不等式的恒成立就是比如:定义X<5 ,那X<6也就恒成立 0〈2也是恒成立 不等式的恒成立是已知了不等号两边的数的值遇,那不等号的方向也就恒定
初三 就写 论文 厉害 佩服啊你可以 按这个 模式 写一下一、目的要求从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。二、内容分析1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。三、教学过程复习提问:1.当x取什么值的时候,3x-15的值(1)等于0;(2)大于0;(3)小于0。(这是初中作过的题目)2.你可以用几种方法求解上题?新课讲解:像3x-15>0(或<0)这样的不等式,常用的有两种解法。(1)图象解法:利用一次函数y=3x-15的图象求解。注:①直线与x轴交点的横坐标,就是对应的一元一次方程的根。②图象在x轴上面的部分表示3x-15>0。(2)代数解法:用不等式的三条基本性质直接求解。注这个方法也是对比一元一次方程的解法得到的。复习提问:画出函数的图象,利用图象回答:(1)方程的解是什么;(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0。(这也是初中作过的题目)新课讲解:1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3;当x<-2,或x>3时,y>0,即;当-2
无论为知数是何值,不等式都成立
不等式的恒成立就是指无论x取什么实数(如果是在实数内恒成立的话),这个不等号都成立,常见的有 a^2+b^2>=2ab等
导数中不等式证明六种方法如下:
(1)作差比较法.
(2)作商比较法.
(3)公式法.
(4)放缩法.
(5)分析法.
(6)归纳猜想、数学归纳法.
证明不等式是学生的弱点与难点,也是高考的热点。本文就以利用导数证明不等式为例,谈一些具体做法,仅供参考。
一、用函数的单调性证明不等式 注用函数的单调性证明不等式的一般思路:
(1)构造函数f(x);
(2)利用导数确定f(x)在某一区间的单调性;
(3)依据该区间的单调性证不等式。
二、用函数的最值证明不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
将不等式全部移到左侧,右侧变为0,令左侧为一个函数对该函数进行求导,确定极值点,进而求出最值对最值进行验证即可解决恒成立问题
论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究
当然可以啊,如果不能否定,那就是说你的假设都必须是正确的,那么请问你是神么 ,谁能保证一开始的假设是正确的。。。这就是现在很多学生写论文的误区,总觉得推翻了自己的假设,论文就没法写了,但这是完全错误的,就问一句“你凭什么认为你的假设就一定是正确的”假设假设,自然就是提前不清楚,而预先假想的,这就是科学研究的过程啊,如果你的假设每次都正确,那不需要论证了,警察破案也只要假设一下就好了。。。假设推翻了 也可以讨论一下,然后以后的研究再做新的假设,这就是研究的过程
硕士论文中结构方程模型假设不需要都成立,他只需要成立一部分,其他的需要通过计算的方式来进行计算成立,不然就没有实验的。理论呢,他这个论文就是需要通过自己的话术来进行成立,所以不需要都成立。
微积分 Calculus 矩阵 Matrix 不等式 Inequality 证明 prove一题多解 Multiple Solutions for a title
论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究
春风又绿江南岸,明月何时照我还?
[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)