首页 > 期刊投稿知识库 > 中国煤层气期刊官网

中国煤层气期刊官网

发布时间:

中国煤层气期刊官网

煤层气有多种成藏模式,根据中国煤层气勘探实践,对煤层气藏类型划分如下。

压力封闭气藏 上覆较厚且分布稳定的泥页岩、膏盐岩作为盖层,煤层上倾方向或侧向上多为岩性尖灭或断层遮挡,由欠压实和蒙脱石脱水等作用形成高压地层,气态烃吸附量大,含气量高,含水性差。这类高压煤层气藏已见于鄂尔多斯盆地东部地区,如河东地区华威1井煤层压力系数约为1.17。

承压水封堵气藏 常形成于宽缓向斜或斜坡中段,其断裂不甚发育,煤系地层上、下部存在良好的泥、页岩作为隔水层,特别对于构造抬升盆地的高煤阶气藏,盆地早期下陷进入高热变质作用阶段,煤阶高生气量大;后期抬升松动,煤层物性变好,次生割理发育,下倾部位有充足气源供给,上倾部位形成承压水封堵。这类气藏后期没有被水打开,为原生气藏。沁水煤层气田处于气体运移的区域指向位置,而煤层由于上覆50m厚的泥岩盖层,封盖条件好,受北西、南东两个方向的侧向水封堵,在樊庄—潘庄一带为局部滞流水环境,形成构造变形差异聚集承压水封堵煤层气藏,水的总矿化度较高,气藏的δ13C1较重,一般为-28‰~-30‰,具原始气藏特征。

表8-4 我国中高煤阶区煤层气成因分带特征表

顶板水网络状微渗滤局部封闭气藏 煤层顶板泥岩较薄,横向稳定性差,或处于张性断层发育区,水体在含煤地层局部沿煤层割理、裂隙网络状微渗滤,水动力活动比较微弱,大部分地区对烃类起到一定封堵作用形成低丰度煤层气藏,气藏含气量和吸附饱和度低。此类煤层气藏开采中一般水多气少。

构造圈闭气藏 构造圈闭的煤层气藏在目前的煤层气勘探开发中越来越受到重视,此类气藏一般位于构造的相对高部位,煤层气井高产,而且具有水少气多的特征,对于低煤阶而言,构造圈闭尤为重要,由于低煤阶煤层吸附能力差,游离气占比较大,构造圈闭有利于游离气的保存。

矿化作用封闭气藏 成岩作用可使煤层顶、底板原为渗透层(砂岩),后期为封盖层(致密砂岩),只要与煤层生气高峰期匹配,对煤层气成藏就有利;如果匹配不好则对煤层气成藏不利。

(一)煤层气的物理性质

煤层气的物理性质与煤层气的气体组成有关,不同气体组成的煤层气其物理性质亦有差异,但总的来说煤层气具有以下的物理性质:

1.煤层气分子的大小和分子量

煤层气分子的大小介于0.32~0.55nm之间,多为近似值(表4-2)。分子的偏心度或非均质度即偏心因子(两个分子间的相互作用力偏离分子中心之间的作用力的程度,为反映物质分子形状、极性和大小的参数),甲烷最小(只有0.008),分子平均自由程(气体分子运动过程中与其他分子两次碰撞之间的距离)约为其分子平均直径的200倍。其分子量由组成煤层气的各种分子的百分含量累加而成,称为表观分子量。

表4-2煤中吸附介质分子直径、沸点和分子自由程(0℃,0.101325MPa)

(据张新民等,2002)

2.煤层气的密度

标准状态下(1atm,温度15.55℃)单位体积煤层气的质量,单位为kg/m3。煤层气在地下的密度随分子量和压力增大而增大、随温度的升高而减小。标准状态下煤层气的密度为0.716kg/m3。

煤层气的相对密度,是指同温度、压力条件下(1atm,温度15.55℃或20℃)煤层气密度与空气密度的比值。通常煤层气的相对密度为0.554。

3.煤层气的黏度

黏度是流体运动时其内部质点沿接触面相对运动、产生内摩擦力以阻抗流体变形的性质。常用动力黏度系数即流体内摩擦切应力与切应变率的比值来表示,其单位为泊(P)。煤层气的黏度很小,在地表常压、20℃时,甲烷的动力黏度系数为1.08×10-5MPa·s。表示黏度的参数还有运动黏度系数(即动力黏度与密度的比值,单位:cm2/s)和相对黏度(即液体的绝对黏度与水的绝对黏度的比值)。

煤层气的黏度与气体的组成、温度、压力等条件有关,在正常压力下黏度随温度的升高而变大,这与分子运动加速、气体分子碰撞次数增加有关,而随分子量增大而变小。在较高压力下,煤层气的黏度随压力增加而增长、随温度的升高而减小、随分子量的增大而增大。

4.煤层气的临界点

临界温度,是指气相纯物质维持液相的最高温度,高于这一温度气体即不能用简单升高压力的办法(不降低温度)使之转化为液体。临界压力,是指气、液两相共存的最高压力,即在临界温度时气体凝析所需的压力。高于临界温度,无论压力多大气体均不会液化;高于临界压力,不管温度多少液态和气态亦不能同时存在。只有当温度和压力均超过其临界温度和临界压力时,才称为超临界状态。

地层条件下,煤层气超临界吸附的现象是存在的。但只有当煤层气压力(气压)超过4.604MPa(表4-2)才真正出现超临界流体。实际上,在我国煤矿瓦斯实测压力中超过此压力的矿井是比较少的。但对于原位且处于封闭系统的煤储层而言,储层中水压等于气压,只要煤层埋深超过500m煤层气就可能成为超临界流体。

对于甲烷和氮气,任一埋深储层温度均高于临界温度,无论压力多大均不会液化。对于二氧化碳,当储层温度低于31.06℃(表4-2),对于乙烷,当储层温度低于32.37℃(表4-2)而储层压力(气压)高于液化压力时,二者均可以呈液态形式存在。按正常地温梯度3℃/100m、正常储层压力梯度0.98MPa/100m,设恒温带深度为20m、温度为10℃,则埋深500m左右时储层温度约为25℃、储层压力为4.9MPa,此时二者均低于临界温度和压力,二氧化碳和乙烷以气态形式存在;当埋深达到800m时储层温度约为34℃,高于临界温度,二氧化碳和乙烷仍为气态。但当二氧化碳压力大于7.38MPa、乙烷压力大于4.98MPa时,二氧化碳和乙烷有可能成为超临界流体;只有在500~800m范围内的局部层段(封闭体系),储层温度低于临界温度、储层压力高于液化压力时,二氧化碳和乙烷才可能以液态形式存在(图4-3)。

上面所述临界温度和临界压力是对单一气体组分而言的。在自然条件下,煤层气通常是多种组分气体的混合物。混合气体的临界温度高于其最低沸点组分的临界温度、低于最高沸点的临界温度,等于组成混合气体的各个组分的绝对临界温度与相应的分子浓度的乘积之和。相应地也可以计算出混合气体的临界压力。这种计算出来的临界温度和临界压力叫做混合气体的拟临界温度和拟临界压力。

5.煤层气的溶解度

煤层气能不同程度地溶解于煤储层的地下水中,不同的气体溶解度差别很大。20℃、1atm下单位体积水中溶解的气体体积称为溶解度(m3气/m3水),溶解度同气体压力的比值称为溶解系数(m3/m3·atm)。温度对溶解度的影响较复杂,温度<80℃时,随温度升高溶解度降低;温度>80℃时,溶解度随温度升高而增加(图4-4)。甲烷溶解度随压力的增加而增加,低压时呈线性关系,高压时(>10MPa)呈曲线关系(图4-5);甲烷溶解度随矿化度的增加而减少(图4-5)。所以在高温高压的地下水中溶解气明显增加。如果煤层水被CO2饱和时,则甲烷在水中的溶解度会明显增大。

图4-3二氧化碳在正常地温条件下的液化区间图

图4-4甲烷在水中的溶解度与温度的关系图 (据傅雪海等,2007)

图4-5不同温度、不同矿化度条件下的甲烷溶解度与压力的关系图 (据傅雪海等,2007)

6.主要气体组分的性质

甲烷为无色、无味、无臭、无毒气体(表4-3)。但煤储层中往往含有少量其他芳香族碳氢气体,因此常常伴着一些苹果香味。在大气压力为0.101325MPa、温度为0℃的标准状态下,甲烷的分子量为16.043,分子大小约为0.33~0.42nm;其密度为0.677kg/m3,相对密度为0.554(比空气轻),当空气中混有5.3%~16.0%浓度的甲烷时遇火即可燃烧或爆炸;动力黏度为1.084×10-5Pa·s;临界温度为-82.57℃,临界压力为4.604MPa(表4-2);热值约为37.62kJ/m3。

表4-3煤层气成分的物理性质表

氮气是一种无色、无臭、无味的气体,微溶于水,0℃时1mL水仅能溶解0.023mL氮气。在1atm、15.55℃时,其密度为1.182kg/m3,相对密度为0.967(表4-2)。

二氧化碳为无色、无臭、略具酸味气体。在大气压力为0.101325MPa、温度为0℃的标准状态下,二氧化碳的分子量为44.010,分子大小约为0.33~0.47nm;密度为1.858kg/m3,相对密度为1.519(比空气重),突然喷出可使人窒息;其动力黏度为1.466×10-5Pa·s;其临界温度为31.06℃、临界压力为7.384MPa(表4-2)。

(二)煤层气的同位素特征

Law(1993)研究认为,世界各地煤层气的同位素差异较大,甲烷的δ13C1值分布范围很宽,介于-80‰~-16.8‰之间;乙烷δ13C2的值介于-3.29‰~-2.28‰之间;甲烷的δD值分布在-33.3‰~-11.7‰之间;二氧化碳的δ13C值为-2.66‰~-18.6‰。从煤样中解吸出的甲烷的δ13C1值比开采气或自由(游离)气体中甲烷的δ13C1值高出几个千分点。这是因为在解吸作用过程中发生了同位素分馏作用,δ13C1优先被解吸出来。

国内测试资料表明,煤层气δ13C1变化于-78‰~-28‰之间,分布范围广,同位素组成总体上偏轻,而且不同地区、不同地质时代和不同煤阶煤中的δ13C1分布特征亦有所不同。就地区而言,华北煤层气δ13C1为-78‰~-28‰,东北煤层气δ13C1为-68‰~-49‰,华南煤层气δ13C1为-68‰~-25‰(图4-6)。显然,我国煤层气的δ13C1地域分布总体上体现出不同地质时代不同构造背景下煤中有机质生烃演化的特点。华北和华南的煤层主要形成于晚古生代,经历了多阶段构造演化,煤化作用的地质背景较为复杂,煤阶跨度大,生气历程长,δ13C1变化大;东北煤层主要形成于中-新生代,热演化历程及其控制因素相对简单,煤阶普遍较低,δ13C1分布较为集中。

就全国来看,煤层气δ13C1与煤阶之间的关系尽管离散性较大,但规律性仍然相当明显(图4-7)。δ13C1随镜质组反射率增高而变重,但二者之间的这种正相关关系并不是线性的。当镜质组反射率小于2.0%时,δ13C1值增大的速率较快,由-65‰(镜质组反射率0.3%左右)增至-25‰(镜质组反射率2.0%左右),此后直到镜质组反射率4.0%附近δ13C1值仍低于-20‰。换言之,只有在进入无烟煤阶段之后,煤层气的δ13C1值才开始接近或落入腐殖型常规天然气δ13C1值的分布范畴(>-35‰)。

图4-6中国煤层气稳定碳同位素的地域分布图 (据叶建平等,1998)

图4-7中国煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)

进一步分析特定地区煤层气稳定碳同位素的演化趋势发现,不仅δ13C1值与镜质组反射率之间的离散性显著减小,而且存在着有别于全国性趋势的区域规律。华北和华南煤层气δ13C1值与全国性规律一致、随煤阶增高而变重,且在进入无烟煤阶段后离散性明显变小(图4-8a,b)。东北煤层气δ13C1值的演化却与此相反,煤阶增高而δ13C1值变小(图4-8c)。

腐殖型常规天然气δ13C1与镜质组反射率之间呈对数相关关系,华北、华南和全国δ13C1值与煤阶之间的相关趋势与其一致,东北地区则与此相反,暗示东北煤层气稳定碳同位素的分布另有其他控制因素。

图4-8不同地区煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)

Rice et al.(1993)总结美国和加拿大煤层气同位素资料后,得出气的稳定碳同位素δ13C1值与煤阶有很好的相关关系。一般低煤阶煤的δ13C1值小,煤阶增加而δ13C1值变大。但是同一煤阶δ13C1值具有很大的变化范围(图4-9)。此外,δ13C1值与现今煤层埋深亦有较好的对应关系,在煤阶一定情况下,浅部煤层气由轻同位素组成,深部煤层气则由重同位素组成。

图4-9煤层气δC1与Ro,max的关系图 据Rice et al.,1993)

中国农业气象期刊官网

我认为你要是搞农药研究的就的看看一下书籍:一是化学类,包括有机,无机等;二是农药合成方面的书籍,包括农药的中间体提取,合成工艺;三是农药环境类书籍,包括农药对自然的融合度!可以说农药的研究是很复杂的,涉及的范围也是挺广的!主要是要看你从事哪一个环节,这样分工细才能研究出高效,环保的新型农药!

2008北大核心目录里没有出现的一定不是核心期刊。

在所有刊物中查询 安徽林业 安徽农学通报 安徽农业大学学报 安徽农业科学 桉树科技 保鲜与加工 北方蚕业 北方果树 北京林业大学学报 北京农学院学报 北京农业职业学院学报 北京水产 蚕桑茶叶通讯 蚕桑通报 蚕学通讯 蚕业科学 草地学报 草食家畜 草业科学 草业学报 草业与畜牧 草原与草坪 茶叶 茶叶科学 茶叶科学技术 长江蔬菜 大豆科学 大豆通报 大连水产学院学报 大麦与谷类科学 淡水渔业 当代农机 当代蔬菜 东北林业大学学报 东北农业大学学报 东北农业大学学报(英文版) 动物医学进展 防护林科技 分子植物育种 福建茶叶 福建稻麦科技 福建果树 福建林学院学报 福建林业科技 福建农机 福建农林大学学报(自然科学版) 福建农业科技 福建农业学报 福建热作科技 福建水产 福建畜牧兽医 干旱地区农业研究 甘肃林业 甘肃林业科技 甘肃农业 甘肃农业大学学报 甘肃农业科技 甘肃畜牧兽医 高等农业教育 耕作与栽培 灌溉排水学报 广东蚕业 广东茶业 广东林业科技 广东农业科学 广东饲料 广东畜牧兽医科技 广东园林 广西蚕业 广西林业 广西林业科学 广西农学报 广西农业机械化 广西农业科学 广西农业生物科学 广西畜牧兽医 广西园艺 广西植保 贵州林业科技 贵州农业科学 贵州畜牧兽医 国际沙棘研究与开发 国外畜牧学-猪与禽 果农之友 果树学报 海洋水产研究 海洋渔业 海洋与渔业 邯郸农业高等专科学校学报 河北果树 河北林果研究 河北林业科技 河北农机 河北农业大学学报 河北农业大学学报(农林教育版) 河北农业科技 河北农业科学 河北渔业 河南科技大学学报(农学版) 河南林业科技 河南农业 河南农业大学学报 河南农业科学 核农学报 黑龙江八一农垦大学学报 黑龙江动物繁殖 黑龙江农业科学 黑龙江水产 黑龙江畜牧兽医 湖北林业科技 湖北农学院学报 湖北农业科学 湖北畜牧兽医 湖北植保 湖南农机 湖南农业 湖南农业大学学报(自然科学版) 湖南农业科学 湖南畜牧兽医 花生学报 华北农学报 华东森林经理 华南农业大学学报 华南热带农业大学学报 华中农业大学学报 吉林粮食高等专科学校学报 吉林林业科技 吉林农业 吉林农业大学学报 吉林农业科学 家禽科学 家畜生态学报 江苏林业科技 江苏农业科学 江苏农业学报 江西林业科技 江西棉花 江西农业大学学报 江西农业学报 江西水产科技 江西饲料 江西畜牧兽医杂志 江西植保 节水灌溉 今日畜牧兽医 经济动物学报 经济林研究 垦殖与稻作 辣椒杂志 莱阳农学院学报 粮食储藏 辽宁林业科技 辽宁农业科学 辽宁农业职业技术学院学报 林产工业 林产化学与工业 林业调查规划 林业机械与木工设备 林业建设 林业勘查设计 林业勘察设计 林业科技 林业科技开发 林业科技情报 林业科学 林业科学研究 林业实用技术 林业研究(英文版) 林业与社会 林业资源管理 绿色中国 落叶果树 麦类作物学报 蜜蜂杂志 棉花学报 内蒙古林业调查设计 内蒙古林业科技 内蒙古农业大学学报(自然科学版) 内蒙古农业科技 南方农机 南京林业大学学报(自然科学版) 南京农业大学学报 宁夏农林科技 农产品加工 农产品加工·学刊 农村·农业·农民A 农村·农业·农民B 农村百事通 农村实用技术 农村新技术 农机化研究 农机具之友 农机使用与维修 农机推广与安全 农机质量与监督 农技服务 农家参谋 农家顾问 农药登记公告 农药科学与管理 农业工程技术·温室园艺 农业工程学报 农业环境科学学报 农业环境与发展 农业机械化与电气化 农业机械学报 农业科技管理 农业科技通讯 农业科技与信息 农业科学研究 农业科学与技术(英文版) 农业生物技术学报 农业网络信息 农业系统科学与综合研究 农业现代化研究 农业新技术 农业与技术 农业展望 农业知识(瓜果菜) 农业知识(科学养殖) 农业知识(增收致富) 农业质量标准 农业装备技术 农业装备与车辆工程 排灌机械 青海草业 青海农技推广 青海农林科技 青海畜牧兽医杂志 热带林业 热带农业工程 热带农业科技 热带农业科学 热带作物学报 森林防火 森林工程 山地科学学报(英文版) 山地农业生物学报 山东林业科技 山东农机化 山东农业(农村经济版) 山东农业大学学报(自然科学版) 山东农业科学 山东省农业管理干部学院学报 山东畜牧兽医 山西果树 山西林业 山西林业科技 山西农业 山西农业大学学报(自然科学版) 山西农业科学 山西水土保持科技 陕西林业 陕西林业科技 陕西农业科学 上海交通大学学报(农业科学版) 上海农业科技 上海农业学报 上海蔬菜 上海水产大学学报 上海畜牧兽医通讯 沈阳农业大学学报 湿地科学 食用菌 食用菌学报 世界林业研究 世界农业 世界热带农业信息 世界竹藤通讯 兽药与饲料添加剂 蔬菜 水产科技情报 水产科学 水产学报 水产学杂志 水产养殖 水稻科学(英文版) 水利渔业 水土保持通报 水土保持应用技术 四川蚕业 四川林勘设计 四川林业科技 四川农机 四川农业大学学报 四川农业科技 四川畜牧兽医 饲料博览 饲料工业 饲料广角 饲料研究 特产研究 特种经济动植物 天津农林科技 天津农学院学报 天津农业科学 土壤圈(意译名) 土壤通报 拖拉机与农用运输车 武夷科学 西北林学院学报 西北农林科技大学学报(自然科学版) 西北农业学报 西北园艺 西部林业科学 西藏农业科技 西南林学院学报 西南农业大学学报(自然科学版) 西南农业学报 西南园艺 现代化农业 现代农业 现代农业科技 现代畜牧兽医 现代渔业信息 现代园艺 新疆农机化 新疆农垦经济 新疆农垦科技 新疆农业大学学报 新疆农业科技 新疆农业科学 新疆畜牧业 新农村 新农业 信阳农业高等专科学校学报 畜牧兽医科技信息 畜牧兽医学报 畜牧兽医杂志 畜牧与兽医 畜牧与饲料科学 畜禽业 亚热带农业研究 亚热带水土保持 亚热带植物科学 烟台果树 延边大学农学学报 扬州大学学报(农业与生命科学版) 养殖技术顾问 养猪 野生动物 渔业经济研究 渔业现代化 玉米科学 园艺学报 云南农业大学学报 云南农业科技 云南畜牧兽医 杂草科学 杂交水稻 杂粮作物 浙江大学学报(农业与生命科学版) 浙江柑橘 浙江林学院学报 浙江林业科技 浙江农村机电 浙江农业科学 浙江农业学报 浙江畜牧兽医 郑州牧业工程高等专科学校学报 植物保护 植物保护学报 植物检疫 植物研究 植物医生 植物营养与肥料学报 中国蚕业 中国草地学报 中国草食动物 中国城市林业 中国稻米 中国动物保健 中国动物检疫 中国蜂业 中国工作犬业 中国瓜菜 中国果菜 中国果树 中国果业信息 中国花卉园艺 中国家禽 中国林副特产 中国林学(英文版) 中国林业教育 中国林业经济 中国麻业 中国马铃薯 中国棉花 中国牧业通讯 中国奶牛 中国南方果树 中国牛业科学 中国农村科技 中国农机化 中国农技推广 中国农垦 中国农史 中国农学通报 中国农业大学学报 中国农业科技导报 中国农业科学 中国农业科学(英文版) 中国农业气象 中国农业信息 中国农业资源与区划 中国热带农业 中国森林病虫 中国生态农业学报 中国生物防治 中国食用菌 中国兽药杂志 中国兽医寄生虫病 中国兽医科学 中国兽医学报 中国兽医杂志 中国蔬菜 中国水产科学 中国水稻科学 中国水土保持 中国水土保持科学 中国饲料 中国糖料 中国土壤与肥料 中国畜牧兽医 中国畜牧杂志 中国烟草科学 中国养兔 中国油料作物学报 中国渔业经济 中国预防兽医学报 中国沼气 中国植保导刊 中国种业 中南林学院学报 中南林业调查规划 中兽医学杂志 中兽医医药杂志 种子 种子科技 仲恺农业技术学院学报 猪业科学 竹子研究汇刊 作物学报 作物研究 作物杂志

《中国农业气象》是中国农业科学院农业环境与可持续发展研究所(原农业气象研究所)主办的反映我国农业气象科学研究进展的学术刊物。主要刊登有关农林水产业与气象有关的学术论文、研究报告和国内外有关专题研究动态综合评述等内容。本刊为中央级刊物,为国家科技部“中国科技核心期刊”; “中国科学引文数据库来源期刊”核心期刊;“中国学术期刊综合评价数据库”来源期刊;“中国农业科技论文数据库” 统计源期刊。欢迎国内外专家、学者、专业人员、大专院校师生投稿和订阅。办刊宗旨:面向科研、面向生产,广泛进行本学科的学术交流和研讨,积极推广农业气象科研成果和适用技术,以促进农业气象学科理论的发展和技术水平的提高,为实现我国农业的持续发展服务。主要读者对象:农业气象及广大农业科技人员、农业管理部门及人员、有关院校的广大师生、气象台站人员等。

煤层气文章

李俊乾 刘大锰 姚艳斌 蔡益栋 张百忍

( 中国地质大学北京能源学院 北京 100083)

摘 要: 寻找煤层气富集高产区是煤层气勘探开发过程中一项重要的工作,通过对煤层气富集成藏的规律及开发潜力进行分析,为煤层气有利开发区的优选提供依据。本文从沉积环境、水文地质条件及地质构造三个方面,对沁水盆地南部郑庄区块山西组 3#和太原组 15#煤层气富集规律进行了分析。结果表明: ( 1) 区块内 3#煤层顶板以厚层泥岩为主,15#煤层顶板为一大套碳酸盐岩沉积,两类顶板封盖性好,有利于煤层气保存; ( 2) 区块位于滞水洼地附近,水力封闭作用有利于煤层气富集; ( 3) 煤层气局部富集区主要受地质构造的控制,宽缓背斜部位有利聚气、两翼较陡的向斜和背斜轴部均不利聚气、活动性断层部位最不利聚气,总体上向斜部位要好于背斜部位。最后本文从煤储层参数角度,具体分析了该区块的开发前景。3#和 15#煤层煤级高,含气量、含气饱和度较高,煤层较厚,煤层埋藏适中,储层压力接近或稍高于静水压力,均表明有利于煤层气的开发; 而煤储层渗透率普遍较低,则是煤层气开发的主要瓶颈,统计表明,该区块渗透率大小主要受最小有效应力 ( 最小主应力与储层压力之差) 的影响。

关键词: 郑庄 富集规律 沉积环境 地质构造 水文地质 渗透率

基金项目: 国家科技重大专项课题 34 ( 2010ZX05034 - 001) ,国家重大基础研究计划课题 ( 2009CB219604) ,国家自然科学基金项目 ( 40972107) ,中石油创新基金资助 ( 2010D -5006 -0101) 。

作者简介: 李俊乾,博士研究生,矿产普查与勘探专业,主要从事煤层气勘探与开发研究。

Email: lijunqian1987@ 126. com; Tel: 010 - 82320892

Primary Geologic Factors Controlling Coalbed Methane ( CBM) Enrichment and CBM Development Potential in Zhengzhuang Block

LI Junqian LIU Dameng YAO Yanbin CAI Yidong ZHANG Bairen

( School of Energy Resources,China University of Geosciences,Beijing 100083)

Abstract: It is significant to find out the CBM enrichment area during the CBM exploration and develop- ment. It can help select favorable CBM target areas through studying the CBM enrichment regularity and its devel- opment potential. In the paper,the CBM enrichment regularity of the Shanxi Formation No. 3 and the Taiyuan For- mation No. 15 coal seams of the Zhenzhuang Block in northern Qinshui Basin were studied by analyzing sedimenta- ry environment,hydrogeology and geologic structure. Results show that: ( 1) in the study area,the thick mud- stone and carbonate rock are the major lithology of the roof plates of No. 3 and 15 seams respectively. Both roof plates have a good sealing-capping property which are beneficial to preserve the CBM; ( 2) the study area locates near the center of stagnant water,where a CBM enrichment area is formed resulting from hydraulic sealing; ( 3) regional CBM enrichment is mainly controlled by geologic structure. The most favorable area for CBM enrichment locates at an anticline with steep wings; secondarily locates in the axial parts of the anticline and syncline with gentle wings; and the worst locates near the activities faults. On the whole,syncline is much more favorable than anticline in CBM enrichment. In the paper,the CBM development potential in the study area was also analyzed based on coal reservoir parameters. Results show that it is promising to develop CBM within No. 3 and 15 coal seams because both seams are characterized by high metamorphic grade,high CBM content and gas saturation, thick seam,moderate coal burial depth and coal reservoir pressure is similar to ( or higher than ) hydrostatic pressure. However,the low coal reservoir permeability is a main unfavorable factor in CBM development. Statistical results show that the coal reservoir permeability is mainly affected by the difference between minimum principal stress and coal reservoir pressure.

Keywords: Zhengzhuang; enrichment regularity; sedimentary environment; geologic structure; hydrogeol- ogy; permeability

自20世纪80年代美国成功实现地面煤层气商业性开发以来,煤层气的勘探和开发越来越受到世界各主要产煤国的重视。煤层气的抽采利用不仅能缓解常规油气资源短缺带来的能源危机,而且对于煤矿安全生产以及保护环境都具有重要意义。我国煤层气资源丰富,据最新一轮全国煤层气资源评价结果(孙茂远等,2008),埋深2000以浅的煤层气资源总量达36.8×1012m3,仅次于俄罗斯和加拿大,居世界第三位。截至2008年,在沁水盆地南部已建成1.5亿m3产能的煤层气生产基地,成功实现了高煤级、中低渗透煤的煤层气开发,打破了国外高煤级储层是煤层气开发禁区的理论(高远文等,2008)。

虽然我国高煤级煤炭资源丰富(占总煤炭量29%),赋存煤层气资源量巨大(占总含气量15.42%),但开采难度较大,单井产量也通常较低。这是由于我国的聚煤盆地形成演化历史复杂,后期构造破坏严重,以及盆地原型及构造样式多变(孙茂远,2001;饶孟余等,2005),使得煤层气富集规律难以把握,而且我国的高煤级煤储层多阶段演化和多热源叠加变质作用明显(杨起,1999),使得我国煤层气藏的储层物性具有极强的非均质性,增加了煤层气的开采难度。因此,研究煤层气富集成藏的地质控制因素以及分析煤层气藏的开发潜力,对于寻找煤层气富集、高产高渗区具有重要现实意义。本文以沁南郑庄区块煤层气藏为研究目标,对这一问题进行了初步探讨分析。

1 区域背景及地质概况

郑庄区块位于晋城市西北约80km处,行政区划属于沁水县郑庄镇。1999年,中国石油华北油田公司在郑庄区块取得982.76km2的探矿权,并于2006年探明含气面积74km2;在2008年取得了135.2km2的采矿权;截至2009年,在该区块累计探明煤层气地质储量达到843亿m3,和毗邻的樊庄区块一起构成我国首个整装千亿立方米的煤层气田(探明地质储量为1152亿m3),具有广阔的商业开发前景。

郑庄区地块质构造上位于沁水盆地东南部的马蹄形斜坡构造背景之上,其东南及东部以寺头断裂带为界,区内以宽缓褶曲为主,局部发育小规模正断层(如图1)。区块内自下而上发育有奥陶系,石炭系中统本溪组、上统太原组,二叠系下统山西组、下石盒子组、上统上石盒子组、石千峰组,三叠系下统刘家沟组以及第四系等地层,其中山西组和太原组为主要含煤层段,发育多套煤层。山西组3#煤层和太原组15#煤层在沁水盆地南部广泛分布,为两个主力煤层,厚度较大且稳定可采,是煤层气勘探开发的主要目标层位。

图1 郑庄区块地质构造及3#煤层埋深等值线图

2 煤层气富集成藏的地质控制因素

2.1 沉积环境

结合前人研究(任海英,2004;邵龙义等,2006)及钻井剖面分析,郑庄区块15#煤层形成于太原组早期第一次特大型海侵之前,聚煤作用发生在泻湖被逐渐淤浅的滨岸沼泽之上,在稳定的构造背景下,聚煤作用持续时间较长,形成较厚的15#煤层(2.4~7.9m)。长期的海侵之后,在15#煤层之上沉积了10m左右的大套石灰岩。在太原组末期,海水开始退去,海陆交互相沉积转换为三角洲沉积体系,在下三角洲平原分流涧湾内发育了厚度较大的3#煤层(5.3~6.2m)。3#煤层顶板发育厚层分流涧湾泥岩,局部夹有分流河道砂体。

沉积环境控制着煤层气的储盖组合、煤层气储层的几何形态以及煤层厚度(王红岩等,2004),从而影响煤层气的赋存及三维空间分布特征。在不同沉积环境,煤储层围岩条件好坏各异,这直接影响着煤层气的保存。围岩条件的好坏主要取决于煤层顶底板岩性、厚度及其透气性。顶底板岩性越致密、厚度越大、透气性越弱,越有利于煤层气保存富集;反之则利于煤层气体向其他岩层扩散,使气体含量降低。如图2所示,在郑庄区块,3#煤层直接顶、底板均为厚达10多米的泥岩,由于泥岩具有气体排驱压力高、透气性弱的特点,因此对煤层气的封闭能力较好;15#煤层直接顶板为大套的石灰岩,虽然灰岩易受地下水溶蚀作用而使其透气性能增加,但溶蚀性灰岩常分布于构造变动强烈地段,而研究区内构造变形简单,石灰岩遭受溶蚀可能较弱。再加上该灰岩层厚度较大,因此对煤层的保存亦较为有利,但总体较3#煤层围岩封闭性差。

图2 郑庄区块3#和5#煤层顶底板岩性图

总之,在郑庄区块,稳定的沉积环境下发育厚度大、稳定性好(其中3#>15#)的两主力煤层,为煤层气大量储集提供了物质基础;同时,煤层顶、底板具有良好的封闭性能,保证了煤层气的有效保存富集。

2.2 水文地质条件

水文地质条件对煤层气的富集及运移起重要作用,影响煤层气的赋存和分布。通常,水文地质条件控气具有双重性,既可导致煤层气逸散,又能起到保存聚集煤层气的作用。叶建平等(2001)将水文地质控气作用概况为3种类型,即水力运移逸散作用、水力封闭作用和水力封堵作用,其中后两种类型有利于煤层气保存。傅雪海等(2007)在研究沁水盆地水文地质条件对煤层气富集的影响时,提出从盆缘到盆地中心依此出现水力封堵控气作用、水溶携带控气作用、径流逸散控气作用和水力封闭控气作用,最终导致盆缘煤层气含量低、斜坡带含量较高和盆地中心含量高的结果。

研究表明,沁水盆地南部地区山西组含水层主要由底部砂岩和3#煤层上部砂岩组成,两者之间没有水力联系,后者通过裂隙与3#煤层有一定的水力联系(傅雪海等,2007);15#煤层与顶板石灰岩没有水力联系。可见两煤层本身基本是独立的水动力系统,受其他含水岩层影响较弱,外部水动力对煤层气保存影响较小。

郑庄区块边界的寺头断裂,现今状态下属于一条封闭性断裂,导水、导气能力极差,是盆地内部的一个水文地质单元边界。山西组砂岩含水层和太原组灰岩含水层水位在寺头断层东侧附近达到最低值,是地层水的滞水洼地;位于寺头断裂西侧的郑庄及其附近地区,水位也较低,地下水径流强度也可能较弱,较有利于煤层气保存(王红岩等,2001;2004;傅雪海等,2007)。通常,地下水滞水地带也是矿化度较高区域,郑庄区块煤层水矿化度非常高(如表1),远高于弱径流区地层水矿化度(1823.61mg/L),由此推测郑庄区块亦位于地下水滞流区,地下水以静水压力的形式将煤层中的煤层气封闭起来,导致煤层含气量较高。

表1 郑庄区块煤层水矿化度 单位:mg/L

2.3 地质构造条件

构造作用是影响煤层气成藏最为重要和直接的因素,不仅控制着含煤盆地及含煤地层的形成和演化,而且控制着煤层气生成、聚集和产出过程的每一环节。在聚煤期,构造控制着煤系地层形成发育的特征,影响到煤层气的生成、储集和封盖能力;在聚煤期后,构造特征及其演化通过对构造变形和热历史的限定,不仅对煤层气的生、储、盖性能产生影响,而且直接控制了煤层气的运移、聚集和保存特征,从而决定着特定地区煤层气资源开发潜力的大小(秦勇,2003)。

在沁水盆地东南部(包括郑庄区块),煤层气成藏经历了三个演化阶段(王红岩等,2008;林晓英等,2010):第一阶段,三叠纪末期,煤层达到最大埋深,煤岩镜质组反射率达1.2%,此阶段为深成变质作用生气阶段,累计生烃量达到81.45m3/t;第二阶段,晚侏罗世开始至白垩纪末,地层开始抬升,但由于燕山中期的构造热事件影响,煤层长期处于异常高古地温阶段,引起二次生烃,累计生烃量大,可达359.10m3/t;第三阶段,喜山期的煤层气藏调整与改造,最终形成了现今格局。在第二阶段,由于异常热事件的影响,地层的抬升并没有破坏煤层气藏,反而增加了煤储层储集气体的能力。两次生烃作用为煤储层大量聚气提供物质基础。

在盆地形成演化过程中,郑庄区块受构造作用影响较弱,构造形迹相对简单。对煤层气富集具有控制作用的主要为寺头断层及区内局部背、向斜,在不同的构造部位煤层含气量具有明显差异。从图3上可以看出,在宽缓背斜部位有利聚气(如Js8井)、两翼较陡的向斜和背斜轴部(如Js5和Zs31井)均不利聚气、断层部位最不利聚气(如Zs39井),总体上向斜部位要好于背斜部位(如Js5>Zs31井)。

图3 区域地质构造与煤层含气量关系图

这主要包括以下几个方面的原因:(1)通常处于活动期的断层具有开放性,是气体运移的有利通道;而活动比较微弱或不活动的断层具有封闭性则有利于气体的保存。在煤层气成藏演化过程中,寺头断层在喜山晚期之前一直处于活动状态,具有强开放性,导致断层附近煤层气体沿断层大量逸散,煤层含气量极低。(2)两翼较陡的向、背斜,均为挤压应力下形成的地质构造。对于向斜,轴部煤层的底部及其底板岩层张性裂隙易于发育,部分煤层气扩散损失,而两翼部位则为煤层气富集区;对于背斜,轴部煤层含气量低则是由于煤层顶部及其顶板张性裂隙的发育,同时两翼部位有利于煤层气富集。总体而言,向斜要比背斜更有利于聚气。(3)宽缓背斜也是在挤压应力环境下形成的,属于局部小构造,亦为应力集中区,因此有利于煤层的吸附。

3 煤层气开发前景分析

煤层气有利开发区主要包括两层含义,它既是煤层气的富集区又是高产高渗区。在查明煤层气富集规律的基础上,寻找煤层气高产高渗区是实现煤层气大规模商业开发的关键。文章从煤储层参数角度,具体分析了郑庄区块3#和15#两主力煤层的开发潜力以及瓶颈问题。

煤层气在煤储层中的渗流特征与常规天然气差异很大,影响煤层气高产的因素复杂而多样,主要包括:煤层气含量、含气饱和度、煤层埋深、煤层厚度、煤级、煤储层渗透率、煤储层压力、临界解吸压力(娄剑青,2004;万玉金等,2005;陈振宏等,2009)以及煤体结构等。在研究区内,煤层气开发的有利储层参数主要包括以下几个方面:(1)煤储层含气性较好(表2),3#煤层平均含气量19.11m3/t、甲烷含量18.35m3/t、含气饱和度69.58%;15#煤层平均含气量16.30m3/t、甲烷含量15.42m3/t、含气饱和度62.80%。较高的含气量和含气饱和度是煤层气高产稳产的物质基础。(2)煤层埋藏适中,降低开采难度及开采成本,3#煤层埋藏深度512~1215m;15#煤层605~1310m。(3)煤层厚度较大,3#煤层厚度5.3~6.2m;15#煤层厚度2.4~7.9m。(4)煤变质演化程度高,最大镜质组反射率Ro,max=3.55%~3.98%,高变质程度使煤的吸附能力强,含气量高。(5)3#煤储层压力梯度接近于静水压力梯度;15#煤储层压力梯度略高于静水压力梯度。煤层气储层为常压或接近常压均有利于煤层气的开发。

表2 郑庄区块煤层含气性特征

注:下标ad代表空气干燥基。

在郑庄区块,开发煤层气存在的主要瓶颈问题是煤储层渗透率较低,平均低于1mD,其中3#煤层试井渗透率为0.013~0.430mD;15#煤层试井渗透率为0.022~0.920mD。通过镜下观察显微裂隙,两煤层均以B型(宽度>5μm,1mm<长度<10mm)裂隙为主,A型(宽度>5μm,长度>10mm)裂隙较少,裂隙密度较小,且连通性中等至差。裂隙不发育和连通性较差是导致煤储层渗透性差的主要原因。但两煤层的煤岩类型主要为光亮煤,煤体结构以原生结构和碎裂为主,这使得改善煤储层渗透能力成为可能。从煤层气开发的角度来讲,原生结构的煤体,裂隙虽然相对较少,但经过压裂后,煤层气容易抽放,属较好类型的煤体;碎裂结构的煤体,裂隙相对发育,抽放条件优越,属于极好的煤体类型。

表3 郑庄区块煤储层宏观和微观裂隙发育特征

另外从图4上可以看出,在郑庄区块煤储层渗透率主要受最小有效应力(最小主应力与储层压力之差)的影响,随着该应力的增加,渗透率值明显降低;但埋深和最小主应力对渗透率的影响不明显。因此,可以通过研究最小有效应力分布规律,在研究区低渗透率背景上寻找渗透率高值区,为选取煤层气高产高渗区提供科学依据。

图4 3#(a)及15#(b)煤层渗透率与应力、埋深关系图

4 结论

文章从沉积环境、水文地质条件和地质构造三个方面,分析了郑庄区块3#和15#煤层煤层气富集成藏的地质控制因素。结果表明:稳定的聚煤沉积环境和封闭的水动力系统是煤层气的保存的有利条件,而局部煤层气富集则受控于地质构造条件:在宽缓背斜部位有利聚气、两翼较陡的向斜和背斜轴部均不利聚气、断层部位最不利聚气,总体上向斜部位要好于背斜部位。另外,文章从储层参数角度分析了该区块煤层气的开发潜力。3#和15#煤层煤级高,含气量、含气饱和度较高,煤层较厚,煤层埋藏适中,储层压力接近或稍高于静水压力,均表明有利于煤层气的开发。然而该区块煤储层渗透率极低,使煤层气的商业开发增加了难度,但可以通过压裂等增产措施适当的改善煤储层,提高气产量。

参考文献

陈振宏,王一兵,杨焦生等.2009.影响煤层气井产量的关键因素分析———以沁水盆地南部樊庄区块为例,石油学报,30(3),409~416

傅雪海,秦勇,韦重韬等.2007.沁水盆地水文地质条件对煤层含气量的控制作用,煤层气勘探开发理论与实践,61~69

高远文,姚艳斌.2008.我国煤层气产业现状及开发模式探讨,资源与产业,10(2),90~92

林晓英,苏现波,郭红玉.2010.沁水盆地东南部寺头断层对煤层气藏的封闭性评价,天然气工业,30(4),20~23

娄剑青.2004.影响煤层气井产量的因素分析,天然气工业,24(4),62~64

秦勇.2003.中国煤层气地质研究进展与述评,高校地质学报,9(3),339~352

饶孟余,杨陆武,冯三利等.2005.中国煤层气产业化开发的技术选择,特种油气藏,12(4),1~4

任海英.2004.沁水煤田晋城矿区煤层的沉积环境与煤层气,煤矿现代化,(6),18~19

邵龙义,肖正辉,何志平等.2006.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究,古地理学报,8(1),43~52

孙茂远,刘贻军.2008.中国煤层气产业新进展,天然气工业,28(3),5~9

孙茂远,杨陆武.2001.开发中国煤层气资源的地质可能性与技术可行性.煤炭科学技术,29(11),45~46

万玉金,曹雯.2005.煤层气单井产量影响因素分析,天然气工业,25(1),124~126

王红岩,万天丰,李景明等.2008.区域构造热事件对高煤阶煤层气富集的控制,地学前缘(中国地质大学(北京);北京大学),15(5),364~369

王红岩,张建博,李景明等.2004.中国煤层气富集成藏规律,天然气工业,(5),11~13

王红岩,张建博,刘洪林等.2001.沁水盆地南部煤层气藏水文地质特征,煤田地质与勘探,29(5),33~36

杨起.1999.中国煤的叠加变质作用,地学前缘(中国地质大学,北京),6(增刊),1~7

叶建平,武强,王子和.2001.水文地质条件对煤层气赋存的控制作用,煤炭学报,26(5),459~462

事件: 根据新华社报道,山西省2019年将全面实行煤层气矿业权退出机制。

山西省煤层气储量占约全国9成,圈而不采现象严重。 根据《山西省煤层气资源勘查开发规划 (2016—2020年)》,截至2015年底山西省累计探明煤层气地质储量5784亿立方米,约占全国的88%,主要分布在沁水盆地和鄂尔多斯盆地东缘。2015年底全省境内共设置煤层气矿业权41个,登记面积3.06万平方千米。然而山西省煤层气矿业权80%以上属于中石油、中联煤、中石化三大央企,圈而不采现象较突出,制约了煤层气开发进度。

山西省2019年有望实施煤层气矿业权退出机制。 为了扭转煤层气区块资源垄断造成的活力不足现象,山西省近年来积极推行煤层气矿业权改革,2019年有望实行煤层气矿业权退出机制。根据新华社报道,山西省将提高煤层气区块最低勘查投入标准和区块持有成本,具备开发条件的区块将限期完成产能建设,取得煤层气区块后长期勘查投入不足的企业将受到核减区块面积等处罚,情节严重的将收回区块。此外,山西省鼓励企业之间采取合作或调整矿业权范围等方式,妥善解决矿业权重叠范围内资源协调开发问题。

退出机制有望遏制现有“囤地”行为,利好新天然气、蓝焰控股等技术型企业。 我们判断退出机制有望遏制“囤地”行为,技术先进、经验丰富的煤层气开采公司有望通过转让或合作开发方式获得矿区。新天然气2018年8月完成收购亚美能源50.5%控制权,通过产品分成合同参与山西沁水盆地潘庄和马必区块煤层气开发,其中潘庄区块面积141.8平方千米,占山西省煤层气总登记面积不足0.5%,2017年煤层气产量超过山西省总产量10%。马必区块面积898.2平方千米,已于2018年10月取得发改委开采核准,今年起有望大规模商业开发释放产能。蓝焰控股是目前国内最大的地面抽采煤层气公司,第一大股东晋煤集团旗下具有国内最大井下抽采能力,实际控制人山西省国资委。2017年蓝焰控股实现煤层气产量14.3亿方,占全国总量的28.9%。

多措施鼓励煤层气开采,我国18-20年地面煤层气产量年均增速将达26.38%。 能源局2016年11月印发《煤层气开发利用“十三五”规划》,指出到2020年全国煤层气抽采量达到240亿立方米,其中地面煤层气产量100亿立方米。考虑到2017年全国地面煤层气产量仅49.54亿立方米,若要完成规划,预计2018-2020年煤层气产量年均增速将达到26.38%。山西省目标高于规划,根据2017年8月发布的《山西省煤层气资源勘查开发规划(2016—2020年)》,山西省2020年煤层气抽采量将达到200亿立方米,地面开采产能建设达到300~400亿立方米/年。此外,我国多举措鼓励煤层气开采,对煤层气开采企业实行直接补贴和增值税即征即退政策:目前煤层气每方气补贴由原0.2元提高至0.3元,补贴政策延续至2020年以后;煤层气销售增值税先征后退政策2007开始实行,退税款由企业专项用于煤层气技术研究和扩大再生产,不征收企业所得税,我国未来几年煤层气发展空间广阔。

投资建议: 能源清洁化背景下全国天然气需求高景气无忧,预计未来三年天然气整体呈现紧平衡,非常规天然气开采加速。继续推荐具备上游煤层气资源的新天然气。

(文章来源:申万宏源)

中国期刊网官网官网

这个里面好像是啊

中国期刊网:

有诚信的雅美期刊网,我5月份在那发了两篇核心文章,现在看到发表出来了。

可以到抢客族官网的免费书籍栏目看一下。发布的全是国内外大学或图书馆等期刊文献等网址和免费登入账号。

中国煤炭杂志官网

CN不是一个刊物的级别,而是国内统一刊号的别称,它是一个刊物在国内具有公开发行身份的最重要的标志,其表现形式为:CNXX-XXXX煤炭方面的杂志 长春煤炭管理干部学院学报 CN22-1311/TK 江西煤炭科技 CN36-1121/TD 煤炭高等教育 CN32-1365/G4 煤炭工程 CN11-4658/TD 煤炭技术CN 23-1393/TD 煤炭加工与综合利用 CN11-2627/TD 煤炭经济研究CN 11-1038/F 煤炭科技 CN32-1491/TD 煤炭科学技术 CN11-2402/TD 煤炭学报 CN11-2190/TD 煤炭学报(英文版) CN11-3747/TD 煤炭转化 CN14-1163/TQ 内蒙古煤炭经济 CN15-1115/F 山东煤炭科技 CN37-1236/TD 山西煤炭 CN14-1096/TD 山西煤炭管理干部学院学报CN 14-1247/D 陕西煤炭 CN61-1382/TD 中国煤炭CN11-3621/TD 中国煤炭(英文版) CN11-3622/TD 中国煤炭地质 CN13-1385/TD 中国煤炭工业CN11-5593/F 中国煤炭工业年鉴 CN11-4108/TD中国煤炭工业医学杂志 CN13-1221/R 中州煤炭CN 41-1087/TD 版面费要根据具体刊物来说了,省级、国家级和核心的,价格差不少呢

中国煤炭工业杂志社是国企。

《中国煤炭工业》杂志创刊于1985年,由国家煤矿安全监察局主管、中国煤炭工业协会和煤炭工业通信信息中心共同主办,是覆盖全煤、联结社会的最具权威的行业期刊、肩负着指导煤炭工业发展与安全以及安全监察的职能。该刊为煤炭行业企业管理刊物。读者对象为煤炭企业各级领导者、经营管理者以及煤炭高校师生。曾用刊名:《煤炭企业管理》。

推荐《中国煤炭》,核心期刊,知网收录,以下是杂志简介,希望有所帮助:

《中国煤炭》杂志是中国煤炭工业协会主管、煤炭信息研究院主办的具有权威性导向性和科学性的国家级核心期刊。《中国煤炭》杂志先后荣获煤炭工业部科技情报成果三等奖、优秀煤炭科技期刊一等奖,中宣部、国家科委、新闻出版署联合颁发的全国优秀科技期刊三等奖,新闻出版署“双效期刊”奖和“第二届国家期刊奖百种重点期刊”奖,2006年又成为中国科学技术协会解读科学发展观的推介期刊,2013年被国家新闻出版广电总局评为中国百强报刊。

  • 索引序列
  • 中国煤层气期刊官网
  • 中国农业气象期刊官网
  • 煤层气文章
  • 中国期刊网官网官网
  • 中国煤炭杂志官网
  • 返回顶部