RT-QPCR验证,发现下游成环元件敲除后,circHIPK3表达明显下调,而上游成环元件敲除后,circHIPK3的表达不仅没有下调还有所升高。推测可能是上游的成环元件序列太多,预测的不准确。为了进一步验证是其他成环元件驱动的成环,将gRNA3或gRNA4分别与gRNA5或gRNA6共注射,敲除成环元件上游大片段内含子。RT-QPCR结果显示circHIPK3表达确实下降了,说明上游是由其他的成环元件起到成环的作用。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) 在研究circRNA功能的方法中,最经典的抑制circRNA的方法是通过RNAi的方式(shRNA)进行敲降。为了避免影响到mRNA,设计方案时需将干扰序列设计在反向剪接位点(BSS)处。 源井生物通过设计高效的shRNA,用慢病毒法将干扰载体转入细胞中,根据最佳药筛浓度对细胞进行药物筛选,直到对照组细胞全部死亡,获得circRNA敲降的稳定细胞株。 应用案例: 用siRNA进行敲降后,通过检测细胞增殖凋亡情况,说明circ-HIPK3敲除后抑制细胞增殖。首先设计三组实验,分别针对HIPK3 mRNA线性转录本、circ-HIPK3环状转录本和两种转录本共有部分设计siRNA,并在HEK-293 T细胞系上验证设计的siRNA只干扰相应的转录本。 利用增殖凋亡检测试剂盒:CCK-8和EdU进行细胞增殖凋亡检测,结果显示HIPK3 mRNA敲降后不明显影响细胞增殖,而circ-HIPK3敲降后,会明显抑制细胞增殖。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) circRNA过表达一直有成环效率低,容易错配成环等难点。通过优化侧翼成环框架,如成环元件、QKI等RBP的结合位点,使circRNA准确高效环化。过表达后仍需要检测是否成功成环,以及线性mRNA是否表达。为了研究一种新环状RNA 载体表达 系统的成环效率,选择小鼠circRtn4环状基因在多种细胞系(包括Hela,N2a,HEK293)中进行表达验证。根据不同细胞系中进行的RT-QPCR实验数据显示,新载体系统pCircRNA-DMo-Rtn4成环效率在几种不同的细胞系中均比普通的载体系统(pCircRNA-BE-Rtn4)要高效得多。Northern Blotting是检测circRNA的金标准,探针通常跨反向剪接位点设计。但由于Northern Blotting需要的circRNA量非常大,耗时间精力,而且探针一般是放射性标记,操作上比较困难。常用的检测方案还是用RT-PCR或者是RT-QPCR,引物设计在反向剪接位点两端。(图9.)
质疑转基因的观点:请重点关注“绿色和平”组织的网站,还有反转斗士Jeffrey M.Smith的著作。赞同转基因的观点:请关注“孟山都”公司的网站,还有科普名人方舟子的博客。个人认为,支持转基因的公司或个人或多或少有商业利益在其中,而反对观点的科学性强一些。如果您有心作此方面研究,最好能调查一下,对于转基因食品(如大豆、玉米、玉米油等)1. 在我国鼓吹推广转基因最热心的专家看他们是否自己积极食用,2. 国家部委的子弟幼儿园是否积极食用,3. 看大型国际赛事和国际会议是否积极食用,也许,这才能够了解国家相关领导和专家对转基因食品的内心真实看法。
2004年6月18日,WTO争端解决机构裁定美国棉花补贴违反了WTO规则.起诉方巴西对美国棉花补贴违背WTO规则的大部分主张被判成立.目前,美国已经上诉,上诉的结果将在3个月之内揭晓.无论结果如何,这在WTO历史上都是一个史无前例的事件:大宗农产品的补贴进入并通过了贸易争端解决机制. 从巴西诉美国棉花补贴案看WTO框架下的农业补贴问题 Form: 论文之家 作者:李鹊 Publish: 2007-8-7 Hits:1936 【中文题名】 从巴西诉美国棉花补贴案看WTO框架下的农业补贴问题 【英文题名】 The Issue of Agricultural Subsidies under WTO Indicated in the Case of Brazil V.US Cotton Subsidies 【学科专业】 国际法学 【论文级别】 硕士论文 【投稿时间】 2007-8-7 【中关键词】 WTO,农业补贴,棉花补贴,,, 【英关键词】 【分类导航】 政治、法律>法律>国际法>国际经济法>国际商法(国际贸易法)> 【论文摘要】 农业补贴主要是对农业生产、流通和贸易进行的转移支付。也就是说从政府预算内给农业生产者补贴,以实现农业部门的收入目标,弥补自由市场在收入分配方面的不足。在国际贸易领域内,由于农业所具有的基础性地位,WTO的《农业协定》允许对大宗农产品实施补贴,但这种补贴是有限度的,WTO也为此规定了明确的纪律。如果成员违反这些纪律,那么就要受到相应的约束,巴西诉美国棉花补贴案就是美国无视这些纪律的后果。棉花在美国农业中属于王者,它也是美国补贴最多的农产品之一,对其的补贴计划众多,包括直接补贴,出口信贷担保等。而这其中大部分都违背了WTO规则,也是巴西诉美国棉花补贴案中涉案的补贴,该案巴西最终胜诉。作为WTO(包括关贸总协定)历史上第一次对国内农业补贴的起诉,其意义深远。给WTO框架下的农业补贴注入了新的元素。 【论文题纲】 内容提要 4-7 引言 7-9 第一部分 WTO 框架下农业补贴概述 9-18 一、WTO 框架下农业补贴规则的产生和发展 9-12 二、WTO 农业补贴的内容 12-16 三、农业补贴对世界的影响 16-18 第二部分 美国棉花补贴措施 18-26 一、美国农业补贴的历史 18-19 二、美国棉花补贴 19-26 第三部分 巴西诉美国棉花补贴案 26-43 一、案件背景 26 二、案件涉及的法律 26-29 三、专家组报告 29-40 四、上诉机构报告 40-41 五、棉花案给予我们的启示 41-43 结论 43-44 注释 44-48 参考文献 48-51 论文摘要 51-54 ABSTRACT 54-59 后记 59-60 导师及作者简介 60 【DOI】 LunWen.ID:2.2008.269200
产经透视 转基因技术的研究综述及利弊关系张 兆 熙( 华中师范大学附属第一中学摘 要 湖北 武汉 430223) 转基因技术作为生命科学的前沿技术之一, 已经逐渐走入了人们的生活。转基因 技术可以认为是 在一定程度上通过科学技术手段让其他生物、 植物朝着对人类有利方向发展的技术。 通过对转基因技术的介绍 , 阐述了该技术的利弊关系, 指出只有通过正确的引导和规范管理, 才能很好地利用该技术, 使它为人类服务。 关键词 转基因技术 发展历程 利弊关系 文献标识码 中图分类号 Q78 B基因植株。 与农杆菌转化相比, 基因枪法转 化的一个主要优点是不受受体植物范围的 限制。 而且其载体质粒的构建也相对简单 , 因此也是目前转基因研究中应用较为广泛 的一种方法。 ( 3 ) 花粉管通道法。 在授粉后向子房注 射含目的基因的 DNA 溶液, 利用植物在开 花、 受精过程中形成的花粉管通道, 将外源 1 前言转基因技术是生命科学前沿的重要领 传转化” 均为转基因的同义词。 2.1 转基因植物技术 转 基 因 植 物 是 指 利 用 重 组 DNA 技 术 域之一。 自从人类耕种作物以来, 我们的祖 先就从未停止过作物的遗传改良。过去的 几千年里农作物改良的方式主要是对自然 突变产生的优良基因和重组体的选择和利 用, 通过随机和自然的方式来积累优良基 因。遗传学创立后近百年的动植物育种则 是采用人工杂交的方法 , 进行优良基因的 重组和外源基因的导入而实现遗传改良。 因此, 可以认为转基因技术是与传统技术 一脉相承的, 其本质都是通过获得优良基 因进行遗传改良。但在基因转移的范围和 效率上, 转基因技术与传统育种技术有两 点重要区别, 第一, 传统技术一般只能在生 物种内个体间实现基因转移, 而转基因技 术所转移的基因则不受生物体间亲缘关系 的限制; 第二, 传统的杂交和选择技术一般 是在生物个体水平上进行, 操作对象是整 个基因组, 所转移的是大量的基因, 不可能 准确地对某个基因进行操作和选择, 对后 代的表现预见性较差。而转基因技术所操 作和转移的一般是经过明确定义的基因, 功能清楚, 后代表现可准确预期。因此, 转 基因技术是对传统技术的发展和补充。将 两者紧密结合, 可相得 益彰, 大大地提高动 植物品种改良的效率。 将克隆的优良目的基因整合到植物的基因 组中, 并使其得以表达, 从而获得的具有新 的遗传性状的植物。 1983 年世界第一例 自 转 基 因 植 物 —烟 草 问 世 以 来 仅 20 多 年 —— 的时间, 转基因植物的研究和应用就已经 得到了迅猛的发展, 已有近 1000 例转基因 植物被批准进入田间试验, 涉及的植物物 种有 50 余个, 已 有 48 个转基因植物品种 被批准进行商业化生产。常见的转基因植 物技术有: 农杆菌是普遍 ( 1 ) 农杆菌介导转化法。 存在于土壤中的一种革兰氏阴性细菌, 它 能在自然条件下趋化性地感染大多数双子 叶植物的受伤部位, 并诱导产生冠瘿瘤或 发状根。根癌农杆菌和发根农杆菌的细胞 中 分 别 含 有 Ti 质 粒 和 Ri 质 粒 , 其 上 有 一 段 T- DNA, 农 杆 菌 通 过 侵 染 植 物 伤 口 进 入 细 胞 后 , 可 将 T- DNA 插 入 到 植 物 基 因 组 中。 因此, 农杆菌是一种天然的植物遗传转 化体系。人们将目的基因插入到经过改造 的 T- DNA 区, 借助农杆菌的感染实现外源 基因向植物细胞的转移与整合, 然后通过 细胞和组织培养技术, 再生出转基因植株。 农杆菌介导法起初只被用于双子叶植物 中, 近年来, 农杆菌介导转化在一些单子叶 植物( 尤其是水稻) 中也得到了广泛应用。 ( 2 ) 基因枪介导转化法。 利用火药爆炸 或高压气体加速 ( 这一加速设备被称为基 因枪) , 将包裹了带目的基因的 DNA 溶液 的高速微弹直接送入完整的植物组织和细 胞中, 然后通过细胞和组织培养技术, 再生 出植株, 选出其中转基因阳性植株即为转 DNA 导 入 受 精 卵 细 胞 , 并 进 一 步 地 被 整 合到受体细胞的基因组中, 随着受精卵的发 育而成为带转基因的新个体。该方法于 20 世纪 80 年代初期由我国学者周光宇提出, 我国目前推广面积最大的转基因抗虫棉就 是用花粉管通道法培育出来的。该法的最 大优点是不依赖组织培养人工再生植株, 技术简单, 不需要装备精良的实验室, 常规 育种工作者易于掌握。 2.2 转基因动物技术 转基因动物是指用实验导入的方法将 外源基因在染色体基因内稳定整合并能稳 定表达的一类动物。 1974 年, Jaenisch 应用 显微注射法, 在世界上首次成功地获得了 SV40DNA 转基因小鼠。其后, Costantini 将兔 - 珠蛋白基因注入小鼠的受精卵, 使受精 卵发育成小鼠, 表达出了兔卜珠蛋白; Palmiter 等 把 大 鼠 的 生 长 激 素 基 因 导 人 小鼠受精卵内, 获得“ 超级” 小鼠; Church 获得 了首例转基因牛。 到目前为止, 人们已经成 功地获得了转基因鼠、 、 羊、 、 羊、 鸡 山 猪 绵 牛、 蛙以及多种转基因鱼。 主要的转基因动 物技术包括有: ( 1 ) 原 核 显 微 注 射 法 , 又 称 DNA 显 微 注射法, 即通过显微操作仪将外源基因直 接用注射器注入受精卵, 利用外源基因整 合到 DNA 中, 发育成转基因动物。其创始 2 转基因技术的介绍转基因技术是指用人工分离和修饰过 的外源基因导入生物体的基因组中, 从而 使生物体的遗传性状发生改变的技术, 可 分为转基因动物与转基因植物两大分支。 人们常说的 “ 遗传工程” “ 、 基因工程” “ 、遗 收稿日期: 2006- 10- 08 PIONEERING WITH SCIENCE & TECHNOLOGY MONTHLY NO.11 2006 111 科技创业 月 刊 PIONEERING WITH SCIENCE & TECHNOLOGY MONTHLY 人是 Jaenisch 和 Mintz 等。 此方法目前应用 较普遍, 现在的转基因动物研究大都是在 但是, 人类对自然界的干预是否会造 成潜在的尚不可能预知的危险? 大量转基 因生物会不会破坏生物多样性? 转基因产 品会不会对人类健康造成危害? 一些科学 家们开始担心对生物、 植物生命进行的“ 任 意修改” 创造出的新型遗传基因和生物可 , 能会危害到人类。它们可能会对生态环境 造成新的污染, 即所谓的遗传基因污染, 而 这种新的污染源很难被消除。 还有, 转基因 农作物和以此为原材料制造的转基因食品 对人体的影响也尚未有定论。 目前, 国内外学者对转基因技术的负 面影响也作了大量研究, 出现了许多相关 报道, 如英国的权威科学杂志《 然》 登 自 刊 了 美 国 康 奈 尔 大 学 副 教 授 约 翰?罗 西 的 一 篇论文, 引起世界震惊。论文指出, 研究人 员在实验室里把抗虫害转基因 玉 米 “ 玉 BT 米” 的花粉撒在苦苣 菜叶上, 然后让蝴蝶幼 虫啃食这些菜叶。4 天之后, 有 44%的幼虫 死亡, 活着的幼虫身体较小, 并且没有精 神。而另一组幼虫啃食撒有普通玉米花粉 的菜叶, 就没有出现死亡率高或发育不良 的现象。论文据此推断, BT 转基 因 玉 米 花 粉中含有毒素。 另据报道, 英国伦理和毒性 中心的实验报告说, 与一般大豆相比, 耐除 草剂的转基因大豆中, 防癌的成分异黄酮 减少了。 与普通大豆相比, 两种转基因大豆 中的异黄酮成分减少了 12%~ 14% , 还有 巴 西坚果事件等。 面对国际上出现的种种关于转基因作 物的争议, 许多科学家、 学术团体纷纷以各 种形式发表对转基因技术的支持态度。由 美国 Tuskegee 大学 Prakash 教授 2000 年 1 月起草的题为 “ 科学家支持农业生物技术 的声明” 已征集到世界上 3 000 多位科学 , 家的签名, 其中包括 DNA 双螺旋结构的发 现者、 诺贝尔奖得主 James Watson , 绿色革 命 的 创 始 人 、 诺 贝 尔 奖 得 主 Norman Bor- 国 laug, 世 界 粮 食 奖 获 得 者 、 际 水 稻 研 究 所 首席育种家 Gurdev Khush 。该声明称, “ 对 植物负责任的遗传修饰既不新也不危险。 如抗病虫等诸多性状已通过有性杂交和细 胞培养的方法经常性地引入作物中。与传 统的方法相比较 , 通过重组 DNA 技术引入 新的或不同的基因并不一定会有新的或更 大的风险, 且商品化的产品的安全性则由 于目前的安全管理规则而得到了更进一步 的保障。遗传新技术为作物改进提供了更 大的灵活性和精确性。” 因此, 笔者认为和现代任何一项工业 技术一样, 转基因技术也具有两面性, 有长 亦有短。 在发展转基因技术等生物技术时, 应该扬长避短、 利避害、 范管理, 使转 趋 规 基因技术能够健康发展。 Palmiter 等 方 法 的 基 础 上 有 所 改 进 而 进 行 的。这种方法的特点是外源基因的导入整 合效率较高, 不需要载体, 直接转移目的基 它可以直 因, 目的基因的长度可达 100Kb 。 接获得纯系, 实验周期短。 但需要贵重精密 仪器, 技术操作较难, 并且外源基因的整合 位点和整合的拷贝数都无法控制, 易造成 宿主动物基因组的插入突变, 引起相应的 性状改变, 重则致死。 ( 2 ) 逆转录病毒载体法, 指将目的基因 重组到逆转录病毒载体上, 制成高浓度的 病毒颗粒, 人为感染着床前或着床后的胚 胎, 也可以直接将胚胎与能释放逆转录病 毒的单层培养细胞共孵育以达到感染的目 的, 通过病毒将外源目的基因插入整合到 这种逆转录病毒被 宿主基因组 DNA 中去。 用 重 组 DNA 技 术 修 饰 后 作 为 基 因 载 体 在 应用中优于微注射法之处为 : 无需要重排, 可在整合点整合转移基因的单个拷贝; 将 胚胎置于高浓度病毒容器中, 或者与被感 染的细胞体外共同培养, 或微注射鸡胚盘 里 , 整 合 有 逆 转 录 病 毒 的 DNA 的 胚 胎 率 高。 缺点是: 需要生产带有转基因的逆转录 病毒; 插入逆转录病毒的基因有一定的大 小限度; 所得转基因家畜的嵌合性很高, 而 需要广泛的杂交, 以建立转基因系; 转基因 的表达问题尚未解决。 ( 3 ) 胚胎干细胞介导法是将基因导入 胚胎于细胞; 然后将转基因的胚胎干细胞 注射于动物囊胚后可参与宿主的胚胎构 成, 形成嵌合体, 直至达到种系嵌合。其优 点是: 在将胚胎干细胞植入胚胎前, 可以在 体 外 选 择 一 个 特 殊 的 基 因 型 , 用 外 源 DNA 转染以后, 胚胎干细胞 可以被克隆, 继而可 以 筛 选 含 有 整 合 外 源 DNA 的 细 胞 用 于 细 胞融合, 由此可以得到很多遗 传上相同的 转基因动物。缺点就是许多嵌合体转基因 动物生殖细胞内不含有转基因。 目前, 胚胎 干细胞介导法在小鼠上应用比较成熟, 在 大动物上应用较晚。 4 转基因技术的发展展望当前条件下, 转基因技术还存在许多 不足, 还处于不断的发展与完善之中, 表现 在: 转基因表达水平低, 许多转基因的表达 强烈地位受着其宿主染色体上整合位点的 影响, 往往出现异位表达和个体发育不适 宜阶段表达, 影响转基因表达能力或基因 表达的组织特异性, 从而使大部分转基因 表达水平极低, 极少部分基因表达水平过 高; 难以控制转基因在宿主基因组中的行 为, 转基因随机整合于动物的基因组中, 可 能会引起宿生细胞染色体的插入突变, 还 会造成插入位点的基因片段丢失, 插入位 点周围序列的倍增及基因的转移, 也可能 激活正常状态下处于关闭状态的基因; 不 了解哪些基因控制 多数生理过程, 不了解 基因表达的发育控制和组织特异性控制的 机制; 制作转基因动 物的效率低, 这是目前 几乎所有从事转基因动物研究的实验室都 面临的问题, 也是制 约着这项技术广泛应 用的关键; 对传统伦理是一种挑战, 对人类 的生存有一定的负面 作用等。但笔者相信 只要通过科学家的进一步研究和各国对转 基因技术的规范管理 , 保证转基因技术的 研究和开发的健康而有序, 制定相关的法 律、 法规, 健全转基因生物 和转基因食品的 管理, 如对转基因作物进行监管, 对转基因 食品进行标识等, 应该更深 入的了解转基 因技术其中的奥秘, 只有更了解它才能利 用好它, 让我们的生活更加美 好和谐, 使公 众对转基因技术有一个较为科学的认识, 主动地接受转基因食品, 使转 基因技术贴 近民众, 造福于人类。 参考文献 1 2 3 陈吉美 . 转 基 因 植 物 的 研 究 进 展 〔J〕. 德 州 学 院 学报, 2004 ( 2 ) 文 平 , 王 仁 祥 . 转 基 因 植 物 研 究 进 展 〔J〕. 生 物 学教学, 2005 ( 12 ) 郭黠, 谢辉, 何 承 伟 . 转 基 因 动 物 研 究 进 展 〔J〕. 医学综述, 2006 ( 5 ) 3 转基因技术的利与弊科学家发明转基因技术的初衷是想利 ( 责任编辑 秋 实 林 洪) 用该技术造福人类, 既可加快农作物和家 畜品种的改良速度, 提高人类食物的品质, 又可以生产珍贵的药用蛋白, 为患病者带 来福音。 比如说, 抗虫的转基因玉米不会被 虫咬, 可以让人们放心食用; 将能产生人体 疫苗的基因转入植物食品, 人们就可以在 食用食物的同时增加自身对疾病的抵抗 力。
加州大学伯克利分校(University of California Berkeley)的分子生物学家Jennifer Doudna说,“这项技术还没有准备好。”Doudna是CRISPR-Cas9基因组编辑系统的先驱,“这并不令人意外,但令人非常失望和不安。”
基因编辑胚胎在全球引起巨大争议的一个原因是,如果允许婴儿出生,这些编辑过的基因就可以传递给后代——这是一种影响深远的干预,被称为改变生殖系。研究人员一致认为,这项技术有一天可能有助于消除镰状细胞贫血和囊性纤维化等遗传疾病,但在用于人类改造之前,还需要进行更多的实验。
而目前许多国家都禁止植入基因编辑胚胎。据《自然》报道,俄罗斯有一项法律,禁止在大多数情况下进行基因工程,但尚不清楚这些规则是否会在胚胎基因编辑方面得到实施,或者如何实施。2017年,一项针对多个国家的辅助生殖法规的分析显示,俄罗斯关于辅助生殖的法规并没有明确提到基因编辑。
在禁止以繁殖人为目的的生殖性克隆,并且明确注明这种行为是“反人类物种的罪行”。随着技术的发展,法国人还就医疗辅助生育、安乐死、修改基因等问题展开过长时间的讨论,目前,法国法律仍不允许修改受精卵治疗遗传病,法国专家认为,基因修改面临着疗效、安全性、后遗症等尚不可知的重大问题。
坚守科研伦理道德底线,坚决反对违规开展基因编辑婴儿,全面调查涉事机构并予以处罚。
我们知道米区分1原谷种子2杂交谷种子3转基因谷种子。1原谷种子种植产量低,亩产500斤谷子。2杂交谷种子种植产量高,亩产1200斤谷子。3转基因谷种子种植产量非常高,亩产1800斤谷种。原谷种子代代相传。杂交谷种子只能耕种一造,到了第二造活2代减少70% ,到了第三代基本没有谷子收。转基因谷种子只能活1代(一造)。我们人本身就是动物,有亚洲人和亚洲人结婚生出来的孩子后代,有亚洲人和欧洲人结婚生出来的孩子后代,人要是基因更改未尝不可,但是有不确定性(如:会不会短命?会不会发生异常?会不会只能活三代,到了孙子代,孙子会不会短命?等等不确定因素),好处是:治疗人类动物免疫缺陷、遗传病。转基因动物那就更可怕了!只如果能活一代,繁殖后代跟正常动物的寿命不一样话,那就拒绝呗!销毁了!除非有人测过,能正常代代相传。
β细胞是人体的胰岛素“工厂”。它们对升高的血糖作出反应,分泌出胰岛素,向肌肉细胞发出信号,以吸收并利用血液中的葡萄糖。
糖尿病患者的β细胞往往不能产生足够的胰岛素:对于2型糖尿病患者而言,是由于β细胞随着时间的推移而功能下降。对于1型糖尿病患者而言,是由于自身免疫系统发生故障,并攻击、损坏了β细胞。
在一些糖尿病患者中,β细胞衰竭是基因缺陷所导致的结果。在过去的十年里,研究人员发现基因代码中的少数几个地方,一旦发生微小的错误就会干扰身体感应或产生胰岛素的能力。其结果就是医学上所说的“单基因糖尿病”。
这种单基因突变导致的糖尿病远比人们所知的要多。美国纽约哥伦比亚大学Naomi Berrie糖尿病中心的干细胞生物学家Dieter Egli博士指出,大约1%到5%的糖尿病患者属于单基因糖尿病,在全球范围内这个数字以百万计,因此“单基因糖尿病”并不是一种罕见的疾病。
几十年来,替换失去功能的β细胞一直是治疗所有类型糖尿病的“圣杯”(注:代指具有神奇能力的事物)。研究人员已经尝试了从移植胰腺到植入β细胞的多种方法,但是,这些手术的成本很高,因为它们是外来器官、细胞,身体会排斥它们,控制这种免疫排斥反应需要借助强大的免疫抑制药物,或是用某种方法将所移植的β细胞“封装”起来,以瞒过自身免疫系统。
由于单基因糖尿病是单一基因缺陷或突变的结果,新的基因技术为单基因糖尿病患者提供了治愈的希望,甚至一些2型糖尿病患者也有望获得治愈。在美国糖尿病协会(American Diabetes Association,ADA)的资助下,Dieter Egli博士和他的科研团队正在进行单基因糖尿病的研究,特别是对于一些出生时或出生不久后身体就不能产生胰岛素的病例,他们制造出干细胞,借由干细胞再制造某些特定的人体组织,包括β细胞、神经组织等。
然后,他们使用了一种名为“CRISPR-Cas9”的尖端技术,来修复那些阻止β细胞正常工作的基因错误 [1] 。在过去的一年里,这项研究取得了可喜的成果,他们已经能够纠正干细胞的突变,使β细胞重新产生胰岛素。
下一步预期,可将经过修正的 β细胞 重新植入患者体内。因为它们来源于患者自身的细胞,所以可以被身体接受而不需要应用免疫抑制药物,植入后预计能像正常β细胞那样对血糖水平做出反应,并且产生胰岛素。
然而,基因编辑所依托的科学技术太前沿了,以至于还没有被美国食药监局(FDA)批准用于人体试验。为了观察新的β细胞是否能起作用,Dieter Egli博士将修正后的人类β细胞植入β细胞受损的实验动物体内。人们欣喜地看到,通过将β细胞移植到小鼠体内,可以保护缺乏 β细胞 的小鼠免于罹患糖尿病。
Dieter Egli博士说,如果能将修正后的β细胞安全地植入患有单基因糖尿病的人体内,那就相当于治愈了糖尿病。
在基因编辑技术应用于人类之前,还有很多工作要做。一些研究者担心,用于编辑基因突变的技术可能会在其他地方引起意想不到的“偏离目标”的影响。Egli博士表示,“利用老鼠模型是一个很好的开始,但是只有在人类身上进行尝试,我们才能最终得到答案。”
即使Egli博士和其他领域的研究人员能够证明这种基因治疗是安全的,与试纸、血糖仪和胰岛素注射相比,要获得好的成本-效益比,可能还需要一些时间。虽然到那时,患者不再需要支付胰岛素、口服降糖药和其他血糖管理用品的费用,但预计个性化干细胞治疗也可能会花费每位患者数万美元,甚至更多。
据了解,目前在国内也有一些学者在进行相关研究 [2] 。因此,笔者愿意乐观地相信,随着研究的深入、技术的成熟和普及,这种可能会治愈糖尿病的新疗法将会有走出实验室、走近你我身边的那一天。让我们一同拭目以待,继续关注来自这一领域的好消息吧!
参考文献:
[1] Hasegawa Y, Hoshino Y, Ibrahim AE, et al. Generation of CRISPR/Cas9-mediated bicistronic knock-in Ins1-cre driver mice[J]. Exp Anim, 2016,65(3):319-327.
[2] 曹曦,宋丽妮,张怡尘,等. 应用CRISPR/Cas9技术制备MrgD基因敲除小鼠模型[J]. 首都医科大学学报,2018,39(4):517-521.
[3] 赵艳,于彦春,钱前,等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J]. 遗传学报,2003,30(2):135-141. [4] 安韩冰,朱祯,李慧芬,等.基因枪法转化水稻(Oryza sativa L.)获得可育的转抗虫基因水稻再生植株[J]. 高技术通讯,2001,2:12-17. [5] CHU Qi-ren, CAO Hua-xin, FAN Hui-qin, et al.. Preliminary report on transienexpression of gus gene in transgene rice protoplast-derived calli via PEG-mediated DNA transformation[J]. shanghai nongye xue bao,1995,11(3):63-68. [6] 赵凌,王才林,宗寿余,等. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志,2003,23(8):92-95. [7] LI L C, QU R D, KOCHKO A,et al.. An improved transformation of embryogenic grape cell suspensions[J]. Plant Cell Report,1993,12:250-255. [8] 范钦,许新萍,黄小乐,等. 早籼稻培矮64S愈伤组织形成及植株再生[J]. 西北植物学报,2002,22(6):1 469-1 473. [9] 易自力,曹守云,王力,等. 提高农杆菌转化水稻频率的研究[J]. 遗传学报,2001,28(4):352-358. [10] 郑宏红,何锶洁,戴顺洪,等. 提高水稻基因枪转化效率的研究[J]. 生物工程学报,1996,(增):111-115. [11] 田文忠,IAN RANCE,ELUNIALAI,等. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报,1994,21(3):215-221. [12] 叶松青,储成才,曹守云,等. 提高水稻转化率几个因素的研究[J]. 遗传学报,2001,28(10):933-938. [13] 刁现民,陈振玲,段胜军,等. 影响谷子愈伤组织基因枪转化的因素[J]. 华北农学报,1999,14(3):31-36. [14] 易自力,王力,曹守云,等. 提高籼稻基因枪转化频率的研究[J]. 高技术通讯,2000,10(11):12-15. [15] 薛锐,曹守云,杨炜,等. 基因枪法转化籼稻有关因素的评价[J]. 中国水稻科学,1998,12(1):21-26. [16] LI L C, TIAN W Z, YANG M, et al.. Establishment of an efficient transformation system for rice(Oryza Sativa L.) [A].农业的未来-转基因技术研究[C]. 长沙,湖南科学技术出版社,2002. [17] 马炳田,朱祯,李平,等. 水稻遗传转化选择系统优化初探[J]. 西南农业学报,2003,16(1):28-31. [18] 唐祚舜,王象坤,李良才,等. 基因枪法转基因水稻中HPT基因稳定遗传[J]. 遗传学报,2000,27(1):26-33. [19] 陶利珍,凌定厚,张世平,等. 基因枪介导的籼稻遗传转化及外源基因在受体中的遗传研究[J]. 武汉植物学研究,1999,17(4):289-296. [20] CHENG Zai-quan,HUANG Xing-qi,RAY Wu,et al..Comparison of biolistic and agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice[J]. Acta Botanica Sinica, 2001,43(8):826-833.