门窗也是需要做四性检测的。翎钧检测
1.幕墙的性能设计应根据建筑物的类别、高度、体形以及建筑物所在地的地理、气候、环境等条件由设计单位确定。2.规范要求工程竣工验收时应提供建筑幕墙的风压变形性能、气密性能、水密性能的检测报告(通常称为“三性试验”)。必要时可增加平面内变形性能及其他(如保温、隔声等)性能检测。3.“三性试验”检测试件的材质、构造、安装施工方法应与实际工程相同。4.规范规定:幕墙性能检测中,由于安装缺陷使某项性能未达到规定要求时,允许在改进安装工艺、修补缺陷后重新检测。检测报告中应叙述改进的内容,幕墙工程施工时应按改进后的安装工艺实施;由于设计或材料缺陷导致幕墙检测性能未达到规定值域时,应停止检测。修改设计或更换材料后,重新制作试件,另行检测。5.“三性试验”的时间,应在幕墙工程构件大批量制作、安装前完成。
建筑幕墙的物理性能检测,目的是检测幕墙试件的气密性能、水密性能抗风压性能和平面内变形性能。 本检测依据国家标准《建筑幕墙气密、水密、抗风压性能检测方法》GB/T 15227—2007、《建筑幕墙平面内变形性能检测方法》GB/T 18250—2000、《建筑幕墙》GB/T 21086—2007。
建筑幕墙物理性能检测的内容:
第一个:会对企业的生产选材有直接的影响,要知道如果生产选错材料了,要么选的不好造成产品质量不行,甚至酿成事故;另外,如果选太好的材料,那企业的成本会被无端的升高,使企业产品在价格上没有优势,因为市场上不太需要太好的材料。第二个:对于好多恶劣工作环境的金属工件,采购商一般都要求要出具检测报告,而这些报告一般都会涉及:金属的理化性能测试。第三个:企业根据不同的力学性能参数,可以安排较为合理的加工工艺。除了这些以外,出口的产品都要经过这方面的检测的,其实这也是一个企业质量意识的侧面反映。
学会用拉伸法测定金属材料的杨氏弹性模量 杨氏弹性模量是表征固体性质的重要物理量,尤其在工程技术中有其重要的意义,常用于固体材料抗形变能力的描述和作为选定机械构件的依据。 测量杨氏弹性模量的方法很多,本实验采用拉伸法。 [实验目的] (1)学习测量杨氏弹性模量一种方法。 (2)掌握用光杠杆法测量微小伸长量的原理和方法。 (3)熟练掌握运用逐差法处理实验数据。 [实验仪器] YMC—1杨氏弹性模量仪、光杠杆镜尺组、千分尺、钢卷尺、m千克砝码若干。 [实验原理] 在外力作用下,固体发生的形状变化叫形变,形变分弹性形变和范性形变。本实验测量钢丝杨氏弹性模量是在钢丝的弹性范围内进行的,属弹性形变的问题,最简单的弹性形变是在弹性限度内棒状物受外力后的伸长和缩短。设一根长度为L、横截面积为S的钢丝,沿长度方向施加外力F后,钢丝伸长ΔL。根据胡克定律:胁变(ΔL/L)与胁强(F/S)成正比,写成等式后,胁变前的比例系数就是杨氏弹性模量即 L SFL Y (17—1) Y就是该钢丝的杨氏弹性模量,单位是NM-2。 由式(17-1)可知,只要测量出等号右端的F、L、S、ΔL等量,即可测定杨氏弹性模量Y。显然,F、L、S可用一般量具测出,而钢丝的微小伸长量ΔL,使用一般的量具进行精确的测量是困难的,这是因为ΔL很小,当L为1m,S为1mm2时,每牛顿力的伸长量ΔL约为5×10-3mm),不能用直尺测量,也不便于用大型卡尺和千分尺测量,所以,通常采用光杠杆法。 杠杆的放大原理是大家熟知的,若利用光的性质,采用适当的装置,使之起到同样放大作用,这种装置就称为光杠杆(图17-1)。光杠杆是由T型足架和小镜组成,测量时,还必须加上读数系统的镜尺组(望远镜和标度尺,参阅图17-2)。在本实验中,光杠杆足架上的前双足应安放在杨氏模量仪固定平台上的沟槽内,后单足则置于钢丝下 端的圆柱形夹头上。 当钢丝伸长ΔL时,光杠杆后单足随钢丝夹头下降ΔL,此时,光杠杆小镜后仰α角(图17-2),则:b L tg 其中,b为光杠杆后单足到前双足的垂直距离。 图17-1
金属材料检测项目太多了,想要通过资质报告,一般要看你检测什么金属材料,然后选定具体检测标准。1、金属材料成分检测项目(1)牌号鉴定(碳钢、不锈钢、模具钢、铝合金、铜合金);(2)元素(O、N、H、C、S、Pt、Au、Ba、Pd及常规元素);(3)纯度(Ni、Ti、Ag、W、Au、Al、Cu、Fe、Zn、Cr纯度)。 2、金属材料机械性能检测项目 : 拉伸试验(抗拉强度、屈服强度、断面收缩率、伸长率、弹性模量)、冲击试验(常温冲击、低温冲击)、硬度试验(维氏硬度、洛氏硬度、布氏硬度)、承重试验、压缩试验、弯曲试验、压扁试验、破环扭矩、杯突试验、扩口试验、剪切试验、焊接结合力。 3、金属材料镀层测试检测项目:镀层厚度、膜重、镀层成分、镀层孔隙率、附着力、耐磨耗、耐化学品、铅笔硬度、耐酸/碱度、镀层形貌分析、表面污点分析、纳米硬度。 4、金属材料可靠性测试检测项目:盐雾试验(中性盐雾、铜离子加速、酸性盐雾)、振动、气体、IP等级、湿热、高低温、淋雨、沙尘、老化、氙灯、紫外、恒温恒湿、水雾试验、干热试验、耐高温。 5、金属材料金相组织检测项目: 晶粒度、非金属夹杂物、低倍组织、显微组织、不锈钢相含量、灰口铸铁金相、球墨铸铁金相、蠕墨铸铁金相、断口检验、硬化层深度、PCB金相切片分析、熔池深度。 6、金属材料尺寸检测项目: 常规尺寸、平面度、直线度、圆度、粗糙度、平行度、倾斜度、位置度、垂直度、微观尺寸、逆向工程、轮廓度、跳动、同心度、同轴度。 7、金属材料物理性能检测项目:密度、熔点、电阻率、粒径分布、导电/热、热膨胀系数、摩擦系数、比热容、残余应力、磁感应强度、铁损、水滴角、电磁兼容、物相分析。
随着科学技术的飞速发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],下面是我整理的关于塑料拉伸性能测定技术论文,希望你能从中得到感悟!
拉伸速度对塑料拉伸屈服应力的影响
[摘 要]本文采用国家标准GB/T1040-2006对聚丙烯树脂进行了拉伸屈服应力的实验,研究不同拉伸速度下的拉伸屈服应力,并确定了最佳的拉伸实验速度为50 mm/min。同时对比了实验样条进行状态调节和未进行状态的拉伸屈服应力的差距。
[关键词]拉伸屈服应力 实验速度 状态调节
中图分类号:U958 文献标识码:A 文章编号:1009-914X(2015)22-0278-02
1.前言
随着科学技术的飞速发展,特别是聚烯烃工业的发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],那么对塑料的各种性能进行严格的测试就显得非常重要,根据不同测试项目的结果可以判定该种塑料适合用于生产哪种类型的产品。其中力学性能是一个很重要的方面,包括拉伸、弯曲、冲击、压缩、撕裂性能等。而影响塑料拉伸性能试验结果的因素有很多,内在因素有塑料组分变化、分子量大小及分布、分子结构、分子取向程度和内部缺陷等,外在原因有试验仪器、试样的制备与处理、试验环境、试验参数、操作过程、数据处理和人为因素等[2]。
力学性能是结构材料最重要的使用性能,拉伸实验是应用最广泛也是最基础的力学性能实验方法。拉伸性能会随着样品厚度、制备方法、试验速度、夹具种类和拉伸度测量方法等因素的变化而变化[3]。对于不同的材料,试验速度对性能的影响不同,铝及其合金受拉伸速度的影响较小,软钢、不锈钢受拉伸速度的影响较大,试验速度增加,则强度性能指标升高,延伸性能指标降低;反之,强度性能与延伸性能指标的变化与上述相反[4],而聚烯烃树脂的拉伸性能受拉伸速度的影响特别大,尤其是对拉伸屈服应力的影响最大,这是因为塑料属于粘弹性材料,其应力松弛过程与变形速率紧密相关,需要一个时间过程。
从分子运动机理角度来说,聚合物的拉伸过程包括弹性形变、屈服、应变软化、冷拉、应变硬化和断裂。屈服即是在应力作用下链段开始运动,因为链段运动是松弛过程,外力的作用使松弛时间下降,若链段运动的松弛时间与外力作用速度相适应,材料在断裂前可发生屈服,出现强迫高弹性,则表现为韧性断裂。若外力作用时间短,链段的松弛跟不上外力作用速度,为是材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂前不发生屈服,则表现为脆性断裂。本文即主要研究实验速度对拉伸屈服应力的影响。
在材料拉伸或压缩过程中,当应力达到一定值时,应力有微小的增加,而应变却急剧增长的现象,称为屈服,使材料发生屈服时的正应力就是材料的屈服应力。
根据拉伸试验测出的应力、应变对应值,可绘制应力一应变曲线。从曲线上可得到材料的各项拉伸性能指标值。曲线下方所包括的面积代表材料的拉伸破坏能。它与材料的强度和韧性相关。强而韧的材料 ,拉伸破坏能大 ,使用性能也佳。不同类型的高分子材料的应力-应变曲线是不同,拉伸屈服应力的大小也不一样。典型的聚合物拉伸应力-应变曲线如图1所示。
在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。
根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。
所谓的“软”和“硬”是用于区分模量的低或高,“弱”和“强”是指强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”是指断裂伸长和断裂应力都较高的情况。聚丙烯树脂和聚乙烯树脂就属于韧性材料,它们的拉伸应力-应变曲线就是图2中的第5种。从图2可以看出并不是所有的聚合物都有屈服点的,这也就说明不同类型的聚合物其拉伸屈服应力是不同的,有的甚至没用拉伸屈服应力。
2.实验方法
2.1 样品制备
本实验按照国家标准GB/T1040-2006[5]的要求对聚丙烯树脂进行了拉伸屈服应力的实验。实验所用的原料是神华包头煤化工有限责任公司生产的聚丙烯粒料,牌号是L5E89。样品制备所用的仪器是克劳斯玛菲注塑机,注塑温度为230℃,模温机温度是40℃,保压压力是60巴,保压时间是30秒,冷却时间是25秒。所用的模具是P003955/06。注塑成型的样品的尺寸是150 mm×10mm×4mm(平均值),属于GB/T1040-2006中的Ⅰ型试样。对注塑成型的样条进行严格的挑选,保证样条的表面和边缘无划痕、黑点、空洞、凹陷和毛刺,样条应无扭曲,相邻的平面要相互垂直。样条的数量要足够多,保证每种试验参数下至少有10个合格的样条来进行平行试验。
2.2 样品进行状态调节
按照GB/T2918-1998[6]规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时后再进行拉伸试验。
2.3 样品进行拉伸试验
拉伸实验所用的仪器是美国Instron公司的Bluehill万能试验机,根据GB/T 1040-2006,热塑性增强塑料的实验速度有B、C、D、E、F,即2 mm/min、5 mm/min 10 mm/min、20 mm/min 和50 mm/min,每种速度下都测试了10个样条,而且测试时操作方法要保持一致。测试前用游标卡尺在样条中心位置附近取三个点准确测得样条的宽度,取其平均值作为最终代入计算的数值,用测厚仪在样条中心位置附近取三个点准确测得样条的厚度,取其平均值作为最终代入计算的数值。在夹持样条时为了保证结果的平行性,要求样条上面有数字的一面正对着操作者,样条的切口端朝下。在样条的同一位置画好标线以保证每个样条的夹持位置是一致的。将样条放到夹具中时,要保证使样条的长轴线与试验机轴线在同一条直线上。从试验结果中发现在拉伸速度为2 mm/min和5 mm/min时,样品未被拉断,而且结果差距很大,故将这两个速度下的实验结果舍去,不参与讨论。 3.实验结果与讨论
3.1 速度对拉伸屈服应力的影响
不同实验速度下的拉伸屈服应力见表1。
每种实验速度下测试了15个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的10个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:1.11%,0.60%和0.59%,均小于5%,所以实验结果是可取的。综上所述,随着拉伸速度的增加,样品的拉伸屈服应力是逐渐增加的。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。
3.2 状态调节对拉伸屈服应力的影响
未进行状态调节和进行状态调节的样品的拉伸屈服应力见表2。
根据GB/T2918-1998规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时。实验速度为20 mm/min和50 mm/min。每种测试条件下均测试了10个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的5个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:0.96%,0.50%,0.79%和0.67%,均小于5%,所以实验结果是可信的。从实验结果可以看出,状态调节后的样品的拉伸屈服应力明显的比为进行状态调节的样品的拉伸屈服应力要大。
4.结论
相同条件下,拉伸速度越大,样品的拉伸屈服应力越大。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。样品经过状态调节后其拉伸屈服应力增大。
对于本公司生产的聚丙烯树脂的拉伸性能测试,要求拉伸实验的样条应该在注塑成型后进行状态调节48小时后再进行测试,测试的最佳速度为50 mm/min。
参考文献
[1] 周祥兴,郁文娟,张惠曦等.实用塑料包装制品手册.中国工业出版社,2000.
[2] 张怀志,阎功臣,景丽荣等.影响塑料拉伸试验结果的因素.工程塑料应用,2005年,第33卷,第10期.
[3] 王超先,蔡春飞.塑料拉伸屈服应力不确定度的评定.理化检验-物理分册,2004,7(40):341-343.
[4] 陆文华.影响拉伸试验结果的主要因素,广东交通职业技术学院学报,2004年12月第4期.
[5] 国家质量监督检验检疫总局和国家标准化管理委员会发布.GB/T1040-2006塑料 拉伸性能的测定[M].北京:中国标准出版社,2007.
[6] 国家质量技术监督局发布.GB/T2918-1998塑料试样状态调节和试验的标准环境[M].北京:中国标准出版社,1998.
点击下页还有更多>>>关于塑料拉伸性能测定技术论文
品安全论文食品安全论文(摘要〕 食品安全问题是当今社会关注的热点。各级政府卫生行政部门及其所属的卫生监督机构,应是我国较早的负有食品安全、卫生监督的职能部门,具有不可处分的法定义务。履行这一法定义务的手段是卫生监督。食品在“从农田到餐桌”的一系列过程中,可受到有害因素的污染,导致食品存在危害性,从而构成食品安全问题。食品安全涉及多部门、多层面、多环节,是一个复杂的系统工程。从当前来看,应尽快建立健全:食品安全的概述;食品安全应急处理机制;完整统一的食品安全标准和检验检测体系;食品安全风险评估评价体系;食品安全信用体系;食品安全信息监测、通报、发布的网络体系;对策体系等九大体系,促进食品安全水平的全面提高。〔关键词〕食品安全概述;体系建设;监管前言民以食为天。食品是人类赖以生存和发展的最基本的物质条件。在我国国民经济中,食品工业已成为第一大产业。根据有关资料显示,1993年至1998年,我国食品工业总产值由3430亿元增至6000亿元,平均每年递增12%。2003年我国食品工业总产值更是首破12000亿元,远远超过汽车工业总产值9400亿元的水平。但是全球及我国接连不断发生的恶性食品安全事故却引发了人们对食品安全的高度关注,也促使各国政府重新审视这一已上升到国家公共安全高度的问题,各国纷纷加大了对本国食品安全的监管力度。2003年4月16日,我国国家食品药品监督管理局正式挂牌,标志着我国食品安全工作迈入了综合监管与具体监管相结合的新阶段,也表明了我国政府与时俱进、切实抓好食品安全工作的决心。然而,此后有关食品安全的负面消息依然不断,通过新闻媒体的深入追踪报道,我们知道了阜阳劣质奶粉、重庆火锅石蜡底料、太仓劣质肉松、山东"掺肥"龙口粉丝……。据媒体报道,《中国青年报》社会调查中心新近完成的一项有关食品安全的调查显示,近期频发的食品安全事件引起了公众的广泛关注,82%的公众表示,这些事件"肯定会" 引发自己对周围食品安全问题的担心,13%的人表示"可能会"。我国目前的食品安全监管较发达国家而言,起步较缓、问题较多,造成我国食品安全问题屡禁不绝的重要原因还是在于我国食品安全缺乏完整的保障体系。我们认为,在今后较长的一段时间里,我国应当把在整体上建立我国食品安全的保障体系作为食品安全工作重点和战略目标来实现。一、食品安全的概述1、定义(1)食品安全。依照《国际食品卫生通则》的定义是:保证食品在按照其用途进行烹调和/或食用时不对消费者造成危害。这里的食品安全强调的是后果。而《食品工业基本术语GB15091-95》的定义是:为防止食品在生产、收获、加工、运输、贮藏销售等各个环节被有害物质包括物理、化学、生物等方面污染,使食品有益于人体健康,质地良好所采取的各项措施。并列出其同义词是:食品卫生。可见,这里的食品安全包括对食品生产到销售的整个食物链的过程要采取的措施。符合《中华人民共和国食品卫生法》(以下简称《食品卫生法》)的立法目的:为保证食品卫生,防止食品污染和有害因素对人体的危害,保障人民身体健康, 增强人民体质。(2)食品安全危害性。是指潜在损坏或危及食品安全和质量的因子或因素。这些因素包括生物性、化学性和物理性。它们可以通过各种方式存在于食品中,一旦这些因子或因素没有被控制或消除,该食品就会成为威胁人体健康的有毒食品。2、特征食品安全危害因子或因素具有以下特征:(1)可存在于“从农田到餐桌”的整个食物链过程中。随着食品工业化生产发展,以及环境污染等问题,这一特征将更加突出。食品安全危害因子或因素在食品中的概率将更进一步加大。(2)可因不同的食物链环节有差异,其导致的食品安全问题也有别。例如在种植农产品过程中,可能会受到农药、兽药、激素等化学物质的危害;食品在生产加工环节的危害因子或因素可能以生物性、物理性为主。因此,在整个人类食物链的不同环节上,食品安全危害因子或因素各有侧重,其程度也强弱不一。(3)食品安全危害性表现出来的程度或后果受到主观(人为的)和客观(天然的)两种因素的双重作用。尤其是主观的,即食品安全危害性人为的作用,其导致的程度和后果可因这一作用减轻或加重。(4)食品安全危害因子对人体健康导致的后果可因其种类型别、毒力大小等因素表现出急性、亚急性和慢性反应(中毒)特征。其慢性反应(中毒)具有潜在性、隐蔽性,不易被发现,以致不受人们所重视。(5)食品安全危害性可通过采取多种手段与措施来控制或消除,将其对人体健康的危害程度降到最低,达到人类食品无毒无害的基本要求。这些手段或措施有法律属性的,即依法开展对食品安全危害的监督管理,如《食品卫生法》等。也有技术性的,如GMP、HACCP等。这些法律法规、标准等是保证食品安全,降低其危害性的有力措施。。3、分类根据《食品企业HACCP实施指南》,食品安全危害可分为三种类型:生物性、化学性和物理性。食品安全危害因子存在于这三种类型中。它们可以侵袭到从“农田到餐桌”的整个食物链的任何一个环节, 造成食品(原料、半成品、成品)有毒有害,成为有毒食品。4、后果食品安全危害性导致的后果是食源性疾病。这是由于摄食进入人体的各种致病因子引起的,通常带有感染性或中毒性质的一类疾病。值得注意的是,食源性疾病包括传统的食物中毒,也应包括经食物而感染的肠道传染病、食源性寄生虫病以及由食物中有毒、有害污染物所引起的中毒性疾病。可见,食源性疾病的范畴在扩大。而且依照现代医学概念,由食物营养不平衡所造成的某些慢性退行性疾病(心脑血管疾病、肿瘤、糖尿病等)、食源性变态反应性疾病、食物中某些污染物引起的慢性中毒性疾病等也属于食源性疾病范畴。食源性疾病依致病的种类型别、毒力大小、人体免疫力强弱,可造成以下三种状态:急性反应(中毒)、亚急性反应(中毒)、慢性反应(中毒)。一般来说,存在于食品中的生物性危害因子常常导致急性反应,表现为各种食物中毒。构成当前突发公共卫生事件的主要因素。化学性危害因子的种类较多,侵袭到食品上的种类、剂量因子环境条件、工艺过程、人为因素有密切关系。是否导致急性、亚急性或慢性反应,存在着明显的剂量与反应关系。如亚硝酸盐中毒剂量:0.3~0.5 克,致死量:1.0~3.0克。三氧化二砷中毒剂量:5~50毫克,致死量:60~500毫克。剂量与反应是化学性危害因子在食品安全危害性方面所表现出来的一个很典型特征。成为制定国家食品卫生标准、食源性疾病诊断、食物中化学污染物监测与评价、卫生宣传教育的依据。食品安全危害因子对人体健康的有害作用之一是导致急性表现,具有群体性、突发性、广泛性与社会性。但是由于食品安全危害因子的毒性作用存在着剂量与反应关系,再加上目前食品安全控制技术的有限性,食品安全危害因子所导致的人体健康的亚急性、慢性反应构成与急性反应同等重要的威胁效果。如农药、兽药残留,以及食品生产经营过程中产生的有害物,如氯丙醇、丙烯酰胺、多环芳烃等。资料证明,这些有害物对人体的慢性毒害作用是致畸、致癌、致突变。其后果将是不可逆的。成品、成品)有毒有害,成为有毒食品综上,我们认为,食品卫生仅是食品安全问题中的一部分,无论是从法律的名称还是从法律本身的内容考虑,食品安全法律体系都应围绕"食品安全"这一核心加以建设。建议方法有二:一种是把《食品卫生法》更名为《食品安全法》,作一次全面修订和补充;另一种是重新制订一部《食品安全基本法》,作为食品安全领域的"母法",其基本内容至少应当包括如下方面: (1)目的:综合促进和保障食品安全。(2)定义:明确"食品"、"食品安全"等名词的法律涵义。(3)食品安全监管范围:国家对食品安全实行从农田到餐桌的全过程监管。(4)监管体制:以法律的形式提出我国食品安全基本监管框架和各方职能。(5)食品安全监管原则:确保人民身体健康,注重科学依据,控制和预防并重,公开、客观、公正,等等。(6)社会其他各阶层的食品安全责任。以食品生产经营企业为主,还包括与食品相关的行业、食品行业协会以及消费者等。(7)应急处理。(8)标准检测,含市场准入。(9)安全风险评价。(10)信用体系。(11)食品安全信息网络。(12)宣传教育。(13)行业协会、研究机构的推动。(14)法律责任。强调监管主体的违法责任、做好与《刑法》的衔接、对违法食品生产经营者设置严厉罚则。法律的尊严是执行出来的,而不是制定出来的。无论多严密、多完善的法律,还必须经由各级政府职能部门的正确施行,才能真正发挥其保障食品安全的强大规范作用。如果行政执法部门不严格执法或者出于各种原因错误地理解和适用了食品安全法律法规,那么就算这些法律法规再完善,也不能产生预期的效果。在现今的食品安全监管中,执法不力的问题不容回避。从我们了解并研究的一些案例看,有不少食品安全事故是由于失职或渎职等执法不力造成的,再加上地方保护主义,食品安全事故频发也就不足为怪了。因此,"有法不依,执法不严,违法不究"成为我国食品安全监管部门执法中的一个顽症,究其原因,不外乎是执法人员对法律法规的理解和运用能力不强、碍于情面和各方压力办"人情案"以及部分执法人员以权谋私、地方保护等等。要做到依法行政,就必须注重对执法人员的法律培训和思想道德教育、制订严密的工作纪律和内部审批程序、完善行政执法人员责任追究机制、建立大案要案领导集体决定制度,不断强化执法和执法监督,使法律法规落到实处。
随着工业化进程的不断推进,水污染的覆盖面也随之不断扩大,这给环境造成了严重的破坏,下面是我精心推荐的水污染控制技术论文范文,希望你能有所感触!
水污染及其控制方法
【摘要】水是人类生产生活中必不可少的宝贵资源,因此水体一旦受到污染,不仅使水资源的数量、质量下降,直接或间接地危及人类的生存和发展,而且污染后的水体也很难再得到恢复和控制。本文主要对水体污染的类型特征及我国的水污染现状进行了综合评述,简要的阐明了水污染可能会带来的危害及水污染的常规处理方法,并就目前水污染防治过程中所面临的困难提出几点建议。
【关键词】水体污染;现状;危害;防治;控制方法
1、水体污染及其类型
1.1 水体污染[1]
水体污染是指排入水体的污染物在数量上超过了该物质在水体中的本底含量和自净能力即水体的环境容量,破坏了水中固有的生态系统,破坏了水体的功能及其在人类活动和生产中的作用,降低了水体的使用价值和功能的现象。我国水污染具有影响地域广、持续时间长、水质季节性变化、污染类型复杂等普遍特征。
1.2 水污染现状
近年来,我国江河、湖泊和海域普遍遭受不同程度的污染,各种类型的水污染事件更是不断地发生。如2004年2月在四川沱江发生严重氨氮超标排放事件,工业废水不合格排放致使大量鱼类死亡,100多万人饮水受到影响,直接经济损失超过3亿元;2005年11月,中石油吉林石化公司双苯厂发生爆炸,苯类污染物泄露流入第二松花江,造成水质污染[2]。当然,我们也采取了很多措施来缓解我国水污染严峻的状况,如从1998年开始的“淮河水专项”,到今天为止已经坚持了16年之久。
1.3 水体污染的类型[1]
从污染成因上来看,水体污染可以分为自然污染和人为污染。从污染源来看,水体污染可分为点源污染和面源污染。从污染的性质来看,水体污染可分为物理性污染、化学性污染和生物性污染。
2、水体污染的危害
水体污染将直接降低生活饮用水的品质,影响人类健康,并对水生生物的生存环境造成不同程度的破坏,影响工农业生产的正常进行,进而导致水生态失衡、生态系统退化,产生一系列的社会生态问题,并且直接影响到社会的安全稳定和经济的正常运转。
3、水污染控制技术
3.1水污染控制原则
要实现对水污染的全局调控和有效综合防治,需从宏观控制、技术控制和管理控制三个方面着手,以可持续发展为指导思想,对产业结构和工业布局进行合理的优化与调整,对工业生产工艺和污水处理技术进行改进,对受纳水体和排污口进行科学有效的管理和监督控制。
3.2水污染处理技术[3-4]
随着水污染状况的不断恶化,及其对人类生产、生活带来的诸多不利影响,越来越多的人认识到了水污染控制与管理的重要性和迫切性。现代污水处理技术,按原理可分为物理处理法、化学处理法和生物化学处理法三类。
废水的物理处理通常是借助物理力或机械力使得废水中的某些污染物质得以分离的单元操作过程。废水的化学处理,就是利用化学反应的作用去除水中的杂质,其处理对象主要是废水中无机或有机(难于降解的)溶解物质或胶体物质。生物化学处理法,是利用微生物的代谢作用,使污水中呈溶解、胶体状态的有机污染物转化为稳定的无害物质。
4、水污染防治面临的困难[5-8]
4.1 水资源保护的意识淡薄, 可持续发展的观念不强
人们对水资源保护和水污染治理的重要性还缺乏足够认识,在发展当地经济的过程中, 只注重经济效益, 忽略水资源的合理利用与保护,个别地区和企业甚至损人利己,以污染临近或下游地区的水资源与环境为代价来发展本地经济。
4.2 管理体制不顺, 缺乏配套的政策措施
现行管理体制未能有效利用经济手段, 未能形成一系列激励水污染治理、水资源优化配置和节约用水的政策措施, 从而导致水污染严重和水资源的有效利用程度不高, 用水浪费惊人。
4.3 有法不依, 执法不严现象根深蒂固
目前, 与水资源保护和水污染治理有关的法律不少, 如《中华人民共和国水法》( 2002 年)中第三十四条规定,禁止在饮用水水源保护区内设置排污口。另外在《中华人民共和国水土保持法》( 1991 年) 、《中华人民共和国水污染防治法》( 1996 年修订)等立法中, 也有关于水污染防治的相应条款。但是由于在处理水污染事件过程中,相关法律法规未能得到及时落实和有效贯彻,使得“有法不依,执法不严”情况持续存在,水污染状况日趋严重。
4.4 科研滞后, 缺乏有效的技术支持
由于水资源时空分布的不均匀性、动态性和随机性, 使得水污染防治技术不能得到统一、系统的规划和研究。流域水资源优化配置、水资源和环境的承载能力与经济发展的关系、水污染防治的有效措施, 水资源保护与管理的决策支持系统等都缺乏深入研究。
5、对水污染防治的建议[9]
5.1 源头控污
5.1.1 加强环保宣传,提高环保意识
5.1.2加强企业的环境管理,合理安排企业布局
5.1.3 加强法律法规建设,改善相应的执行机制
5.2 选择适合本地区的水污染控制技术
我国地大物博,水资源时空分布不均,经济发展地区性强,针对这一情况,不同地区在污水处理时应根据当地的地形地势,道路交通条件及居民住宅布局等具体不同情况,选择适宜当地自然环境且成本低,管理维护简单,效率高的污水处理技术。
6、总结
水是生命之源、生产之要、生态之基,水作为人类生产、生活必不可少的宝贵资源,它的污染和短缺将给人类带来致命的威胁。特别是在经济飞速发展的今天,水污染的问题更不能被忽略,我们应该吸取以往城市发展中水污染对人们的经济生活带来的严重影响的教训,充分重视水环境问题,努力实现各个地区的经济和水环境保护的持续、健康、和谐的发展。
参考文献:
[1]毕润成.生态学[M].北京:科学出版社,2012: 83-86.
[2]程声通.水污染防治规划原理与方法[M].北京:化学工业出版社,2010.5: 5-8.
[3]赵庆良,任南琪.水污染控制工程[M].北京:化学工业出版社,2005.3: 79.
[4]张宝军.水污染控制技术[M].北京:中国环境科学出版社,2007.3: 19.
[5] 谭炳卿, 孔令金, 尚化庄. 河流保护与管理综述[J]. 水资源保护, 2002(3) : 53-57.
[6] 汪恕诚. 资源水利――人与自然和谐相处[M]. 北京: 中国水利水电出版社, 2003.
[7] 钱正英, 张光斗. 中国可持续发展水资源战略研究综合报告[M] . 北京: 中国水利水电出版社, 2001.
[8] XXIX IAHR Congress. Environmental hydraulics and eco-hydraulics[ C] . Proceedings of Theme B. Beijing, TsinghuaUniversity Press, 2001.
[9] 周正, 周颖辉. 我国农村水污染现状及防治方法[J].NORTHERN ENVIRONMENT,2011: 99.
点击下页还有更多>>>水污染控制技术论文范文
写作思路:写有关空气污染的防治措施,并给出保护环境的方法。
大气是由多种成分组成的混合气体,这些混合气体的组成通常包括以下几部分:
(一)干洁空气:它的主要成分为氮、氧、氩,它们在空气中的总容积约占99.96%。此外还有少量其他成分,如二氧化碳、氖、氦、臭氧等。干洁空气是大气中的不变组成。
(二)水汽:大气中的水汽含量比较低,但它在大气中的含量随时间、地域、气象条件的不同而变化很大,在干旱地区可低到0.02%,而在温湿地带可达6%。水汽对天气起着重要的作用。
(三)悬浮微粒:悬浮微粒是指由于自然因素而生成的颗粒物,如岩石的风化、火山爆发、宇宙落物以及海水溅沫等。无论是它的含量、种类,还是化学成分都是变化的。大气污染通常是指由于人类活动和自然过程引起某种物质进入大气中,呈现出足够的浓度,达到了足够的时间并因此而危害了人体的舒适,健康和福利或危害了环境环境的现象。
按污染的范围,大气污染可分为:局部地区大气污染,区域性大气污染,广域性大气污染和全球性大气污染。燃料的燃烧是造成大气污染的主要原因;石油工业和化工工业大规模的发展也增加了空气中污染物的种类和数量;在农业方面,由于各种农药的喷洒而造成的大气污染也是不可忽视的问题。
空气是人类生存所必需的,空气被各种有害物质污染将直接或间接影响到人们的健康。大气污染是随着现代工业的发展、城市人口的密集、煤炭和石油燃料的迅猛增长而产生的。
近百年来,西欧、美国和日本等工业发达国家大气污染事件日趋增多,20世纪50~60年代成为公害的泛滥时期,例如:英国伦敦烟雾事件,日本四日市哮喘事件,美国洛杉矶烟雾事件,印度博帕尔毒气泄漏事件等,不仅严重地危害居民健康,甚至造成数百、数千人的死亡。
大气污染的防治策略和措施,基本的策略应该是监测干预,评价。
第1步,通过对环境污染和人群健康的监测,掌握情况;
第2步,针对问题制订对策,进行干预治理;
第3步,对干预的效果进行评价,再针对发现的问题采取相应的措施。如此循环往复,将环境治理得越来越好,人群健康状也越来越好。
下面那位 人家要的是空气啊 不是大气
在传统上,混凝土是按强度进行设计的,对混凝土的质量的最终标准主要是强度。因此混凝土生产者对水泥品质的要求也是强调强度;强度越高的水泥被认为质量也越高。如此的发展,造成近年来混凝土结构出现裂缝尤其是早期开裂的现象日益普遍。其原因很复杂。单从水泥来说,比表面积、矿物组成中C3A、C3S、碱含量的增加,热水泥的出厂,都增加了开裂的敏感性,降低了流变性能,是原材料中影响混凝土质量主要原因。应当把抗裂性作为水泥品质的重要要求,并限制出厂水泥的温度。 (接上期)4水泥细度对混凝土工作性的影响目前我国混凝土尤其是中等以上强度等级的混凝土普遍使用高效减水剂和其他外加剂。当高效减水剂产品一定时,水泥的成分(主要是含碱量、C3A及其相应的SO3含量)和细度是影响水泥和高效减水剂相容性的主要因素。水泥细度的变化加剧了水泥与高效减水剂相容性问题。近两年时有发生高效减水剂的用户和厂家的纠纷。为此,天津雍阳外加剂厂丘汉用不同细度的天津P.O525水泥和拉法基P.O525水泥分别掺入不同量的UNF-5AS,进行相容性实验。采用水灰比为0.29的净浆,分别在搅拌后5分钟和60分钟后量测...还有更多关于水泥的文章,请上去看看:
水泥物理指标的试验方法【1】
摘 要:水泥是混凝土的重要组成部分之一,其品质的好坏,将直接影响混凝土的质量,进而影响整个工程的质量,如何正确地检验水泥的品质,就成了公路检测试验部门的一个重要任务。
本文分析了水泥标准稠度用水量、水泥凝结时间、水泥安定性等物理指标在试验中容易出现的问题和注意事项。
关键词:水泥;标准稠度用水量;水泥凝结;试验
1 水泥净浆搅拌
水泥净浆搅拌的均匀与否直接影响标准稠度用水量、凝结时间、安定性测定。
水泥净浆搅拌与水泥和水的计量、净浆搅拌机等有关,因此应对电子天平、加水器和净浆搅拌机等仪器设备进行严格控制。
1.1 量水器
规范规定:量水器分度值为0.1mL,精度1%。
读数时以弯月低面为准。
一些试验室对这条规定没有引起足够的重视,直接采用量筒加水,量筒的分度值为1mL,根本无法满足试验精度要求,造成标准稠度用水量的加水误差。
1.2 电子天平
电子天平应满足精度要求,最大量程1000g,感量1g,并定期检定。
水泥复称,避免计量误差。
一些试验室在加水时采用称量的方法,认为电子天平的精度很高,加水量能控制得比较准确,但忽略了环境温度对水的密度的影响,如果采用称量的方法必须进行温度修正
才能确保试验数据的准确性。
1.3 水泥净浆搅拌机
水泥净浆搅拌机应符合JC/T729的要求。
水泥净浆搅拌机的工作程序为:启动搅拌机―低速搅拌120s―停15s―高速搅拌120s停机。
净浆搅拌前,应先用拧干的湿抹布将搅拌锅内壁和搅拌叶片抹湿,但是不能带有明水,并且在重复试验时始终保持同一湿度,这一点是调整加水量的关键,量水器加水再准,如果抹布忽干忽湿,加水量都很难控制。
先将量好的拌和水靠锅口小心倒入锅中,再用加料器在5~10s内小心地将称好的500g水泥加入水中,避免水泥溅出或粘在锅内壁、叶片上形成干灰,影响净浆的标准稠度。
注意试验的顺序为先加水,后加水泥。
在停15s时将锅壁和叶片上的水泥刮入锅中,特别提醒的是操作一定要快,防止刮刀还在锅内没有刮完,搅拌机已开始高速搅拌而引发事故。
2 水泥标准稠度用水量
水泥凝结时间测定是以标准稠度用水量制成的标准稠度净浆装在圆锥试模中来测定的。
标准稠度用水量的确定,对水泥凝结时间、水泥安定性的检验都非常关键。
不同加水量对水泥凝结时间的影响很大,同一水泥用水量愈多,凝结时间愈长,用水量减少,凝结时间会缩短。
因此标准规定凝结时间测定用水量必须满足标准稠度用水量的要求,以确保同一水泥的用水量基本相同。
标准稠度用水量测定有标准法(试杆法)和代用法(试锥法)。
我们一般采用试杆法。
搅拌结束后,立即将搅拌好的水泥净浆装入试模中,要一次装满,并用擦湿的水泥刀从外向内螺旋插捣使其填实,然后拿稳玻璃板连同试模,尽量平端,轻轻振动数次,使浆体内气泡由大变小,再用水泥刀刮平多余的净浆,尽量使刮平面光滑并与试模顶边齐平。
刮平后迅速移至试杆下,使试杆垂直自由下落沉入水泥净浆中,试杆停止下沉或释放试杆30s后记录下沉深度,整个操作过程要在搅拌结束1.5min内完成。
试杆法操作时水量调整的规律难于把握。
操作时应注意以下要点:
(1)测定标准稠度用水量时,应将拌和水一次加入,然后视试杆沉入的情况,根据经验调整水量重新称样另拌一锅,如此重复直至达到试杆下沉深度6mm±1mm,并注意下沉时不要阻挡试杆,更不能碰动维卡仪,避免因操作不规范造成误差。
(2)测定出水泥的标准稠度用水量后,不能直接用该水泥净浆装模来测定凝结时间,应按标准稠度用水量重新拌和一锅净浆来装模测定凝结时间,避免因操作时间过长、标准稠度针下落位置留有空隙而造成误差。
(3)标准稠度用水量的测定要求在拌和结束后1.5min内完成整个测试操作。
如果时间超过1.5min,由于水泥的水化和水分的蒸发,净浆稠度变大,标准用水量会受到很大影响。
因而试验人员正确熟练的操作是关键。
3 水泥凝结时间测定
水泥的凝结时间对工程施工的质量和进度至关重要。
水泥凝结时间过慢,会因水泥浆体或混凝土强度发展缓慢而使脱模时间延长,严重影响工程进度;水泥凝结过快,拌制的水泥浆体和混凝土来不及输送和浇注就失去了流动性或可塑性,使浇捣不能顺利进行,甚至会
在浇捣过程中破坏已不具备触变性的浆体结构,导致混凝土的性能和整个工程质量的降低。
所以水泥凝结时间的测定显得尤为重要。
应从以下几个方面进行控制:
3.1 做好温、湿度的控制
水泥的凝结时间受环境温度和湿度影响很大,只有在规定的温度、湿度条件下,水泥凝结时间的测定才具有复演性和可比性。
GB/T 1346-2001规定,试验室温度为20±2℃,相对湿度大于50%,养护箱温度20±1℃,相对湿度大于90%,而且规定水泥试样、拌和水、仪器和用具的温度应与试验室内室温一致。
因为养护箱内试验温度越高,水泥水化速度越快,凝结时间越短;湿度过小,水泥浆体水分蒸发加快,凝结时间缩短。
3.2 试验前做好仪器检查
凝结时间测定的主要仪器是维卡仪。
要保证维卡仪的金属棒自由顺畅地滑动,调整至试杆接触玻璃板时指针对准零点,初凝时间测定时维卡仪调整至试针接触玻璃板时指针对准零点。
同一时间测定多个试样时,各圆模的玻璃底板厚度要相同,避免厚度不一致影响零点的
调整,造成试验数据的混淆。
有些试验人员调整试杆接触试模顶边时指针对准零点,这种做法是错误的,因为在试样刮平过程中,试样与试模顶边不一定在同一个水平面上,造成试验误差。
3.3 凝结时间测定
在测定凝结时间时,首先要检查试针是否弯曲或表面是否锈蚀,弯曲或锈蚀的试针会使自由下落的阻力增大,产生初凝时间提前的假象。
初凝时间测定在开始时应轻轻扶持金属柱,使其徐徐下降,以防试针撞弯,但结果以自由下落为准。
试针下落的位置应距圆模内壁10mm以外的圆模中心,落点最好在距圆模内壁10~20mm的环状带上,应避免针孔之间的位置过于接近、密集。
每测一次要用湿布抹干净试针。
注意从水泥全部加入水中后30min时开始第一次测定,快要初凝时每隔5min测试一次。
当试针下沉到距底板4±lmm时重复测试,两次结论一样达到初凝;标准要求在初凝时间到达时,应及时将圆模翻转进行终凝时间的测定,在翻转过程中要注意操作技巧,先用一块玻璃板放在试模上面,连同玻璃板一起翻转过来后,沿着水泥方向均匀用力抽出原来的玻璃板,小心不要损坏试体。
终凝用安装了一个环形附件的终凝针测试,每次测定前要确认环形附件的透气孔无堵塞,环形圈与试针之间的凹槽无水泥浆。
临近终凝时每隔15min测试一次,当试针沉入试体0.5mm,即环形开始不能在试体上留下痕迹时重复测试,两次结论一样时达到终凝。
测试初凝和终凝时间的操作要注意试针突然放松的力度要巧而适宜,既能使试针垂直自由地沉入水泥净浆,又要避免维卡仪晃动。
4 水泥体积安定性
水泥体积安定性,是评定水泥质量的重要指标之一,也是保证水泥制品、混凝土质量的必要条件。
安定性不良的水泥会使水泥硬化体膨胀开裂、强度降低、甚至引起严重工程事故。
水泥安定性测定有试饼法(代用法)和雷氏法(标准法),有争议时雷氏夹法为标准。
我们一般采用雷氏夹法。
操作中应注意以下几点:
(1)由于雷氏夹较小,在装浆和用小刀插捣时,雷氏夹很容易倾斜,底面浆体容易漏出,有些试验人员为了抓牢雷氏夹,紧紧捏着试针,使得雷氏夹的体积减少,结果试样在养护24h后,很容易从雷氏夹内脱落下来,无法测定。
还有一种情况是:插捣用的小刀过宽,向下插捣时会撑开雷氏夹,向上拔出时又会带出一些水泥浆,不容易密实,也影响到测试结果的准确性。
所以小刀宽度一般不要大于10mm。
(2)沸煮 调整沸煮箱内的水位,保持在整个沸煮过程中没过试件。
雷氏夹脱去玻璃板取下试件,先测量雷氏夹指针尖端的距离A,精确到0.5mm,把试件放入沸煮箱内的支撑板上,指针朝上,试件之间互不交叉,然后在30min±5 min内加热至沸,并恒沸3h±5 min,中途不得添补试验用水,避免因温度高而出现的烫伤情况发生。
(3)结果判别 沸煮结束后,取出试件,测量雷氏夹指针尖端的距离C,精确到0.5mm,标准规定:当两个试件煮后增加距离(C-A)的平均值不大于5.0mm时,认定水泥安定性合格,当两个试件的(C-A)值相差超过4.0mm时,应用同一水泥立即重做一次试验,再如此,则认为该水泥的安定性不合格。
5 结束语
本文通过对水泥净浆搅拌、标准稠度用水量确定、水泥凝结时间测定、水泥安定性测定等试验环节的阐述,重点论述了试验操作过程中的注意事项、试验环境、仪器设备等因素的`影响,并对如何提高水泥试验能力提出建议。
参考文献
[1]JTG E30-2005,公路工程水泥及水泥混凝土试验规程.
[2]JC/T 727-1996,水泥物理检验仪器净浆标准稠度与凝结时间测定仪.
[3]JC/T 729-1996,水泥物理检验仪器水泥净浆搅拌机.
[4]孙忠义,王建华.公路工程试验工程师手册[M].北京:人民交通出版社,2009.
通用硅酸盐水泥物理指标及其试验方法【2】
摘要:介绍了通用硅酸盐水泥物理指标及试验方法。
关键词:凝结时间;安定性;强度;细度
通用硅酸盐水泥按混合材料的品种和掺量分为硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。
硅酸盐水泥的强度等级分为42.5、42.5R、52.5、52.5R、62.5、62.5R六个强度等级。
普通硅酸盐水泥的强度等级分为42.5、42.5R、52.5、52.5R四个强度等级。
矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水水泥的强度等级分为32.5、32.5R、42.5、42.5R、52.5、52.5R六个强度等级。
通用硅酸盐水泥技术要求包括化学指标和物理指标。
化学指标包括不溶物、烧失量、三氧化硫、氧化镁、氯离子。
物理指标包括:凝结时间、安定性、强度、细度。
1凝结时间
硅酸盐水泥初凝时间不及小于45min,终凝时间不大于390min。
普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥初凝时间不小于45min,终凝时间不大于600min。
初凝时间的测定,水泥净浆的拌制:用水泥�浆搅拌机搅拌,搅拌机和搅拌叶片先用湿布擦过,将拌合水倒入搅拌锅内,然后在5s-10s内小心将称好的500g水泥加入水中,防止水和水泥�出;拌合时先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s停机。
拌合结束后,立即将拌制好的水泥净浆装入已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s-2s后,突然放松,使试杆垂直自由的沉入水泥净浆中。
在试杆停止深入或释放试杆30s时记录试杆至底板之间的距离,升起试杆后,立即擦净;整个操作应该在搅拌后1.5min内完成。
以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。
其拌合水量为该水泥的标准稠度用水量,按水泥质量的百分比计。
以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,放入湿气养护箱中养护至加水后30min时进行第一次测定,维卡仪试针与水泥净浆表面接触,拧紧螺丝1s-2s后,突然放松,或观察试针停止下沉30s时指针的读数。
临近初凝时每隔5min测定一次。
当试针沉至距底板4mm±1mm时,为水泥达到初凝状态,由水泥全部加入水中至初凝状态的时间为水泥的初凝时间。
终凝时间的测定:直径大端向上,再放入湿气养护箱中继续养护,临近终凝时间每隔15min测定一次,当试针沉入试体0.5mm时,既环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态。
由水泥全部加入水中至终凝状态的时间为终凝时间,用“min”表示。
2安定性
每个试样需成型两个试件,每个雷试夹需配备质量约75-85的玻璃板两块,凡与水泥净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一层油。
将雷氏夹放在已稍擦油的玻璃板上,并立即将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约10mm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±2h。
调整好沸煮箱的水位,使能保证在整个沸煮过程中都能超过试件,不需中途添补试验用水,同时又能保证在30min±5min内升至沸腾。
脱去玻璃板取下试件,先测量雷氏夹尖端间的距离(A),精确至0.5mm,将试件放入沸煮箱水中试件架上,在30min±5min内加热至沸并恒沸180min±5min。
沸煮结束后,放掉水冷却至室温。
测量雷氏夹指针尖端的距离(C),准确至0.5mm,当(C-A)的平均值不大于5.0min时,即认为该水泥安定性合格,当两个试件(C-A)相差超过4.0mm时,应用同一样品立即重做一次试验。
再如此,则认为该水泥安定性不合格。
3强度
试体成型试验室的温度应保持在20℃±2℃,相对温度应不低于50%。
试体带模养护的养护箱或雾室温度应保持在20℃±1℃,相对温度应不低于90%。
试体养护池水温度应在20℃±1℃范围内。
水泥450g±2g,标准砂1350g±5g,水土保持225ml±1ml。
把水加入锅里,再加入水泥,把锅放在行星式水泥胶砂搅拌机的固定架上,上升至固定位置。
立即开动机器,低速搅拌30s后,在第二个30s开始的同时均匀的将砂子加入。
高速再拌30s。
停90s,再高速搅拌60s。
胶砂制备后立即成型。
将空试模和模套固定在振实台上,将砂分两层装入试模,装第一层时,每个槽里约放300g胶砂,用大播料器垂直架在模套顶部沿每个模槽来回一次将料层播平,接着振实60次。
再装入第二层胶砂,用小播料器播平,再振实60次。
移走模套,从振实台上取下试模,用一金属直尺以近似90℃的角度架在试模模顶的一端,然后沿试模长度方向以横向锯割动作慢慢向另一端移动,一次将超过试模部分的胶砂刮去,并用同一直尺以近乎水平的情况下将试体表面抹平。
放入雾室或湿箱的水平架子上养护。
试体龄期是从水泥加水搅拌开始试验时算起,不同龄期强度试验在下列时间里进行。
24h±15min,48h±30min,72h±45min,7d±2h,>28d±8h。
4细度
硅酸盐水泥和普通硅酸盐水泥的细度以比表面积表示,其比表面积不小于300m�2/kg;矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水水泥的细度以筛余表示,其80um方孔筛筛余不大于10%或45um方孔筛筛余不大于30%.试验前所用试验筛应保持清洁,负压筛和手工筛应保持干燥。
负压筛析法:试验时,80um筛析试验称取试样25g,45um筛析试验称取试样10g。
筛析试验前应把负压筛放在筛座上,盖上筛盖,接通电源,检查控制系统,调节负压至4000Pa―6000Pa范围内。
称取试样精确至0.01g,置于洁净的负压筛中,放在筛座上,盖上筛盖,接通电源,开动筛析仪连续筛析2min,在此期间,如有试样附着在筛盖上,可轻轻敲击筛盖使试样落下。
筛毕,用天平称量全部筛余物。
对其它粉状物料、或采用45-80以外规格方孔筛进行筛析试验时,应指明筛子的规格、称样量、筛析时间等相关参数。
试验筛必须经常保持洁净,筛孔畅通,使用10次后要进行清洗。
金属框筛、铜丝网筛清洗时应用专门的清洗剂,不可用弱酸浸泡。
我不太了解你需求 你自己去道客巴巴 找吧 免费的很多 中文文档在线分享平台 这个平台上免费的也不少 我的论文就是在上边找的 带程序的不带程序的都有!!
这个可以在重庆维普搜各种期刊发表的论文的~
多功能充电器的硬件开发论文编号:JD781 包括任务书,开题报告,文献综述,外文翻译, 论文字数:14302,页数:29摘 要近年来,随着现代化工业的飞速发展,工业污染日趋严重,节能和环境保护己成为当今世人普遍关注的问题之一。研究低能耗、结构简单、操作简便的多功能充电器是未来发展的一大发展趋势。本文先介绍了多功能充电器开发的背景及意义,之后阐述了多功能能充电器的设计原理。通过4*4键盘可以输入所需充电的时间,在LED上实时显示剩余时间,同时采样充电器的实时电压并经A/D转换,单片机对输入的电压、电流信号进行比较,决定充电模式,通过D/A转换,控制输出信号,比较充电电源的电流、电压值给定,对充电电源电流进行控制,从而达到多功能充电的效果。通过对硬件和软件调试,基本能实现上述功能,具有较强的实用性。关键词:多功能充电器;单片机;蓄电池;A/D转换AbstractIn recent years, with the rapid development of modern industry, industrial pollution was worsening. Energy-saving and environmental protection had become one of the issues of common concern in the world today. Studying the multi-functional charger of low energy, simple structure, simple operating was a major trend of the development in the future.The paper introduced the background and significance of multi-functional Charger firstly, and then introduced the design principle of the multi-functional charger. Through the 4*4 keyboard can input the required charging time, and display the remaining time in the LED, while sampling the real-time voltage of the charger and through the A/D converters, the MCU compared the importation voltage with the current signals, and charging into which mode ,through D/A conversion,controlled the output signal, analysis the given values of current and voltage with the Rechargeable power, and control the current of the charging power , so as to achieve the effect of multi-functional charger . Through the hardware and software debugging, achieved the above functions and the greater practicality.Keywords:Multi-functional charger;Single chip microcomputer;Storage battery;A/D transformation目 录摘 要 IAbstract II目 录 III第1章 概 述 11.1 课题研究的背景及意义 11.2 国内外发展现状 21.3 本课题研究的内容 4第2章 充电器设计的基本理论 62.1 常用充电器的充电方式 62.2 多功能充电器的充电原理 7第3章 多功能充电器的硬件设计 93.1 电源回路 93.2 PWM控制 103.3 检测部分 103.3.1 模数转换芯片ADC0809 113.3.2 单片机AT89C51 123.3.3 模数转换芯片DAC0832 123.4 时钟电路 133.4.1 概述 133.4.2 寄存器 143.4.3 时间地址 163.4.4 实时时钟硬件接口原理图 163.5 LED显示部分 173.5.1 共阳极数码管工作原理 173.5.2 数码显示电路 183.6 键盘控制部分 183.6.1 工作原理 183.6.2 矩阵键盘简介 19第4章 硬件系统可靠性设计 214.1 电路系统设计 214.2 PCB板设计 214.3 硬件电路调试 22第5章 总结及展望 235.1 总结 235.2 展望 23参考文献 24致 谢 25以上回答来自: