首页 > 期刊投稿知识库 > 研究论文静态溶液聚合法合成sa

研究论文静态溶液聚合法合成sa

发布时间:

研究论文静态溶液聚合法合成sa

一下你可以参考一下: 低分子量聚丙烯酸钠的制备 低分子量聚丙烯酸钠的合成主要有以下三种方法:①中和法;②聚合法;③皂化法。 1)中和法 中和法是指在引发剂和链转移剂的作用下,丙烯酸在其水溶液中发生聚合反应,生成聚丙烯酸,然后用氢氧化钠水溶液中和,生成聚丙烯酸钠。2)聚合法 聚合法是指先用氢氧化钠水溶液中和单体丙烯酸,生成丙烯酸钠单体,然后在引发剂的和链转移剂的作用下,在水溶液中聚合,生成聚丙烯酸钠:3)皂化法 皂化法是指先由丙烯酸与甲醇反应生成丙烯酸甲酯,在引发剂和链转移剂的作用下聚合为聚丙烯酸甲酯,再在聚丙烯酸甲酯的悬浮液或乳液中加入氢氧化钠水溶液,并加热至100℃维持几个小时,(或者先与氢氧化钠作用,再在引发剂何链转移剂的作用下聚合)即可得聚丙烯酸钠,副产品是烷基醇,可以用气提法除去。由于这种方法工艺流程较长,还需要进一步除去副产物,因此在工业生产中应用不太多。 据文献U.S.P4301266报道,采用APS引发剂体系,在异丙醇一水混合溶剂体系中,丙烯酸均聚合,可得分子量小于2x1护的低分子量聚丙烯酸。 国外有机分散剂产品的分散性能最好的为美国大洋公司的产品SN-5040。近年来,国内有机分散剂的开发应用比较活跃,其中北京的DC分散剂,上海的YH分散剂为开发较成功的产品。YH分散剂采用的工艺是:自由基水溶液聚合,异丙醇作链转移剂,过硫酸按作引发剂,引发游离基的聚合反应,固含量为30-38%.,分散性能良好,但固含量太低,生产成本高。DC分散剂采用的工艺是:聚合、蒸馏(除去链转移剂和水的混合物)、中和,其固含量虽达要求,但生产周期长,成本高。 上述传统的生产工艺都是在比较高的温度进行,并且要蒸馏回收大量的链转移剂,操作费时、耗能。孙晓日以氧化还原催化剂在较低温度下直接合成了低分子量聚丙烯酸钠,经造纸厂实际应用试验证明,该分散剂可单独或与无机磷酸盐分散剂复配使用,对高岭土、硫酸钡、碳酸钙及其混合体均有良好的分散效果。郭永利等人以水为溶剂,APS-SHS氧化还原引发体系,研究了丙烯酸及其共聚物的合成,结果得到分子量小于2万,且无色或淡黄色透明的低分子量聚合物。 何静月等通过研究影响聚丙烯酸钠分子量的各种因素,使用脂肪酸盐等助剂,采用分步聚合的新工艺合成出分子量为500-700、1000-1500和2000-3000的低分子量聚丙烯酸钠。合成出的聚丙烯酸钠不仅分子量较低,而且分子量分布较窄,分散性良好,应用实验表明其分散效果优于分散剂DC,与进口产品SN-5040相当。 在装有回流冷凝器、温度计、搅拌器和滴液漏斗的250mL四口瓶中依次加入一定量的去离子水和链转移剂(异丙醇或丙酮或四氯化碳等),在室温下搅拌均匀,加热升温至一定温度,开始滴加丙烯酸单体和引发剂(过硫酸钾或过硫酸按)水溶液,3h左右滴定完毕,再保温反应3h,冷却至30℃至40℃后用质量分数的为30%的氢氧化钠水溶液中和至pH=7-,.8,然后将反应装置改为蒸馏装置,加热蒸出链转移剂以回收利用,得浅黄色粘稠低分子量聚丙烯酸钠溶液,洗涤后置于50℃左右的真空干燥箱中,干燥至恒重,粉碎包装。 聚合反应将以极快的速率进行,体系产生大量的积热,在普通的玻璃烧瓶反应器中,体系产生的积热在一分钟内从50℃到达剧烈沸腾状态而发生爆聚。若提高聚合温度,亦即增大了反应速率常数,同时由于单体浓度很高使聚合速率增大而发生爆聚。探索性试验结果与聚合反应动力学原理相符,因此在选择合成工艺时应注意以下问题: a.因单体中杂质起阻聚作用,单体采用精馏过的产品。 b.氧分子可看作双自由基,对单体有明显的阻聚作用。氧与链自由基反应形成较稳定的过氧自由基。因此,通入氮气驱赶反应器内的氧。 c.防止爆聚,如果将所有组分同时加入反应器内进行聚合,由于烯类单体在聚合时热效应大,而聚合反应速度又快,易产生爆聚。为了控制热量的放出速度以维持一定的聚合温度,可采取回流冷凝交换散热,分批加入引发剂,控制单体滴加速度等措施。 d.控制搅拌速度,使反应物混合均匀。若搅拌速度太快,反应器内物料将出现漩涡和飞溅。 聚合温度对聚合速率和产品质量都有重要影响。反应温度是由引发剂的分解温度决定的。用过硫酸馁为引发剂,其分解温度大约为70℃,温度过低,聚合反应不易发生或反应速率太慢;温度过高,引发剂分解速率过快,聚合反应热量不易散出,易爆聚。 丙烯酸的聚合热为 -67kJ/mol,合成过程中反应产生的积热可以使体系在1分钟内从50℃上升到100℃的沸腾状态,这种现象称为爆聚。爆聚既影响产品质量,还有可能酿成事故。 目前的合成方法主要是以过硫酸盐为引发剂、异丙醇为链转移剂进行动态水溶液聚合,通过大量链转移剂在冷凝回流作用下移走反应热,以及通过滴定单体和引发剂溶液控制反应速度,来防止爆聚的。但这样操作复杂,生产周期长,能耗高,设备利用率低,生产成本高。 静态水溶液聚合法是近年来出现的聚丙烯酸钠合成新方法,这种方法不使用异丙醇,单体浓度高、聚合周期短,有利于降低制造成本。缺点是聚合过程中伴随着凝胶化现象,放热剧烈,有大量自由基向大分子链转移并引起大分子间相互交联,导致产物中有水不溶物,产品质量较差,尚未工业化生产。 静态水溶液聚合法是指将所有组分同时加入自制的平板式反应器中,瞬间混合均匀后,静置于一定温度的水浴中进行聚合的一种合成方法。 向自制的平板式反应器中加入丙烯酸单体,用30%的NaOH溶液中和,冷却至60℃,依次加入链转移剂和引发剂溶液,混合均匀,置于60℃的水浴中,保温反应3h,得浅黄色粘稠溶液,洗涤后置于50℃的真空干燥箱中,干燥至恒重,粉碎包装。若聚合温度低,用少量的链转移剂或直接混合原料都会发生爆聚;只有在高温下,采用连续滴加单体于含有大量的链转移剂的溶液中才可以实现平稳聚合。这与聚合反应动力学原理相符,在发生爆聚的反应过程中,反应放出的热不能及时释放,体系产生大量积热,反应液的温度急剧升高,故发生爆聚:而在发生平稳聚合的反应过程中,一方面连续滴加单体3h左右,减缓了反应速率,另一方面在高温下,大量的链转移剂的冷凝回流带走了大量的反应热,反应液的温度得到有效控制,故反应平稳进行。但是在这样的条件下合成低分子量聚丙烯酸钠,链转移剂用量较大,如果滴定速度不均匀或过快,就会引起分子量分布变宽或爆聚,影响产品质量。所以,传统动态合成法操作复杂,生产周期长,能耗高,设备利用率低,生产成本高。 由上述讨论可知,解决聚合过程中的爆聚问题是导致传统合成方法中链转移剂用量较大,操作复杂,生产周期长,设备利用率低,能耗大等问题的根源,而爆聚是由于反应积热引发的,所以用简便的方法解决积热问题,就可以解决传统动态法合成中存在的问题。 解决积热问题的关键就是使反应热及时排出,实现放热与散热的平衡,从而有效控制反应液的温度,防止爆聚现象的发生。 为了考察反应过程中的放热情况,配制35wt %的丙烯酸钠水溶液,用过硫酸钾作催化剂进行聚合反应。聚合反应放热从50℃开始,在63. 3℃和80. 9℃时分别有两个放热峰,且第二个峰所对应的面积远大于第一个峰所对应的面积。这是因为一方面温度升高,引发剂的分解速率速率增大,聚合反应速率加大;另一方面生成的聚丙烯酸钠作为模板发生了自动加速效应。 在普通玻璃烧瓶中聚合,反应液的温度在一分钟内由60℃上升至100℃,体系发生爆聚;而在自制的平板式反应器中聚合,反应液温度达到60℃后变化不大,趋于稳定,体系平稳聚合。这是因为普通的玻璃反应器比表面积小,散热效果差,体系积热,引发爆聚;而平板式反应器散热效果好,实现了放热与散热的平衡,反应液的温度得到有效的控制。 故用平板式反应器代替传统的反应器,可以有效解决积热问题。这样聚合过程无须搅拌和滴定,由传统的动态法转化成静态法,简化了操作,缩短了聚合时间,节约了能源。 不同的链转移剂有不同的聚合温度,其中异丙醇和丙酮的用量较大(单体的200-300% ),其聚合在带有冷凝回流的四口瓶中进行;十二硫醇用量较少(单体的4%),其聚合在平板式反应器中进行。 单体浓度也是引起爆聚的一个重要原因。丙烯酸单体的聚合热大,进行高浓度的聚合,很难实现对聚合过程的控制,故通常聚合浓度在40%以下。实验结果与这相一致,在以异丙醇为链转移剂的传统聚合方法中,虽然单体占水重的100-200%,但是在大量异丙醇存在的整个反应体系中单体浓度只有25-30%,所以结合其他条件可以无爆聚进行。在以十二硫醉为链转移剂的聚合反应中,由于链转移剂用量较少,对单体浓度没有多大影响,实验发现,控制单体浓度为30%较为合适。 由以上分析讨论可知,低聚丙烯酸及其钠盐合成时的防爆聚措施主要有以下四条。一、选择合适的反应器,实现放热与散热的平衡。二、选择合适的聚合温度,由DSC曲线可以看出,控制聚合温度在60℃,反应平缓。三、选择合适的单体浓度,减缓体系积热引起的温度上升。四、选择合适的分子量调节剂,抑制分子量的急剧增加。当然,引发剂浓度也是影响爆聚的重要因素,但是要合成低分子量的聚合物,引发剂浓度不能太低。 综上所述,静态水溶液聚合法是合成低分子量聚丙烯酸钠的一种行之有效的方法。聚合反应器、聚合温度、单体浓度、分子量调节剂的类型等因素对聚合过程和产物的分子量具有重大影响。在平板式反应器中,以十二硫醇为分子量调节剂,用静态水溶液聚合法合成低分子量聚丙烯酸钠,实现了放热与散热的平衡,既有效控制了产物的分子量,又避免了爆聚的发生。当单体浓度为30%,分子量调节剂用量为4%(占单体重),引发剂用量为4%(占单体重),聚合温度为60℃,反应时间为3h,可合成出分子量为5000左右的低分子量聚丙烯酸钠,产物水溶性好,分子量分布窄,且单体转化率在99%以上。1.4 利用废腈纶制备聚丙烯酸衍生物1.4.1 腈纶废丝的利用研究综述 腈纶废丝是分子量小于100000的聚合物,其柔软性、卷曲度、拉伸性、弹性等不合格,不能用在纺织品生产上。据统计,每生产1吨的腈睛纶,就会产生1%的废丝。因此,我国每年的睛纶废丝产量相当可观。虽然一部分废丝牵伸后得到重新利用,但仍有相当部分的废丝需另找出路。由于睛纶废丝不能解聚,不能热压成型,燃烧时会散发出有害气体。因此,若能将睛纶废丝水解产物制成高聚丙烯酸衍生物,不仅可以解决废丝的处理问题,而且可以使聚丙烯酸衍生物的成本大大地降低,这不失为一个一举两得的好方法。 1994年合肥联合大学的丁伦汉采用10%A1C13水溶液作为腈纶废丝水解物的交联剂制备高吸水性树脂,A1C13溶液的较佳用量为2.0ml/g。所得高吸水树脂产品可吸收蒸馏水800g/g,生理盐水22g/g,洗涤和烘干过程对吸水率影响较大。 1996年哈尔滨市环境保护科学研究所王凤艳和杨建华等以腈纶废丝为原料.进行碱催化水解,制备污水处理剂一絮凝剂。研究了水解工艺对产物的影响。并用该絮凝剂对选煤厂的污水进行处理,效果良好。 1996年合肥联合大学建工系丁伦汉和彭守宁等将睛纶废丝在碱性条件下水解,经中和、洗涤后,加入交联剂甲醛反应,制得高吸水性树脂。实验表明,甲醛最佳用量为0.22%左右.所得树脂吸水率稳定在600-800g/g。 1998年江苏淮阴工业专科学校化工系李登好和郭迎卫以聚丙烯腈( PAN )废丝为原料,经皂化水解,甲醛交联制备了高吸水树脂,研究了水解工艺条件对水解物的影响以及粘度、交联剂用量等对高吸水树脂的吸水率的影响,最终得到的吸水树脂吸水率为500g/g,生理盐水为61g/g。 1999年西北纺织工学院沈艳琴以腈纶废丝为主,以丙烯酸酯和丙烯酰胺为辅,合成的BY型丙烯类合成浆料,其外观白色粉末,有效成分88%以上,6%水溶液粘度60-100mPa.s ,pH值为6~8,经过试验表明,BY型浆料易溶于水,和淀粉及淀粉+PVA具有良好的混溶性,在淀粉+PVA浆中,BY型浆料可取代15%-20%的PVA。 2003年中原石油勘探局氯化橡胶厂陆颖舟介绍了一种由腈纶废丝常压皂化水解制备水解聚丙烯睛的新工艺路线。研究了氢氧化钠用量、水用量、温度等对水解反应的影响,找出了最佳的水解工艺条件。引入了一种新型的沉析剂处理水解产物,降低了生产成本和排污负荷。同年,中石化股份公司齐鲁分公司研究院的李留忠和于元章等将腈纶水解处理后制备出多种高附加值的产品,文中研究了聚丙烯腈碱法水解工艺的水解过程、水解程度,考察了水解工艺条件和水解配方对产物性能的影响。结果表明,m(PAN)/m(NaOH)/m(H2O) = 1/0.6/5时,在95℃水解4h,得到含羧钠基、酰胺基等多种亲水性基团的均匀透明的无规共聚物水溶液。采用FTIR、 XRF (X荧光光谱)、ZC-NMR等对产物进行了分析表征,进一步验证了试验结果。 PAN废丝的利用国外已有报导),如前苏联将PAN废丝经浓碱皂化水解,得到的水解产物代替纺织工业用的淀粉浆料。日本也将同类型产品作为土质稳定剂等。 一般而言,腈纶废丝在碱性条件下进行水解所得的水解产物可以看成是聚丙烯酸衍生物的多元共聚物,因此,PAN废丝的综合利用在一定程度上可以说是相对应的聚丙烯酸衍生物的应用。 在无机酸、碱、加热、加压条件下,睛纶废丝聚合物链中的侧基氰基(-CN)可以发生水解,使之转变为极性较强的羧基(-COOH )、酰胺基(-CONH2)等官能团,使之由固态转变成了液态,这不仅提高了其流动性,而且由于这些基团还能与其它的一些基团化合或配位,赋予了产物新的性质,从而拓宽了其应用范围。1.4.2 腈纶废丝的酸法水解 在硫酸、盐酸等强酸和适当的温度下,腈纶废丝即发生如下水解反应。产物的结构与酸的种类及反应温度有关。工业上一般使用浓H2SO4进行催化。如果用75%-95%冷浓硫酸,使腈纶废丝水解4小时,主要产物为聚丙烯酰胺,水解产物中-COOH含量小于1%;用50%硫酸加热到120-140℃,催化水解腈纶废丝10小时,则主要产物是聚丙烯酸,其他基团较少。 该法设备简单,使用耐酸的搪瓷反应釜即可,但要求设备的气密度较高,回流冷凝器热交换效率好。缺点是所用的硫酸太浓,导致成本增加,不利于操作和环境。1.4.3 腈纶废丝的碱法水解 聚丙烯腈纤维一般采用主单体丙烯睛(约占93%)、改性单体丙烯酸甲酯和第三单体苯乙烯磺酸钠三元共聚合成,是一种疏水性较强的高分子材料。用碱法水解可对设备无特殊要求。在碱性物质的催化和加热条件下,腈纶废丝即发生水解反应。可供选用的碱性催化剂是NaOH、KOH、水玻璃、磷酸三钠、磷酸三钾、硫化钠、氢氧化钙、氨水,这些物质又称为皂化剂。在皂化水解过程中,腈纶废丝由白色转变为黄色,继而转变为橙红色或棕红色,同时有氨气不断逸出,最后纤维状消失,得到浅黄色或乳白色粘稠液体。皂化剂可以单独使用,也可混合使用,但常用NaOH做皂化剂。NaOH可用固体的,也可以用浓度5%以上的液体。如果提高反应釜内压力,NaOH用量可以减少。 将最终反应的黄色或深黄色半透明溶液放置到室温,真空抽滤,除去溶液中的不溶性杂质,将滤液收集在大烧杯中。然后向滤液中倒入等体积的无水乙醇(作沉析剂),并用玻璃棒轻轻搅拌即可得到淡黄色或白色粘稠状膏体沉析物,将此沉析物取出放入小塑料盘中静置,使表面多余的沉析剂挥发掉,然后将沉析物放入真空干燥6-7h,脱除沉析物中残余的乙醇和水分。 干燥后得到的淡黄色固体即为目的产物一部分水解聚丙烯酞胺。用盐酸将睛纶废丝的水解产物调至中性,用上述方法使之干燥。制备成产品絮凝剂PAM。沉析分离后所剩余的分离液通过蒸馏回收,其中的乙醇可以回收净化后重复使用。水解反应中剩余的碱富集于母液中,在母液中再加入一定量的碱又可以投入睛纶废丝进行水解反应。

工学论文开题报告

工学是理工科内的一大分支,工学的课程带有很强的可操作性和专业性,下面就是我为您收集整理的工学论文开题报告的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

毕业设计题目:年产4200吨环氧氯丙烷车间氯丙烯合成工段工艺设计

指导教师 :

院 系: 科亚学院

专业班级 : 科化工0401班

学 号:

姓 名:

日 期: XX年 3月 7日

1、环氧氯丙烷的物理、化学性质

环氧氯丙烷(ec)英文名:3—chloro—1,2—epoxypropane;epichlorohydrin。 分子式:c3h5clo ,分子量:92。52 , 熔点—25。6℃,沸点117。9℃,相对密度(水=1):1。18(20℃),相对密度(空气=1): 3。29 ,饱和蒸汽压 (kpa):1。8(20℃) ,自燃点415 ℃,折射率(nd20)1。438。 微溶于水,可混溶于醇、醚、4氯化碳、苯。无色油状液体,有氯仿样刺激气味。用于制环氧树脂,也是1种含氧物质的稳定剂和化学中间体 易燃其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。

2、环氧氯丙烷的生产原料及主要产品

环氧氯丙烷是1种重要的有机化工原料和精细化工产品,用途10分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。此外,环氧氯丙烷还可用于合成甘油、玻璃钢、电绝缘品、表面活性剂、医药、农药、涂料、胶料、离子交换树脂、增塑剂、(缩)水甘油衍生物、氯醇橡胶等多种产品,用作纤维素酯、树脂、纤维素醚的溶剂,用于生产化学稳定剂、化工染料和水处理剂等。

1原料:丙烯

丙烯的化学结构式:ch2=chch2oh 。物理性质::无色透明液体,熔点:—129,沸点:97。1,闪点:28,密度(20):0。854,折光率:1。4135。。

用途::丙烯醇是医药,农药和香料的中间体。主要的衍生物及其用途为:用于合成环氧氯丙烷、甘油、1,4—丁2醇以及烯丙基酮,生产增塑剂和工程塑料等重要有机合成原料。此外,其碳酸盐可以做光学树脂、安全玻璃和显示屏,其醚可以做聚合物的增黏剂等。

2主要产品:环氧树脂

目前我国的环氧氯丙烷主要用于生产环氧树脂,其消费比例为环氧树脂占85%,合成甘油占7%,氯醇橡胶占2%,其他如溶剂、稳定剂、表面活性剂、阻燃剂、油田化学品、水处理剂等占6%

3、环氧氯丙烷工艺生产方法及选择

目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和乙酸丙烯酯法两种。

丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用此法进行生产。其工艺过程主要包括丙烯高温氯化制氯丙烯,氯丙烯与次氯酸化合成2氯丙醇,2氯丙醇皂化合成环氧氯丙烷3个反应单元。

4、 工艺流程叙述

(1)丙烯高温氯化法:

(1)丙烯高温氯化制氯丙烯

丙烯与氯气经干燥、预热后以摩尔比4~5:1混合进入高温氯化反应器,短时间(约3 s)内进行反应,生成氯丙烯和氯化氢气体。精制后得氯丙烯产品,同时副产d—d混剂(1,2—2氯丙烷和1,3—2氯丙烯),氯化氢气体经水吸收后得到工业盐酸。

ch2=chch2 + cl2 →ch2=chch2cl +hcl

(2)氯丙烯次氯酸化合成2氯丙醇

氯气在水中生成次氯酸(或采用介质叔丁醇和氯气在naoh溶液中反应生成叔丁基次氯酸盐,该盐水解生成次氯酸,叔丁醇循环使用),次氯酸与氯丙烯反应生成2氯丙醇(过程中2氯丙醇浓度1般控制在4%左右)。

2ch2=chch2cl +2hocl→ clch2chclch2oh + clch2chohch2cl

2,3—2氯丙醇,70%) (1,3—2氯丙醇,30%)

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定,除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产d—d混剂(1,3—2氯丙烯和1,2—2氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗量高,副产物多,产品收率低。生产过程产生的含氯化钙和有机氯化物污水量大,处理费用高,清焦周期短。

(2)乙酸丙烯酯法

前苏联科学院与日本昭和电工均开发了利用乙酸丙烯酯为原料生产环氧氯丙烷的生产工艺。前苏联是采用先氯化后水解工艺,昭和电工则采用先水解后氯化工艺。其工艺过程主要包括合成乙酸丙烯酯,乙酸丙烯酯水解制烯丙醇,合成2氯丙醇以及2氯丙醇皂化生成环氧氯丙烷4个反应单元。

(1)在钯和助催化剂作用下,丙烯与氧在温度160~180 ℃、压力0。5~1。0 mpa,乙酸存在下反应生成乙酸丙烯酯。

ch2=chch2+ 1/2o2 + ch3cooh→ ch2=chch2ococh3 +h2o

(2)在温度60~80 ℃、压力0。1~1。0 mpa下,以强酸性阳离子交换树脂为催化剂,乙酸丙烯酯经水解反应生成烯丙醇。

ch2=chch2ococh3 +h2o→ ch2=chch2oh +ch3cooh

(3)在温度0~10 ℃,压力0。1~0。3 mpa条件下,烯丙醇与氯通过加成反应生成2氯丙醇。

ch2=chch2oh + cl2→ ch2clchclch2oh

(4)2氯丙醇与氢氧化钙发生皂化反应生成环氧氯丙烷。

ch2clchclch2oh+ 1/2ca(oh)2→ ch2— chch2cl + 1/2cacl2 +h2o

与传统的丙烯高温氯化法相比较,乙酸丙烯酯法具有以下优点:(1)避免了高温氯化反应,反应条件温和,易于控制,不结焦、操作稳定,丙烯、氢氧化钙和氯气的用量大大减少,反应副产物和含氯化钙废水的排放量也大大减少。(2)开发了丙烯醇的氯化加成反应系统,成功地将氧引入环氧化物中,首次实现了由氧氧化代替氯氧化的技术,减少了醚化副反应,提高了系统的收率。(3)工艺过程无副产盐酸产生。(4)可以较容易获得目前技术还不能得到的高纯度烯丙醇。主要缺点是工艺流程长,催化剂寿命短,投资费用相对较高。

5、安全环保措施

(1)燃烧爆炸危险性:

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。易燃性(红色):3 反应活性(黄色):2

灭火方法:泡沫、2氧化碳、干粉、砂土。消防器具(包括scba)不能提供足够有效的防护。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。高温下能发生自反应,阻塞安全阀,导致罐体爆炸。蒸气能扩散到远处,遇点火源着火,并引起回燃。封闭区域内的蒸气遇火能爆炸。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户。

(2)包装与储运

储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过 30℃。防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放。储存间内的照明、通风等设施应采用防爆型。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏。 erg指南:131 erg指南分类:易燃液体—有毒的

(3)毒性危害

接触限值:中国mac:1mg/m3[皮] 前苏联mac:1mg/m3 美国tlv—twa:acgih 2ppm,7。6mg/m3 美国tlv—stel:未制订标准。

蒸气对呼吸道有强烈刺激性。反复和长时间吸入能引起肺、肝和肾损害。高浓度吸入致中枢神经系统抑制可致死。蒸气对眼有强烈刺激性,液体可致眼灼伤。皮肤直接接触液体可致灼伤。口服引起肝、肾损害,可致死。慢性中毒:长期少量吸入可出现神经衰弱综合征和周围神经病变。 iarc评价:2a组,可疑人类致癌物;动物证据充分 ntp:可疑人类致癌物 idlh:75ppm,潜在致癌物嗅阈:0。934ppm osha:表z—1空气污染物 niosh标准文件:niosh 76—206 健康危害(蓝色):

(4)防护措施

密闭操作,全面排风。空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。戴化学安全防护眼镜。穿紧袖工作服,长筒胶鞋。戴防化学品手套。工作后,淋浴更衣。保持良好的卫生习惯。防止皮肤和粘膜的损害。

(5)泄漏处置:

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

6、当前生产中存在的问题及建议

(1) 积极发展环氧氯丙烷下游产品,带动环氧氯丙烷的生产与发展今后几年,世界主要国家和地区的环氧氯丙烷下游各消费领域依然会发展较快,各地区的环氧氯丙烷的生产主要是自用,估计会有少量出口。今后几年我国的汽车工业,住宅建设,电子工业等领域将有1个高速发展的阶段,随着我国西部大开发,将有大规模的基础设施投入建设,因此,今后几年,我国的环氧氯丙烷的下游产品,如:环氧树脂、合成甘油等的市场需求量将会很大,美国、西欧及日本主要

一、课题的依据和意义:

1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。

概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的'商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。

概念车的最大功能就是发现与引导这些变化的方向。肯·奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。

天马行空、随心所欲在设计中不再是不切实际,对于概念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风

格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。

针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。

2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。

针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的发展方向。

二、国内外研究概况及发展趋势:

1、国内概况:中国概念车设计的起步较晚,1999年在上海国际车展,中国以吉祥动物麒麟为名的第一款概念车吸引了世人的目光,这是第一辆由中国人设计,在中国制造并面向中国市场的经济型汽车。稚嫩的车型,俗气的颜色,平平的参数是人不得不感慨中国汽车设计的落后。但是他最

大的意义就是唤起了中国概念车的设计。

2003年的“鲲鹏”是中国感念车的一个亮点。终于有了对外形和颜色的思考,但是不得不说造型依然很丑。虽然不足还有很多,但是“鲲鹏”对所在微型车细分领域的全新探索,演练了低成本构造,泛亚以每两年一辆概念车的速度成长,这使得中国汽车厂商在目睹这一个又一个的中国概念车之后开始醒悟,中国需要概念车的设计。

2、国外概况:国外概念车的设计尤其是欧美国家的概念车设计较为成熟,不论技术上、造型上、色彩搭配上、还是使用方式等创新都处在世界的前端。

发展趋势:

趋势一:传统车型分类被打破交叉车型成趋势。如今越来越多的车型打出了交叉车型的概念。如大众概念车ConceptA亮点:运动轿车与SUV的结合;斯柯达概念车Yeti亮点:SUV、轿车、旅行车等集于一身。趋势二:传统能源殆尽新能源汽车代替。能源问题是目前汽车技术的最大课题,其也直接影响到节能、环保等一系列技术。如雪佛兰Sequel氢燃料电池车亮点:最先进的氢燃料电池车型;福特Reflex柴电混合动力概念车亮点:利用太阳能的柴油电力混合动力。

趋势三:打破汽车结构的未来智能行走机器。设计师们不满足于这些传统汽车概念,他们需要打破常规的、面向未来的智能行走机器。如丰田全新未来概念车Fine—T亮点:智能交通下的未来车。

趋势四:个性化的突破设计。外形设计的突破性,是一款概念车的基

本要求。如雷诺Zoe概念车亮点:不对称的车门设计;福特iosis概念车亮点:奠定福特未来风格的雕塑感设计

三、研究内容及基本思路:

1、研究内容:

造型上,整车为流线型设计,考虑空气力学,要有效地减小风阻,车体设计时尚前卫,动感活力,遵循简约主义的同时又要凸显个性。整车将采用仿生学进行形态设计,将会运用一些中国传统元素穿插在设计之中。把中国风贯彻在在设计中,要体现原创性。

结构上,整车为两厢设计,发动机中置,车门为双开门上旋打开方式。车型初步定为跑车类汽车。

材料上,材料主要以环保型材料取代钢铁和塑料,可能采用碳纤维,不过更多的将会使用采用铝或者钢这样的常见材料。

色彩上,定位人群为时尚一族,因此选用较亮丽的彩色,多种配色方案。

人机上,考虑人与机器的关系,遵循人机工程学。

2、基本思路:

打造一款时尚的未来型概念跑车,形态上拥有张力,在年轻的90后上寻找灵感,根据时尚的90后们的喜好来进行设计。收集一些相关的资料,研究90后时尚人群中的习惯和遇到的问题,这些研究在设计中得以体现。结构设计会在现有的一些汽车结构基础上进行改进,尽量保持楔形车型。

四、进度安排:

1、前期阶段(2011.09.01—10.13):

1)09.01—10.12制定工作计划,指导教师资格审定;

2)10月13日下午召开毕业设计(论文)动员大会(全院);

3)10.13—10.16指导老师制定毕业设计题目,学生进行选题;指导老师与学生双向选择,题目

上要求做到一人一题。下达具体任务书;

2、中期阶段(2011.10.13—寒假前)

1)10.17—10.30开题报告,毕业设计调研分析及材料整理;前期发散草图;

2)11.01—11.31课题研究报告,毕业设计前期方案、方案初选及深入;

3)12.01—12.17方案定稿,深入草图,毕业论文前三章初稿。

4)2011年12月18日学院毕业设计(论文)中期检查;

5)12.18—寒假放假毕业设计建模、渲染、版面,寒假放假前集中检查;

溶液聚合论文范文

随着自由贸易的发展,我国所遭受的倾销越来越严重,运用反倾销 措施 来维护公平竞争的市场环境、保护国内企业的合法利益、保证产业安全已刻不容缓。下面是我为大家推荐的化工论文,供大家参考。

化工论文 范文 一:能源化学工程专业无机化学教学改革

能源化学工程专业[1]是利用化学、化工的理论与技术来解决能量的转换、储存及传输等问题,通过生产清洁、高效的新能源服务于人类生活的一门学科。无机化学是本专业所开设的第一门专业基础课,其教学质量直接影响到培养的应用创新型人才的质量。而目前无机化学的教学中面临着很多问题,如大一新生刚从高中迈入大学,面临如此信息量大的课程感到迷茫;教师面对课时量日趋减少的趋势,而传递的信息量大的困扰,不知如何把握日常教学;另外,加上教师科研压力等方面的因素,使得其未能全身心地投入教学中。因此,无机化学教学的改革与探讨在本专业教学过程、人才培养模式中的地位尤为重要。例如:

(1)武汉工程大学化工与制药学院从优化课程内容入手,对无机化学的 教学 方法 进行了改革[2];

(2)钦州学院化学化工学院从无机化学的重要地位出发,结合无机化学的教学目的,对无机化学多媒体课件进行了构建和探讨[3]。菏泽学院是一个应用型的地方性教学型本科院校,于2012年成功申请了与国家战略性新兴产业密切相关的能源化工专业。我系主要从教学目标、教学内容、现代化的教学手段等方面对无机化学的教学进行了改革与探索。

1明确合理的教学目标

根据能源化学工程专业的培养目标及培养模式,结合无机化学课程特点,菏泽学院化学化工系于2012年制定了能源化工无机化学教学目标。通过该课程的理论基础及实验实践的学习,能够使学生掌握无机化学基本知识和技能,为培养成高素质劳动者和化工专业技能人才做好准备;同时,也为今后学习专业知识和职业技能打下坚实的基础。此目标主要分为以下几个方面的目标。

1.1知识目标

主要分为了解、理解、掌握三个层次方面目标。通过该课程的教学,应使学生了解:气体的扩散定律,气体分子的速率分布和能量分布;反应速率的概念及反应速率理论;强电解质解离、离子氛、活度系数的概念;微观粒子运动的特殊性;路易斯结构式,等电子体原理,分子轨道理论;化学电源与电解;卤素单质的物理性质,金属卤化物、拟卤素和拟卤化物、互卤化物和多卤化物;硫和硫化物、单质硫、硫化氢和氢硫酸的物理性质;硅的单质、硅烷、硅的卤化物、硅的含氧化合物。通过该课程的教学,应使学生理解和掌握:气体的状态方程及混合气体的分压定律;热力学第一定律,化学反应的热效应、热化学方程式、盖斯定律、生成热的概念及应用,化学反应进行方向的判断方法;浓度对反应速率的影响;缓冲溶液的原理及应用;沉淀溶解平衡及移动;核外电子运动的描述,核外电子排布和元素周期律及基本性质的周期性;价键理论,价层电子互斥理论及杂化轨道理论;基本概念:原电池、电极电势和电动势及能斯特方程;卤素单质的化学性质,卤化氢和氢卤酸的化学性质;氧、氧化物、臭氧、过氧化氢的物理化学性质,硫的含氧化合物的化学性质。掌握氮的氢化物、氮的含氧化合物的化学性质。

1.2专业能力与素质目标

能力目标方面主要是培养学生谦虚的品格、勤奋好学的习惯以及知识迁移的能力;培养学生勤于动手创作、做事严谨的良好作风;培养学生学会运用唯物主义辨证的思维分析问题及解决问题的能力;培养学生工程质量意识和规范意识以及严谨、认真的工作态度。专业能力目标方面使学生能够掌握重要元素及其化合物的主要性质、结构、存在、制法、用途等基本知识;培养学生独立进行化学计算和利用参考资料等方面的能力;具有通过对实验数据的分析,绘制出特性曲线,能够写出规范实验 报告 并加以 总结 概括的能力。素质目标方面主要是培养学生具备良好的职业道德;培养学生勤苦奋斗、勇于创新、敬业乐业的工作作风。

2丰富合理的教学内容

2.1科研成果与课堂教学相结合,保持教学内容的前沿性

科研成果与课堂教学相结合包含两部分内容:一是在教学过程,教师能将自己的科研成果带入教学内容之中。这就要求教师教学的同时展开科研,而科研课题也要紧紧围绕教学内容展开,这样会更能了解学科的前沿动态并能深入把握,有利于增强教学的深度、广度,有效地提高教学质量[4]。另外教师将科研成果带入课堂分析中,将科研成果与教学有机地结合起来,将最新知识与信息传递给学生,科研推动教学,教学促进科研。二是在教学过程中结合学科发展情况,充分利用别人的研究成果,及时补充教学内容,进行教材建设。另外,在教学实践中可采用“案例教学”,对具体科研案例进行讨论、分析,比较各种方案的优缺点及产生原因,选择合理方案。在项目设计过程中,通过教师的引导作用,学生可以自主查阅资料并开展项目的研究性学习。

2.2建设开放的无机化学实验教学环境,理论与实验相结合

充分利用我系基础实验室和化学工程实验中心的仪器设备和师资力量,结合我系化学能源工程专业及无机化学教学内容的特点,试图探索出一套完善的开放式无机化学实验教学模式,注重实验与课堂教学相结合、开展系内实验技能竞赛及无机化学创新实验设计竞赛等项目,激励学生的学习积极性及培养今后创新实践的能力。开展大学生创新研究计划,引导学生在大三下学期进入教师的科研室进行锻炼,参与课题的研究,培养学生的创新意识和实践能力;鼓励大二学生参加无机化学实验技能竞赛,鼓励学生进行科技创新;另外聘请国内外无机化学研究领域的专家学者来我系作学术报告,增加学生的科研兴趣及全面了解无机化学的前沿动态,为今后的科研之路做好准备。

3多媒体与板书相结合的现代化教学手段

针对目前无机化学课时缩减而传递信息量大的情况,传统的板书教学手段已不能满足时代的需要,因此多媒体技术已广泛使用在课堂教学中。这样一方面将节省下的板书的时间能够用于重点难点的讲解,另一方面多媒体中引入一些无机化学演示实验、实物图像,将枯燥的理论教学表现的更加生动直观,提高了学生的学习积极性。然而仅利用多媒体也有一定的缺陷,如对一些公式的推导,仅利用多媒体会受到一定的限制,因此多媒体跟板书结合会更加有利于公式的推导。另外,还会避免仅利用多媒体的教学进度过快,学生不能融会贯通的缺点。总之,鼓励学生 课前预习 ,采用板书与多媒体技术相结合既能考虑教师的教学进度与学生的掌握程度,又能兼顾教学的广度与深度的问题,取得了较好的教学效果。

4结束语

无机化学是能源化学工程专业学生迈入大学的第一门专业基础课,其教学效果直接影响着学生学习本专业的积极性及掌握本专业基础知识的扎实程度。本系以上结合能源化学工程专业特点对无机化学的教学目标、教学内容及教学手段的初探具有一定的意义。今后会继续探索无机化学其他方面的改革。

化工论文范文二:油藏化学工程研究发展趋势

推动我国油藏化学工程研究与我国社会进步有着密不可分的联系。为了赶上发达国家对油藏化学工程研究的脚步,我国必须大幅度提升在这一方面的开发技术,更好地促进化学工程研究大步向前发展。

1油藏化学工程研究的发展背景

人类面临的最大危机之一就是能源问题,世界各国都在担忧石油问题。迄今为止,人类只开采了大约总储藏量1/3的原油,因此,油藏开发及提高效率是每一个科技工作人员的头等任务。半世纪以前,世界对石油的总需求量日益增长,工人们利用油藏工程的原理提高采收率来满足市场需求,同时也促进了油藏工程原理的发展。作为石油工程的重要组成部分,油藏工程主要负责各类研究,在掌握动态规律与原理的同时,也辅助了钻井与采油工程的开展。

2三次采油技术

自改革开放以来,世界各国石油界的精英们一直努力提高石油的采收率。一次和二次采油主要是靠自身压力和注气注水等方法,三次采油是采用之前的任何工业技术[2]。因而提高油藏采收率并没有局限在某一阶段或手段,它主要是靠原来油藏中没有的物料开采。它的定义与分类是不矛盾的。油藏化学工程是在三次采油的背景下发展起来的,它和化学工程学科共同发展。随着现代科技的迅猛发展,人们不断引进新技术,取得新成就。这一阶段也让人们认识到发展的多样性,开始探究多方面技术,涉及各种学科,主要有胶体与界面科学、化学工程学、化学反应动力学、渗流力学、热力学、计算数学等多种高等学科。

3化学复合驱技术

我国油田多数是陆相沉积,分布相当不均匀,原油中的蜡含量和芳烃含量比例较大,且黏度大,导致水驱采收率只在33%左右。三次采油的研究技术表明,化学复合驱能够有效提高采收率,它是在单一化学剂驱的基础上组合两种不同的化学剂,形成多种复合体系。通过实验证明,复合驱的相互作用比单一化学驱剂效果显著的多。随着各方面技术的发展和完善,复合驱逐渐成为我国提高原油采收率的主导技术。复合驱配方体系主要是由高浓度小段塞和低浓度大段塞2种体系组成。高浓度小段塞是利用表面活性剂和助剂,使油水形成中相微乳液体系,增强原油的乳化。典型的代表有胶束.聚合物驱体系,它的表面活性剂浓度在2.5%~5.0%,段塞小于0.4pv,若形成微乳液,效率更大,能达到80%以上。低浓度大段塞是后期才引进的策略,它的驱油原理主要是毛管准数理论,利用碱和表面活性剂降低油水界面张力。这种体系应用相对广泛,高酸值和低酸值都适用。近年来,随着研究力度加强,新型产品不断出现,如梳形聚合物KYPAM,星形聚合物STARPAM,疏水缔合聚合物A.DH。这些新型耐温抗盐聚合物,有利于节约淡水资源,保护环境。也扩展了油藏水的矿化度和文档范围。

4油田堵水调剖技术

开发油田主要采用水驱开发在在这一过程中,因储存分布不均,导致注水过程中出现沿高渗透带窜流,水波效果差,油井含水快速上升,尤其当进入高含水阶段,会出现水短路的现象,加深开采工作难度。为改变这一现状,专家们提出采用“堵水调剖”这一方法。堵水调剖具有颇多优势,操作简洁、规模较小、周期短、效果显著,能有效提高注水开发效果。油田堵水调剖技术历经磨难,从单井油井堵水油井堵水到单井水井调剖,目前主要发展到调整深部调驱。直到2006年底,才开始着手整体堵水调剖示范工程,在采油研究院的带领下,全面开展现工作,有条理的分析堵水调剖工艺技术,给予独特的评价以及实地示范。为改善注水开发的现状,应做如下调整目标:将单井措施向区块整体转变;将近井剖面转向深部液流;阶段上实施一体化转变;评价上从单井向整体转变;应用上改用多种复杂油藏,不再局限在常规水驱油藏据调查,仍有多个区块可以进行整体调堵,由此看来,堵水调剖技术发展趋势将奋力往前。

5评价与改进

综上所述,虽然油藏采收率明显提高,技术也不断突破,但仍然要看清形势。在取得成果的同时,也要擅于总结 经验 ,找出不足,精心解析。例如耐温抗盐聚合物产品的溶解性和长期热稳定性都还不是很乐观,在现场实施过程中,不能有效地达到施工要求,高效率的完成任务。同样地,化学驱技术需要改进解决的问题也是各方面的,需要研究者在过程中分层次去进行。只有抱着永不止步的态度去钻研,去创新,去探索,才能攻克这些技术上遇到的“疑难杂症”,才能进一步将化学驱油技术往特色道路上发展,不断为油藏化学工程研究的发展做贡献。

6结束语

为推动我国油藏化学工程持续发展,还需加强工作。不停探索实验技术,顺应环境变化。掌握化学驱技术,在实际工作中解决问题。还要继续研究物理化学模型,对敏感参数进行验证。油藏化学工程研究的全方位发展,有利于解决能源紧缺问题,有利于稳定我国石油市场,有利于世界和平。

水处理是去除水中一些对生产、生活不需要的有害物质的过程。下面是我整理的水处理技术论文范文,希望你能从中得到感悟!

隧道渗漏水处理技术

摘要:本文总结了隧道渗漏的处理文法,为同类隧道工程结构的渗漏水处理积累了一些经验。需要强调的是,关键是在二衬施工前的防水工程的施工质量及混凝土的浇筑质量,最大可能的做好防止渗漏水的的施工关键工序。当然没有一种材料是百分之百可靠的,没有一种施工方法是尽善尽美美的,只有在正确选材、合理施工,才能达到彻底防水的目的。

关键词:渗漏;堵漏;注浆

中图分类号:F407.9文献标识码:A

1渗漏水处理使用材料简要说明

1.1 堵漏

堵漏材料:金汤水不漏、130瞬间止水剂等。

“金汤牌水不漏”是吸收国内外先进技术开发的高效防潮、抗渗、堵漏材料,也是极好的粘结材料。分“缓凝型”、“速凝型”和“超速凝型”三种,均为单组份灰色粉料。“缓凝型”主要用于防潮、防渗;“速凝型”和“超速凝型”主要用于抗渗、堵漏。其主要技术指标:凝固时间:1~90分钟;抗压强度:30~40MPa;不透水性:>0.7MPa;其主要特点:快速带水堵漏;迎背水面均可使用,施工简便;凝固时间可隔,防水粘贴均可。

130瞬间止水剂是一种不收缩,且具有膨胀性的遇水硬化之粉状聚合物,加水即可使用。接着性很强,在水中或潮湿空气养护条件下,固结体具有微膨胀性(膨胀率为1‰~3‰左右),以填塞所有孔隙达到防水功效,没有氧化和收缩的现象。当温度不低于10°C时,可在46秒内凝固,早期强度高,1小时强度达15Mpa,28天强度达40Mpa,后期强度继续增大;使用年限与一般砼一样长久。

1.2 注浆

注浆材料采用普通水泥和水玻璃。水玻璃为传统注浆材料,对处理混凝土中细微裂缝有独到的效果。

2施工设计程序

二衬施工完毕后,进行二衬墙渗漏水处理。隧道二衬一般在侧墙起拱线以下的墙面上发生渗漏水现象。针对不同部位,采取不同的处理措施。墙面点状、面状渗漏水侧重于堵漏施工,施工缝部位重于注浆施工,但均采用堵漏、注浆、引流相结合的施工工艺。

3渗漏水处理施工工艺

3.1 检查墙面,标出渗漏水部位,根据渗漏水情况,确定处理方案。对于点及裂纹渗漏水的,采用凿槽堵漏方案;对于面渗漏水的,视渗水轻重程度分别采用堵漏和注浆方案;对于施工缝的渗漏水,将采用注浆方案。但也不是绝对的,要根据具体情况,综合分析漏水原因而采取最适宜的处理方案。

3.2 堵漏施工工艺

3.2.1对于裂缝渗漏水,沿裂缝剔凿出宽深各为20mm、40mm的凹型槽,对于渗漏点,则以渗漏点为圆心凿洞,孔洞直径为10~30mm,深为20~40mm,孔洞尽量保持与基面垂直。另外,凿连续墙槽缝要适当加深加宽,按接缝两边的疏松程度而定。

3.2.2彻底清理并清洗凹型槽及孔洞;

3.2.3取适当量的堵漏材料加水拌制成泥状,搓成条形或锥形,迅速将胶泥堵漏到槽(洞)中,并用力挤压密实,保持45~60秒不动。

3.2.4对漏水情况严重的,将采用注浆施工方案。

3.3 注浆、引流施工工艺

根据渗漏水情况,本站采取综合注浆方案。

3.3.1 传统注浆工艺

注浆主要是在施工缝部位,该部位主要是由于浇筑混凝土时处在模板的端头部位,部分施工缝处由于工人施工时操作不到位,混凝土不能完全密实填充,尤其在拱顶部位,这样,该处的膨胀型止水条便起不到止水的作用,同样,由于止水条安装不规范,在施工缝整个断面上,都会有漏水的可能,而这种情况也比较普遍,因此用采注浆的方法可达到较好的堵漏效果。 (1) 查渗漏点将基层表面擦干,立即均匀撒一层干水泥,若表面有湿点或印湿线,即为漏水孔、缝,从而确定渗漏部位。 (2) 凿眼及钻孔先以渗漏点为中心点凿一直径约100mm,深度约40mm的凹坑,再用冲击钻或专用打孔设备,自渗漏点向砼内打Φ20mm的孔Ⅰ,孔深200~300mm,以同样的方法在同一断面的拱顶部位打孔Ⅱ。(3) 埋设注浆管:采用Φ20mm水管(带丝扣连接阀门)埋设,管口中心对正钻眼位置。然后用凝结快(初凝8min,终凝15~20min)粘结好的环氧树脂砂浆封管。封管时将表面凿除部分全部封堵。 (4) 注浆注浆管埋设1小时后方可注浆。采用双液注浆泵泵注浆,注浆材料水泥水玻璃双液浆,配比为水泥:水玻璃=1:1。注浆压力为0.5Mpa注浆前,先用水代替浆液灌注,以检查除注浆注管外其它部位是否有漏水现象,以免出现漏浆。试灌时记录灌水量和灌水时间,为确定灌浆量和灌注压力提供参考。注浆时,垂直缝应按先下后上的顺序进行。注浆管接埋设好的注浆管Ⅰ,打开注浆管Ⅱ阀门,灌浆开始后,逐渐升压,待注浆管Ⅱ出水后先不要封闭,见浆液后立即封闭其孔,仍继续压浆,使浆液沿着漏水通道推进。并把注浆泵开泵到规定压力值,停泵。让灰浆慢慢渗入,到表面压力下降到0.1Mpa时,二次开泵升到规定压力值,如此反复进行,直到压力稳定在规定压力值不再下降为止。当压力解除后不再有漏水和渗水现象时,该处注浆完毕,移到下一注浆孔灌注。 (5) 拔管及封堵注浆完成后,将注浆管沿孔根部用手砂轮割除,然后将孔口清刷干净,孔底用130瞬间止水剂材料封堵,表面用1:2~1:2.5水泥砂浆抹平。

3.3.2 引流

对于墙面大面积渗水,这方面原因主要是二衬内部防水板被破坏,而底板泻水管堵塞,致二衬内水位上升,便造成二衬混凝土大面积渗水,对于这种渗漏水情况的处理,主要是通过引流的方法加以处理。 (1)、先在渗水区域的下部距潮湿印记边缘300mm处,紧贴地板表面打两个Ф32的泻水孔,使二衬后的地下水得以排除;然后,在泻水孔的下部底板上凿一直径10CM深10CM的积水坑,并在隧道底板上凿10CM深宽5CM的沟槽,槽中埋Ф32PVC排水管,将墙底泻水孔的水引至隧道排水沟中。 (2)、孔洞和沟槽的封堵,在墙脚泻水孔与积水坑之间先用PVC盲沟材(大粒径碎石也可)填充,在盲沟材上盖一层土工布,防止砂浆堵塞盲沟材缝隙,孔洞先用京汤水不漏堵漏材料堵2~3CM厚一层,等水不漏凝固后,用1:2.5防水砂浆把孔洞部位及泻水管槽抹面即可。

3.3.3施工注意事项及安全措施

3.3.3.1注意事项: (1)、所选用的输浆管必须有足够的强度;浆液在管内流动顺畅。 (2)、注浆施工力求一次注好,对注浆量较大部位必须连续注注,设备的压力和流量满足施工需要。 (3)、注浆过程中要始终注意观察注浆压力和输浆管的变化,当泵压骤增、注浆量减少,多为管路堵塞或被注物不畅,当泵压升不上去,进浆量较大时,检查浆液粘度和凝固时间。 (4)、注浆过程中出现跑浆、冒浆,多属封闭不严导致,当出现此种情况应停止注浆,重做封闭工作。

3.3.3.2安全措施 (1)、注浆前严格检查机具、管路及接头的牢固程度,以防压力爆破伤人。 (2)、操作人员在配制浆液和注浆时,要戴眼镜、口罩、手套等劳保用品,以防止损伤眼睛和皮肤。 (3)、注浆时注浆管附近严禁站人,以防爆管、脱管伤人。

参考文献

[1]吴晓容.隧道渗水原因分析及处理方法 广州市政技术开发公司 广东 广州 【期刊】城市道桥与防洪.2004-09-15

[2] 杨俊仓; 黎志恒.关山隧道渗水治理工程措施研究.甘肃地质灾害防治工程勘查设计院; 甘肃地质灾害防治工程勘查设计院 兰州 【期刊】安全与环境工程.2003-11-30

[3]王成军.晋阳高速公路隧道渗水处治. 山西省高速公路管理局晋城管理处 山西晋城 【期刊】山西交通科技.2003-12-30

点击下页还有更多>>>水处理技术论文范文

乳液聚合论文范文

1 黄祖强 黎铉海 潘柳萍,机械活化对锌焙砂浸出的影响,矿产综合利用;VOLNO03;2002.062 黄祖强 黎铉海 粟海锋 潘柳萍,机械活化强化锌精矿焙烧的研究,化工矿物与加工;VOLNO05;2002;3 黄祖强 黎铉海 童张法 粟海锋 潘柳萍,机械活化及其在湿法炼锌中的应用,广西大学学报(自然科学版);NO4;2002.04;4 黎铉海,黄祖强,刘雄民,王淀佐,邱冠周,机械活化作用下载金矿的形貌特征;金属矿山; No.1; 2001,论文5 黎铉海,粟海锋,黄祖强,邱冠周,王淀佐,次氯酸钠一步法浸金的原理与试验研究;化工矿物与加工; Vol.30,No.1; 200101; CA,Vol.134,No.20,2001,283610v,论文6 黄祖强 ,董毅宏,黎铉海,“软锰矿湿法常压催化分解黄铜矿的研究”广西化工;Vol.25;No.4;19967 黎铉海,黄祖强,潘柳萍;Applications of flocculant in bleaching and washing of kaolin,Journal of Central South University of Technology (English Edition)1999,6(2):120-123;8 黎铉海、粟海锋、黄祖强、王淀佐*、邱冠周*,“机械活化强化浸出过程的理论分析机器应用”,《有色金属》Vol.52,No.4,200011.9 黎铉海、黄祖强、潘柳萍、童张法,“膨润土酸活化工艺的试验研究”,《化工矿物与加工》Vol.29,No.10,2000年10月;10 黎铉海、黄祖强、潘柳萍、童张法,“宁明膨润土湿法提纯工艺研究”,《化工矿物与研究》Vol.29;No.11,200012.11 黄祖强,童张法,黎铉海, 等. 机械活化对木薯淀粉糊粘度的影响[A]. 第九届全国化学工艺年会论文集[C]. 北京:中国石化出版社,2005.362-365.12 黄祖强,胡华宇, 童张法, 等. 机械活化法制备冷水可溶性玉米淀粉的工艺研究[J]. 食品与发酵工业, 2005, 31(12): 1-3(核心期刊)13 黄祖强,童张法,黎铉海, 等.冷水可溶性机械活化淀粉制备工艺研究[J]. 兰州理工大学学报,2006,32(1):76-78(核心期刊)14 黄祖强,胡华宇, 童张法, 等.玉米淀粉的机械活化及其流变特性研究[J]. 食品与机械, 2006, 22(1): 50-52, 65(核心期刊)15 黄祖强,童张法, 胡华宇, 等.机械活化对木薯淀粉冻融稳定性的影响[J]. 食品工业科技, 2006,27(3):58-60(核心期刊)16 黄祖强,童张法,黎铉海,等. 机械活化对木薯淀粉的溶解度及流变学特性的影响[J]. 高校化学工程学报, 2006, 20(3):449-454 (EI收录: EIP063210056142)17 黄祖强,胡华宇, 童张法, 等. 机械活化对木薯淀粉糊透明度的影响[J]. 过程工程学报, 2006, 6(3): 427-430 (EI收录:EIP06289997348)18 钱维金,黄祖强,胡华宇,等.淀粉的预处理方法对其接枝共聚的影响[J].化工科技,2006,14(3):49-5319 黄祖强.化工工艺学教学与企业技术改造对接的实践与体会[J].中国教育导刊,2006,(14):50-5120 尚小琴, 童张法, 廖丹葵, 黄祖强, 等.反相乳液五元体系淀粉接枝共聚动力学[J]. 化工学报, 2006, 57(5):1220-1224 (EI收录: EIP063110043301)21 尚小琴, 童张法, 廖丹葵, 黄祖强, 等. 反相乳液法淀粉丙烯酰胺接枝共聚反应的研究[J]. 高校化学工程学报, 2006, 20(3):460-463(EI收录: EIP063210056144)22 黄祖强,胡华宇, 童张法, 等. 玉米淀粉的机械活化效果分析[J]. 化学工程,2006, 34(10): 51-54(EI收录: EIP070110349106)23 黄祖强, 黎铉海, 粟海锋, 童张法. 化工工艺专业生产实习模式的改革与实践[J]. 广西大学学报(哲学社会科学版), 2006, 28(增刊): 101-10225 黄祖强,陈渊,童张法,黎铉海. 机械活化对玉米淀粉的直链淀粉含量及老化特性的影响[J].食品与机械,2007,23(1):12-14,30(核心期刊)26 黄祖强, 陈渊, 钱维金, 等. 机械活化对玉米淀粉结晶结构与化学反应活性的影响[J].化工学报, 2007,58(5):1307-1313(核心期刊,EI收录:EIP072410652304)27 黄祖强, 陈渊, 梁兴唐, 等. 机械活化对木薯淀粉的直链淀粉含量及抗性淀粉形成的影响[J]. 高校化学工程学报, 2007, 21(3): 471-476 (核心期刊,EI收录:EIP072810697851)28 黄祖强, 陈 渊, 钱维金, 等. 机械活化对木薯淀粉醋酸酯化反应的强化作用[J]. 过程工程学报, 2007, 7(3): 501-505 (核心期刊,EI收录:EIP072910703176)29 谭义秋,钱维金,黄祖强,等. 机械活化玉米淀粉与丙烯酰胺接枝共聚反应的研究[J]. 食品与机械,2007,23(5):37-40 (核心期刊)31 王茂林,黄祖强,谭义秋,童张法,周龙昌.机械活化玉米淀粉与苯乙烯接枝共聚的研究.粮油加工, 2008,(1):102-105(核心期刊)32 袁建微,黄祖强,胡华宇,童张法,周龙昌.机械活化对木薯淀粉与真菌α-淀粉酶糖化效果的影响. 粮油加工, 2008,(2):105-109(核心期刊)33 谢新玲,童张法,黄祖强,张友全,廖丹葵.机械活化淀粉与丙烯酰胺反相乳液接枝共聚反应的研究.高校化学工程学报, 2008, 22(1): 44-48(核心期刊,EI收录)34 胡华宇,黄祖强,童张法,袁建微.机械活化强化木薯淀粉液化的动力学研究. 食品与机械,2008,24(1):25-28,31(核心期刊)35 胡华宇,黄祖强,童张法,袁建微.机械活化强化玉米淀粉液化处理的研究. 食品与发酵工业,2008,34(4):31-35(核心期刊)36 谢新玲,白守礼,黄祖强,张友全,廖丹葵,童张法.丙烯酰胺接枝活化淀粉共聚物的结构表征.北京化工大学学报,2008,35(3):60-64(核心期刊,EI收录)37 谢新玲,童张法,黄祖强,张友全,廖丹葵.机械活化木薯淀粉丙烯酰胺反相乳液接枝共聚反应.食品科技,2008,(5):34-37(核心期刊)38 谭义秋,黄祖强,王茂林等.机械活化木薯淀粉干法制备深度氧化淀粉的研究.食品科技,2008,(6):32-36(核心期刊)39 胡华宇,黄祖强,童张法,袁建微.双酶协同水解机械活化玉米淀粉的研究.粮油加工, 2008,(6):92-95(核心期刊)40 胡华宇, 黄祖强, 袁建微, 童张法.双酶协同作用机械活化玉米淀粉的水解规律.广西大学学报(自然科学版),2008,33(2):159-16241 谢威,黄祖强,胡华宇.机械活化预处理对木薯淀粉与丙烯酰胺接枝共聚反应的影响.粮油加工,2008,(8):97-100(核心期刊)42 胡华宇,黄祖强,童张法,袁建微.机械活化木薯淀粉无液化直接糖化的研究.粮油加工,2008,(9):97-100(核心期刊)43 张立颖, 黄祖强, 胡华宇,等. 机械活化木薯淀粉接枝丙烯酸制备高吸水性树脂的研究. 化工新型材料, 2008, 36(10): 90-92(核心期刊)44 谭义秋,黄祖强,农克良. 机械活化预处理对木薯淀粉氧化产物理化性质的影响.食品与机械,2008,24(6):20-24(核心期刊)45 童张法,田保华,黄祖强,廖丹葵.机械活化玉米淀粉制备磷酸酯淀粉及其结构表征.广西大学学报(自然科学版), 2008,33(4):413-41746 陈渊,黄祖强,谢祖芳,朱万仁.机械活化乙酰化淀粉用作尿素缓释膜的研究.安徽农业科学,2009,37(2):714-717(核心期刊)47 陈渊,黄祖强,谢祖芳,朱万仁,韦庆敏.机械活化对玉米乙酰化淀粉理化特性的影响.粮食与饲料工业,2009,(1):16-19(核心期刊)48 熊开朗,黄祖强,胡华宇,张立颖,梁兴唐.机械活化淀粉/PVA共混制备聚乙烯醇缩甲醛的研究.粮油加工,2009,(3):98-101(核心期刊)49 谢新玲,童张法,黄祖强,张友全,廖丹葵. (NH4)2S2O8/NaHSO3 引发机械活化木薯淀粉/丙烯酰胺反相乳液接枝共聚的研究.粮油加工,2009,(4):106-110(核心期刊)50 陈渊,谢祖芳,朱万仁,黄祖强.机械活化玉米淀粉乙酰化反应的研究.食品工业科技,2009,30(3):217-219,222(核心期刊)51 谢新玲,童张法,黄祖强,张友全,廖丹葵.机械活化淀粉反相乳液聚合动力学及机理探讨.高分子材料科学与工程,2009,25(4):12-15(核心期刊,EI收录)52 陈渊, 黄祖强, 谢祖芳, 朱万仁, 杨家添. 机械活化醋酸酯淀粉包膜缓释尿素的制备. 湖北农业科学, 2009, 48(4): 823-826(核心期刊)53 陈渊, 黄祖强, 谢祖芳, 朱万仁, 庞雪花. 机械活化玉米淀粉微生物降解性能. 农业工程学报, 2009, 25(4): 293-298( 核心期刊, EI收录)

红苹果中国健康漆第一品牌1.立邦漆 (中国驰名商标、消费放心产品、涂料十大品牌)2.多乐士漆 (世界品牌、CCEL中国环境标志认证、涂料十大品牌)3.华润漆 (中国驰名商标、中国名牌产品、国家高新技术企业、涂料十大品牌)4.红苹果漆 (中国驰名商标、中国名牌、福建名牌、涂料十大品牌)5.美涂士漆 (中国驰名商标、中国化工百强企业、中国建筑涂料十大品牌)6.紫荆花漆 (中国名牌、CCC及FDA认证产品、涂料十大品牌)7.嘉宝莉漆 ( CCEL中国环境标志认证、中国名牌、涂料十大品牌)8.嘉丽士漆(中国驰名商标、中国名牌、中国环境标志、3C认证,涂料十大品牌)9.长颈鹿漆 (中华制漆旗下品牌、中国名牌、广东名牌、中国消费者信赖的知名品牌)10.大宝漆 (CCEL中国环境标志认证、广东省著名商标、广东名牌、涂料十大品牌)

无污染水性涂料论文关键词:丙烯稀丁酯苯乙烯乳液聚合预乳液乳化剂引发剂 论文摘要 :本文叙述了,苯乙烯和丙烯酸丁酯在乳化剂:十二烷基硫酸钠,引发剂:过硫酸铵,存在的情况下利用连续滴加预乳液的聚合工艺,合成苯丙乳液的过程。并通过几组平行实验确定反应温度、搅拌速度、预乳液的滴速及不同时期反应时间对乳液合成及其性能的影响。通过观察反应现象及利用测定实验产物的数据,不断对实验进行改进,尽量减小不良因素对产物性能的影响。试验表明:温度在82-84℃,预乳液在两小时左右滴完,预乳液发生聚合的现象明显。温度50℃,强力搅拌一小时制得的预乳液的质量较好。引发剂的量应小于0.3%,用量过大乳液会发生破乳。Abstract :This text has been narrated, styrene and acrylic acid cube ester are in the emulsifier : 12 alkyl sulphuric acid sodium, initiator: Pass sulphuric acid ammonium , is it is it add craft of getting together of the cream in advance to drip in succession to utilize under the situation that exist, formate the course of third cream of benzene. And parallel experiment confirm temperature of reacting , mix speed, cream drip speed and react time impact on the cream is formated and performance with period in advance through several group. Through observing the phenomenon of reacting and utilizing determining the data which test the result , are improving the experiment constantly, try one's best to reduce the impact on performance of the result of the bad factor. The test shows : Temperature, in 82-84 degrees Centigrade, the cream is dripped in about two hours in advance, the phenomenon that the cream gets together is obvious in advance. 50 of temperature, brute force mix make one hour the quality of the cream is better in advance. The quantity of the initiator should be smaller than 0.3%, the broken milk happens in the too big cream of consumption .Keywords: Propylene rare cube ester Styrene The cream getting together The cream in advance Emulsifier Initiator 第一章 绪论 建筑涂料的发展方向是无毒安全、节约资源、有利于环境保护的水性涂料和无公害低污染涂料。不断提高水性涂料的质量,开发新的品种,是巩固和发展水性建筑涂料的重要环节之一。国外对建筑物的外墙面装饰非常重视,,经常有计划地涂装建筑物外墙,有的国家高达90%。在我国,相当一部分建筑仍然采用面砖或幕墙进行装饰,而用涂料进行装饰的还不足10%。目前使用的外墙涂料品种主要为乳胶涂料和溶剂型涂料,前者大多为苯丙、纯丙薄质乳胶涂料及厚质复层涂料;后者使用较少,但随着最近推出的低毒溶剂型丙烯酸涂料的出现,使用量有所增加。因此,大力发展超耐候性及高性能外墙涂料来满足市场的需求是当务之急。 苯丙乳液是胶体分散体系,具有明显的胶体化学性质,当苯丙乳液与水泥或其他颜料混合均匀后,苯丙乳粒子向浆体内分散,被吸附在其他颜料、水泥凝胶及未水化的水泥粒子的表面上。聚合物粒子封闭了水泥凝胶及未水化水泥粒子的微孔和毛细管孔,水泥进一步水化由于聚合物粒子被吸附在水泥凝胶表面上,使水泥浆体内存在足够的水分,防止了水泥的结块现象,因此苯丙乳液水泥漆具有一定的贮存稳定性。苯丙乳液实际上是由苯乙烯和丙烯酸酯类单体共聚而成,本文从最终产品的性能比考虑,选定由苯乙烯和丙烯酸酯共聚体系,并加入少量丙烯酸作为交联剂。反应过程按自由基加成方式聚合。在施工后形成涂膜时,由于基材吸收了一定的水分和水分的蒸发,涂膜发生了物理机理干燥,分散于水相中的苯丙乳液水泥等复合物粒子就慢慢接近,以至相互接触。水的毛细管压力能够把分散的复合物粒子挤在一起,排列愈紧、压力就愈大,水分挥发愈快,复合物中的苯丙乳液树脂包围的水泥和填料同时呈在干硬的膜之中,构成一个三维空间,牢固结合密实的整体。1.1 苯丙乳液聚合机理 乳液聚合的机理HarKins首先做了定性的描述了。他认为,当乳化剂溶于水时,若其浓度超过临界胶束浓度时,则乳化剂分子聚焦在一起形成乳化剂胶束。在乳化剂溶液中加入难溶于水的单体并进行搅拌时,单体大部分分散成液滴,部分单体则增溶于乳化剂胶束中。当水溶性的引发剂加入后,引发剂在水中生成自由基并扩散到胶束中去,并在那里引发聚合反应。 HarKins将理想乳液聚合机理分为三个阶段:第一阶段: 乳胶粒生成期从诱导期结束到胶束耗尽这一期间为聚合第一阶段。在此阶段中,由于水相中引发剂分解出的自由基不断的扩散到胶束中,并在那里引发聚合反应,生成单体、聚合物粒子,既乳胶粒,随着反应的不断进行,新乳胶粒不断产生,使聚合反应进行一个加速期。另一方面,随着放映的进行,乳胶粒的体积渐渐的增大,其表面积也随之增加,这样越来越多的乳化剂分子从水相被吸附到乳剂粒表面上,因而破坏了乳化剂与胶束间的平衡。胶束中的乳化剂分子不断补充入水相,直到转化率达到一定程度后,水相中的乳化剂浓度下降到临界胶束浓度以下,胶束即告消失。此时,不再有新的乳胶粒生成,聚合体系中的乳胶粒不再变化,至此反应转入第二阶段。第二阶段:反应恒速期从胶束消失到单体液滴消失这一期间为第二阶段。此阶段由于胶束的消失,体系中不再有新的乳胶粒生成,总的乳胶粒数目保持不变。且随着聚合反应的进行,单体液滴中的单体不断扩散入乳胶粒中,使粒子中的单体浓度不变,所以此阶段聚合速率保持不变,直至单体液滴消失,聚合速率下降,反应转入第三阶段。第三阶段:降速期从单体液滴消失至聚合反应结束为第三阶段。此阶段由于单体液滴的消失,不再有单体经水相扩散进入乳胶粒,故乳胶粒中进行的聚合反应只能靠消耗粒子中贮存的单体来维持,使聚合速率不断下降,直至乳胶粒中的单体耗尽,聚合反应也就停止。1.2 乳液聚合工艺 生产聚合物乳液和乳液聚合物有多种工艺可供选择。如间歇工艺、半连续工艺、连续工艺补加乳化剂工艺及种子乳液聚合工艺等。对同种单体来说,若所采用的生产工艺不同,则所制造的产品质量、生产效率及成本各不相同,因此具体应用中可根据对产品的性能要求和不同生产工艺的不同特点,来合理选择可行的生产工艺。1.2.1 预乳化工艺 在进行连续或半连续乳液聚合中,常常采用单体的预乳化工艺。将去离子水投入预乳化罐中,加入乳化剂,搅拌、溶解,再将单体缓缓加入,在规定的时间内充分搅拌,得到稳定的单体乳状液。该工艺可使单体、乳化剂分散均匀,使以后的聚合过程中体系的稳定性提高,乳胶粒尺寸分布较均匀,共聚物组成均一。1.2.2 种子乳液聚合 种子乳液聚合即先制取种子乳液,然后在种子的基础上进一步进行聚合,最终得到所需的乳液。种子乳液是在种子釜中制成的,其过程为:先向种子釜中加入水、乳化剂、水溶性引发剂和单体,再于一定温度下进行成核与聚合,生成数目足够大、粒度足够小的乳胶粒。然后,取一定量的种子乳液投入聚合釜中,还要加入去离子水、乳化剂、水溶性或油溶性引发剂及单体,以种子乳液的乳胶粒为核心,进行聚合反应,使乳胶粒不断增大。在聚合时,要严格控制乳化剂的补加速度,以免生成新的乳胶粒。采用种子乳液聚合工艺,可以克服连续乳液聚合过程中的不稳定瞬态现象,减小了聚合过程的波动。同时,用种子乳液聚合方法可以有效的控制乳胶粒直径及其分布。在单体量不变的情况下,增加种子乳液的用量,可使粒径减小;而减少种子乳液的用量,则可使粒径增大。由于种子乳液中的乳胶粒直经很小,年龄分布和粒径分布都很窄,这有利于改善乳液的流变性能。另外,采用种子乳液聚合方法可以生产出具有异形结构的乳胶粒的聚合物乳液,这将赋予聚合物乳液特殊的功能和优异的性能。1.3 课题的意义 以上的文献综合了关于乳液聚合的机理、聚合工艺,从中我们可看出,尽管乳液聚合技术的开发始于本世纪早期,在许多聚合物的生产中己经成为主要的方法之一,每年世界上通过这种方法生产的聚合物以千万吨计,有着如此大的经济意义,如此悠久的生产发展历史工艺上也已经比较成熟,但是由于乳液聚合体系众多的影响因素,且各因素间复杂的互动效果,致使其定量的详尽的内部规律还没有完全被人们所掌握,乳液聚合的机理和动力学理论还远远落后于实践。在某种情况下提出来的数学模型,常常不能用于另一种条件和其他单体,不然就会出现很大误差。因此,对于不同的聚合体系、不同的生产操作条件都必须详细的考察各种影响因素和相互关系以求对该体系的特点进行准确的把握,以达到对生产过程和产品质量的有效控制。目前对于各种乳液共聚体系的实验性研究已多有报道,在国内也有多家生产企业,虽然各种乳液的聚合有许多相似之处,但想用类似的工艺制备出性能良好的不同乳液是不可能的。若想制备一种性能良好的乳液,就必须对它的合成工艺做具体详细的研究。苯丙乳液具有色彩丰富、美观大方、施工简便、工期短、工效高;特别具有保色性;耐污染性的优点。适用外墙涂料、彩色涂料、复层花纹涂料、内墙涂料、防水涂料等建筑装饰领域。本文对苯丙乳液的聚合机理、合成工艺、影响因素及产物的性能检测作了详细的介绍。这对于制备出高质量的苯丙乳胶涂料具有很大的科学和经济意义。第二章 苯丙乳液的合成 2.1 原料 表1 各种原料名称 级别 生产厂家 单体 苯乙烯 分析纯 沈阳试剂一厂 丙烯酸丁酯 分析纯 北京市兴京化工厂 丙烯酸 分析纯 天津市华东试剂厂 乳化剂 聚乙二醇辛基苯基醚(OP-10) 化学纯 沈阳合富化学试剂厂 十二烷基硫酸钠(SDS) 分析纯 沈阳市化玻站试剂厂 引发剂 过硫酸铵 分析纯 沈阳试剂一厂 缓冲剂 碳酸氢钠 分析纯 沈阳试剂厂 pH调节剂 氨水 分析纯 沈阳市试剂三厂2.2 合成工艺 2.2.1 预乳化阶段 将0.45g十二烷基硫酸钠、1.2g乳化剂OP-10、24g苯乙烯、24g丙烯酸丁酯在一定量水中快速搅拌混合,使之预乳,得到预乳化液。2.2.2 主反应阶段 把0.15g聚乙烯醇(PVA)、0.09g过硫酸钾、0.15g十二烷基硫酸钠、0.3g乳化剂OP-10与一定量的水混合溶解,装到有搅拌器、回流冷凝管、温度计和两个滴液漏斗的多口烧瓶中,搅拌升温至75℃。加入1/3的预乳化液,控制温度在73~76℃,保温至液体呈蓝光。剩余的2/3的预乳化液和0.21g过硫酸钾、0.3g碳酸氢钠水溶液分别从两个滴液漏斗中缓慢滴入,在慢速搅拌下于1h内滴完,并在此温度下反应1h。2.2.3 后处理阶段 升温至86~88℃,保温至无单体回流。降温至30~40℃,调pH值为8~9,过滤出料,即得苯丙共聚乳液。2.3 实验产物性质测定 2.3.1 乳液固含量的测定 在己恒重的称量瓶中,取试样1.0-1.5g(准确至0.0001g),放在105-110℃恒温干燥箱连续干燥3h时,取出称量瓶,盖上盖子,放入干燥器中冷却至室温,称重。平行测定三个样品求其平均值。计算公式如下:含固量= G1一称量瓶重(g)G2一称量瓶加试样重(g)G3一称量瓶加恒温干燥后试样重(g)2.3.2凝聚率和乳液聚合稳定性 乳液的聚合稳定性用凝聚率MC来表示,凝聚率山称重法获得,反应结束后,称量体系产生的凝聚物,放入烘箱烘至恒重,MC越小说明聚合过程的稳定性越好。乳液聚合结束后,用100目丝网过滤乳液,滤渣用水仔细洗涤后烘干至恒重,称其质量为W,聚合用单体及乳化剂总量为W0,计算凝聚物生成量百分比。则MC由下式计算:MC= (W/W0) × 100%2.3.3乳液粘度的测定 采用涂-4杯,测试温度:25℃第三章 结果与讨论 3.1 纯丙乳液聚合共进行三种聚合工艺 3.1.1 单体全滴加法将所有的水、乳化剂、引发剂、助剂等全部投人三颈瓶中,搅拌、升温,将称好的单体混合后倒人滴加漏斗中,当温度升高到聚合温度时,滴加漏斗中的单体,在3h内滴定,然后恒温至转化率>98%,降温调节pH值出料。3.1.2 种子聚合法将水、乳化剂、助剂,5%单体投人三颈瓶中,搅拌,升温至聚合温度,反应0.5一lh后,再分别滴加剩余单体、引发剂3h滴完,恒温至转化率>98%,降温调节pH值出料。3.1.3 预乳化法取4/5的水、乳化剂、引发剂、助剂全部单体投人三颈瓶中,在室温下快速搅拌乳化30min,然后将1/3的预乳化液和1/5的水投人另一个三颈瓶中搅拌,升温至聚合温度,反应0.5一lh后滴加余下的预乳化液,在3h内滴完,恒温至转化率>98%,降温调节pH值出料。通过比较,我们认为:方法(1)在反应后期转化率上升缓慢,方法(2)滴加时,引发剂与单体较难控制同步,方法(3)操作方便,后期反应较快,转化率都达到98%以上。3.2 反应温度的影响 表2 反应温度的影响温度/℃ 凝胶量 乳液外观 转化率/% 离心稳定性 65-75 无 乳白蓝光 <80 稳定 75-85 无 乳白蓝光 80-90 稳定 85-95 大凝 乳白色 >95 破乳由表2可看出,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢,形成的活性自由基少,反应速率慢,转化率低;反应温度过高时,反应速率过快,体系不稳定易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。综合考虑,本实验分两阶段,采用不同温度聚合。前期滴加单体阶段,保持温度75-850C,使反应体系稳定;滴加完单体后再升温到85-900C进行保温,加快反应速率,缩短聚合完全的时间。当反应温度升高时,乳胶粒布朗运动加剧,使乳胶粒之间进行撞击而发生聚结的速率增大,故导致乳液稳定性降低;同时,温度升高会导致乳液稳定性下降,因为非离子型乳化剂遇水时将同水分子发生缔合形成水化乳化剂分子,可使其很好的溶解在水中形成透明溶液,并在乳胶粒周围形成很厚的水化层,但在反应温度升高时,水分子热运动加剧,水和乳化剂分子间缔合力减弱,会使乳胶粒表面上的水化层减薄,当达到某一温度时,水化层大幅度减薄,使乳化剂分子在水中的溶解度减小,以至于使之从水中沉析出来,溶液浊度突然升高,这一温度就是非离子乳化剂的浊点,此时乳化剂就失去了稳定作用,导致破乳。3.3 搅拌强度的影响 表4 搅拌速度对乳液质量的影响搅拌速度 前期 中期(升温反应期) 保温期 慢速 乳白 乳白 蓝光充足 中速 微蓝 微蓝 蓝光充足 较快速 微蓝 蓝光充足 乳白 快速 蓝光充足 微蓝 乳白在乳液聚合过程中,搅拌的一个重要的作用是把单体分散成单体珠滴,并有利于传质和传热。但搅拌强度又不宜过大,否则会使乳胶粒数目减少,乳胶粒直径增大及聚合反应速率降低,同时会使乳液产生凝胶,甚至招致破乳。因此对乳液聚合来说,应采用适度的搅拌。第四章 结论 根据多组平行实验得出预乳液制备的好坏将直接影响乳液质量和性能。制备预乳液时,应在反应器中先加入引发剂、乳化剂再加入单体。这样反应器中就先具备了乳液发生聚合的条件,防止单体间自聚,并在50OC 强力搅拌(大约350转/分)40分,制得的预乳液比较理想。温度对乳液的聚合影响也很大,如果控制不好将出现破乳或凝聚。由实验得出乳液聚合的最佳温度为82 OC-84 OC,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢, 形成的活性自由基少,反应速率慢,转化率低 ;反应温度过高时,反应速率过快,体系不稳定 ,易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。预乳液的滴加速度对聚合也有影响,如果滴加过慢乳液可能会破乳,过快预乳液反应不完全,可能发生自聚。在不同时期玻璃棒的搅拌速度一定要控制恰当, 预乳化阶段和主反应阶段较快(大约350转/分) ,后处理阶段较慢(大约150转/分).本实验中乳化剂的用量控制在0.2%左右 ,引发剂控制在0.2%-0.3%,但每次制得乳液的质量都不太理想,可见乳化剂和引发剂的用量乳液聚合影响存在.乳液中的,酸性或碱性过强,或反应温度过高会破坏乳液体系的稳定性,产生凝胶,因此应严格控制乳液的 pH值和温度。本实验中一是加人适量的NaHCO3控制乳液的 pH值。苯丙乳液在制备过程中,内部反应及其复杂,如果反应过程中控制不当或选用的工艺、配方不合适等因素均可导致凝聚现象发生,凝聚的形态有多种,如产生一些粗粒子,或者可能在整个反应器内凝成一团。可见影响乳液质量的因素是多种多样的。

我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。

聚氨酯合成原料研究进展论文

摘 要 : 采用有机硅氧烷单体与聚醚、二羟甲基丙酸 (DMPA) 和甲苯二异氰酸酯 ( TD I) 反应制备水性聚氨酯涂料。研究结果表明采用后添加有机硅氧烷单体的合成工艺 , 可制备贮存稳定好的水性聚氨酯乳液 ; 凝胶渗透色谱 (GPC) 分析表明有机硅氧烷改性水性聚氨酯提高了聚氨酯的相对分子质量 ; 性能测试表明有机硅氧烷改性水性聚氨酯涂料具有明显的优点 : 涂膜硬度高 , 耐沾污性、耐水性好和耐溶剂性好。 关键词 : 水性聚氨酯 ; 有机硅氧烷 ; 改性 ; 二羟甲基丙酸 0 引 言 聚氨酯具有耐磨性、耐低温、柔韧性好及粘合强度大等特点 , 其在弹性体、泡沫塑料、涂料及黏合剂中已获得了广泛的应用。水性聚氨酯以水为分散介质 , 具有不燃、无毒、不污染环境、节省能源和易加工等优点 , 日益受到人们的青睐。然而常用线型水性聚氨酯存在耐水性、耐沾污性及热稳定性较差等缺点 , 因此 , 往往需要对其进行改性。常用的改性方法是采用丙烯酸酯或环氧树脂进行改性 , 提高水性聚氨酯的交联密度 , 从而提高其耐水性 , 但对提高水性聚氨酯的耐沾污性和热稳定性作用不大。有机硅氧烷是一种可用于乳液合成和水性涂料体系的有机功能性硅氧烷化合物。具有优良的耐水性、耐化学品性、耐温变性、介电性、耐候性、生理惰性和低表面能。常用的硅氧烷改性是采用聚硅氧烷树脂与水性聚氨酯乳液进行物理共混 , 但聚有机硅氧烷与聚氨酯链段的溶解度 1. 2 水性聚氨酯树脂的合成 在氮气保护下 , 将聚醚二醇加入到装有温度计、搅拌装置和回流冷凝器的 1 000 mL 四口烧瓶中 , 加热至 90 ℃ 脱除水分后降温 , 加入 TD I 在 70 ~ 80 ℃反应 3 h, 再加入丁二醇在 70 ~ 80 ℃ 反应 1 h, 用正丁胺滴定法判断反应终点。再加入 DMPA 与 NMP 的混合物和有机硅氧烷单体 , 在 60 ~ 65 ℃ 反应至— NCO 含量达到理论值 , 然后降温至 40 ℃ , 加入三乙胺中和 , 添加丙酮稀释 , 在常温水中乳化 , 用乙二胺扩链 , 最后真空脱去丙酮得到水性聚氨酯分散体 (WPU ) 。在实验过程中 n ( — NCO) ∶ n ( — OH) = 1 . 60 ∶ 1 。

聚氨酯主要是由聚乙二醇(PEG)Mn=2000g/mol;二异氰酸酯甲苯(TDI);1,4-丁二醇(BDO);二丁基锡二月桂酸酯(DBTDL)所合成。

但是按其所制得产品的物理形态可分为弹性体、泡沫、涂料、粘结剂等类。

主要合成工艺有:自乳化法和外乳化法、预聚体法、丙酮法、熔融分散法、二元胺直接扩链与酮亚胺—酮连氮法。

(1) 初聚体的制备: 在装有搅拌、温度计、冷凝管的三口瓶中,加入TDI 和脱水的聚醚二元醇,逐渐升温到60 "C .保持在60 "C -65C 下反应1.5小时左右,取样测定反应物中NCO 基团的含量,当达到规定值后,停止反应。(2) 初聚体的扩链: 加入亲水扩链剂DMPA. 升温到80'C 左右反应到NCO达到的规定值,继续加入小分子扩链剂在70'C 进行扩链反应,进一步提高预聚物的分子量.(3) 预聚物的中和 对预聚物进行降温,当温度达到40'C 左右时,加入计算好的中和剂,快速搅拌,得到中间休。((4) 乳化: 一定的去离子水缓慢加入中间体中,同时高速搅拌乳化,得到水性聚氨酯分散体.(5) 脱溶剂z 将乳化好的水性聚氨酶转移到带有真空冷凝装置的三口烧瓶中,在0.06MPa. 60 'C下脱溶剂(丙酮) 2-3h 。

预聚体的合成反应过程是一个聚醚多元醇与异氰酸酯的化学反应过程,业内人士都知道反应过程中选用的物料温度、反应时间对制成的预聚体性能有至关重要的影响。我们经过研究还发现,反应前投料方式的不同,对制成的预聚体性能也有很大影响。以聚丙二醇(PPG) 、异佛尔酮二异氰酸酯( IPDI) 、二羟甲基丙酸(DMPA) 、乙二胺( EDA) 为原料合成了固含量40 %的聚氨酯分散体。采用激光粒度分析仪测试了预聚体分散体胶粒形成和扩链过程中的平均粒径和粒径分布,透射电镜( TEM) 表征了胶粒的形态结构。结果表明,预聚体分散体中可能存在理想胶粒、活性胶粒、可再分散胶粒,理想胶粒中的NCO 处于胶粒内部,活性胶粒中的NCO 处于胶粒的内部和表面;分散和扩链反应中活性胶粒之间的反应使胶粒粗化和呈双峰分布;提高预聚体nNCO/ nOH、COOH % ,预聚体分散体中活性胶粒增加; TEM 显示聚氨酯分散体胶粒主要呈球形,部分呈不规则形态。想了解更多信息 请到环球聚氨酯网。

地质聚合物研究热点论文

地质聚合物在软土固化中应用的研究意义是采用地聚合物土搅拌法处理软土地基,能够有效提升软土地基承载力。软土淤泥呈流塑状态,层厚变化较大,具有高灵敏度、高流变性、高触变性、高压缩性和低透水性,地基承载力低,地质聚合物的加入可以提高这种地基承载力弱的情况。

编译 | 冯维维

Nature , 31 March 2022, Volume 603 Issue 7903

《自然》 2022年3月31日,第603卷,7903期

物理学 Physics

A highly magnified star at redshift 6.2

一颗红移6.2的高度放大恒星

作者:Brian Welch, Dan Coe, Tom Broadhurst , etc.

链接:

摘要

星系团通过强引力透镜作用放大背景天体。透镜星系的典型放大倍数只有几倍,但也可以高达数十或数百倍,将星系拉伸成巨大的弧形。单个恒星可以获得更高的放大倍数,如果它们碰巧与透镜星团排列在一起。最近,人们发现了几颗红移在1到1.5之间的恒星,它们被放大了数千倍。

作者报告了一颗更遥远、更持久的放大恒星在大爆炸后红移6.2 0.1亿年后的观测结果。这颗恒星被前景星系团透镜WHL0137-08(红移0.566)放大了数千倍,这是由四个独立的透镜模型估计的。

他们将描述的这一天体称为埃兰迪尔(Earendel),来自一个意为“晨星”或“升起之光”的古英语词。引力透镜揭示出它可能是一个单星或双星系统。埃兰迪尔估计质量超过太阳的50倍。红移意为光在行进中的“拉伸”程度,可用于推断天体距离;数字越大,天体就越远(或在宇宙 历史 中越早)。过去观测到放大单星的红移较小,约为1-1.5。

该恒星的温度、质量和光谱性质的确切细节尚不明确,作者希望詹姆斯•韦布望远镜或能在未来提供这些信息。

Abstract

Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs. Inpidual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several inpidual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing. Here we report observations of a more distant and persistent magnified star at a redshift of 6.2   0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137–08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, 10   2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.

Orbital-resolved visualization of single-molecule photocurrent channels

单分子光电流通道的轨道分辨显示

作者:Miyabi Imai-Imada, Hiroshi Imada, Kuniyuki Miwa, Yusuke Tanaka, Kensuke Kimura, Inhae Zoh, Rafael B. Jaculbia, Hiroko Yoshino, Atsuya Muranaka, Masanobu Uchiyama & Yousoo Kim

链接:

摘要

光诱导电子转移(PET)因在光能利用方面的核心作用,已被广泛研究。尽管显微光电流测量方法使其过程效率与局部特征联系起来成为可能,但局部分辨率不足以在分子水平上解决这一问题。最近的工作表明,将扫描隧道显微镜(STM)与可调谐激光驱动的局部等离子体场相结合,可以有效地激发和探测单个分子。

作者通过探测电子从第一激发态穿过STM尖端的隧穿,直接以原子尺度分辨率可视化光电流通道通过一个自由基酞菁(FBPc)分子轨道。

他们发现光电流的方向和空间分布对偏压非常敏感,即使在平均光电流接近零的电压下也能探测到反向流动的光电流通道。相关观测结果表明,通过将耦合调节到激发态分子轨道,可以促进或抑制特定的光电流通道,从而为通过分子界面的原子尺度电子和几何工程提高能量转换效率提供了新的前景。

Abstract

Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied. However, even though microscopic photocurrent measurement methods have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.

化学 Chemistry

Catalogue of flat-band stoichiometric materials

平带化学计量材料宝库

作者:Nicolas Regnault, Yuanfeng Xu, Ming-Rui Li, Da-Shuai Ma, Milena Jovanovic, Ali Yazdani, Stuart S. P. Parkin, Claudia Felser, Leslie M. Schoop, N. Phuan Ong, Robert J. Cava, Luis Elcoro, Zhi-Da Song & B. Andrei Bernevig

链接:

摘要

费米能级附近或相当水平的拓扑电子扁平带是通向非常规超导和相关绝缘态的一条很有前途的途径。然而,相关的实验大多局限于工程材料,如摩尔系统。

作者提出了在费米水平附近的平坦带自然发生的三维化学计量材料的目录。他们将拓扑量子化学网站收录的55206种无机晶体结构数据库材料纳入考量,其中提供了它们的结构参数、空间群、能带结构、态密度和拓扑表征。

他们创建了Materials Flatband数据库网站,为未来的理论和实验研究提供了一个强大的搜索引擎,并利用数据库提取了2379种高质量平带材料的列表,从中确定了345种有希望的候选材料,这些材料可能拥有平面带,但电荷中心并不强烈地定位在原子位置上。

最终作者展示了五种具有代表性的材料,并利用平行工作中引入的S矩阵方法对它们在费米能附近的平坦带的起源提供了理论解释。

Abstract

Topological electronic flattened bands near or at the Fermi level are a promising route towards unconventional superconductivity and correlated insulating states. However, the related experiments are mostly limited to engineered materials, such as moiré systems. Here we present a catalogue of the naturally occuring three-dimensional stoichiometric materials with flat bands around the Fermi level. We consider 55,206 materials from the Inorganic Crystal Structure Database catalogued using the Topological Quantum Chemistry website, which provides their structural parameters, space group, band structure, density of states and topological characterization. We combine several direct signatures and properties of band flatness with a high-throughput analysis of all crystal structures. In particular, we identify materials hosting line-graph or bipartite sublattices—in either two or three dimensions—that probably lead to flat bands. From this trove of information, we create the Materials Flatband Database website, a powerful search engine for future theoretical and experimental studies. We use the database to extract a curated list of 2,379 high-quality flat-band materials, from which we identify 345 promising candidates that potentially host flat bands with charge centres that are not strongly localized on the atomic sites. We showcase five representative materials and provide a theoretical explanation for the origin of their flat bands close to the Fermi energy using the S-matrix method introduced in a parallel work.

Observing polymerization in 2D dynamic covalent polymers

观察二维动态共价聚合物的聚合

作者:Gaolei Zhan, Zhen-Feng Cai, Karol Strutyński, Lihua Yu, Niklas Herrmann, Marta Martínez-Abadía, Manuel Melle-Franco, Aurelio Mateo-Alonso & Steven De Feyter

链接:

摘要:

结晶二维聚合物的质量与难以捉摸的聚合和结晶过程密切相关。在(亚)分子水平上理解这些过程的机理,对于改进预测合成和定制材料性能,以应用于催化和(光电子)等领域至关重要。

作者利用原位扫描隧道显微镜,对一种模型硼氧辛二维动态共价聚合物进行了表征,以实时和环境条件下揭示成核延伸过程的定性和定量细节。

序列数据分析可以观察到非晶向结晶的转变、核的时间依赖性演化、“非经典”结晶路径的存在,重要的是,可以通过实验精确地确定必要的结晶参数,包括临界核的大小,成核速率和生长速率。

Abstract

The quality of crystalline two-dimensional (2D) polymers is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis and (opto)electronics, among others. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation–elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of ‘non-classical’ crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate.

生物和地球物理学 Biophysics & Geophysics

The colloidal nature of complex fluids enhances bacterial motility

复合液体的胶体性质增强了细菌的运动

作者:Shashank Kamdar, Seunghwan Shin, Premkumar Leishangthem, Lorraine F. Francis, Xinliang Xu & Xiang Cheng

链接:

摘要

在人类微生物群落、海洋和土壤生态系统中,微生物的自然栖息地充满了胶体和大分子。这种环境表现出非牛顿流体性质,极大地影响微生物的运动。

作者发现鞭毛细菌在稀释的胶体悬浮液中表现出与稀释的聚合物溶液中显示出定量相似的运动行为,特别是普遍的颗粒大小相关的运动增强高达80%,并伴有对细菌摆动的强烈抑制。

由于胶体的硬球性质,其大小和体积分数在不同的实验中有所不同,该结果阐明了长期以来关于复杂流体中细菌运动性增强的争议,并表明聚合物动力学或非捕获这种现象的必要条件。

Abstract:

The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon.

Assembly of the basal mantle structure beneath Africa

非洲地幔基底结构的组合

作者:Nicolas Flament, Ömer F. Bodur, Simon E. Williams & Andrew S. Merdith

链接:

摘要

板块构造塑造了地球表面,并与地球内部深处的运动有关。寒冷的海洋岩石圈下沉到地幔中,热的地幔柱从地球深处升起,导致火山活动。过去3.2亿年间的火山爆发与目前位于非洲和太平洋下面的地幔底部的两个大型结构有关。这导致了一种假设,即这些基底地幔结构在地质年代中一直是静止的。

与此相反的是,观测和模型表明,构造板块、俯冲带和地幔柱一直是活动的,而基底地幔结构目前正在变形。

作者重建了10亿年前到现在的地幔流动,以表明火山活动的 历史 在统计上与固定的基底地幔结构一致。在重建过程中,寒冷的岩石圈在740年到5亿年前深入非洲半球,从4亿年前开始,在冈瓦纳前后板块的推动下,非洲下面的结构逐渐组装起来,直到6000万年前才成为一个连贯的结构。

作者称地幔流动模型表明,基底地幔结构是可移动的,随着时间的推移会聚集和分散,类似于地球表面的大陆。其模型还预测了非洲地幔中大陆物质的存在,这与地球化学数据一致。

Abstract

Plate tectonics shapes Earth’s surface, and is linked to motions within its deep interior. Cold oceanic lithosphere sinks into the mantle, and hot mantle plumes rise from the deep Earth, leading to volcanism. Volcanic eruptions over the past 320 million years have been linked to two large structures at the base of the mantle presently under Africa and the Pacific Ocean. This has led to the hypothesis that these basal mantle structures have been stationary over geological time, in contrast to observations and models suggesting that tectonic plates, subduction zones and mantle plume have been mobile, and that basal mantle structures are presently deforming. Here we reconstruct mantle flow from one billion years ago to the present day to show that the history of volcanism is statistically as consistent with mobile basal mantle structures as with fixed ones. In our reconstructions, cold lithosphere sank deep into the African hemisphere between 740 and 500 million years ago, and from 400 million years ago the structure beneath Africa progressively assembled, pushed by peri-Gondwana slabs, to become a coherent structure as recently as 60 million years ago. Our mantle flow models suggest that basal mantle structures are mobile, and aggregate and disperse over time, similarly to continents at Earth’s surface. Our models also predict the presence of continental material in the mantle beneath Africa, consistent with geochemical data

  • 索引序列
  • 研究论文静态溶液聚合法合成sa
  • 溶液聚合论文范文
  • 乳液聚合论文范文
  • 聚氨酯合成原料研究进展论文
  • 地质聚合物研究热点论文
  • 返回顶部