首页 > 期刊投稿知识库 > 酒中杂醇油测定的毕业论文

酒中杂醇油测定的毕业论文

发布时间:

酒中杂醇油测定的毕业论文

去网上搜,去抄呗

一.啤酒工厂设计(重点为糖化,发酵车间)基础数据: 生产规模: 50,000吨/年(或100,000吨/年)产品规格: 12度(或10度)淡色啤酒生产天数: 300天/年原料配比: 麦芽:大米=70:30原料利用率: 98%麦芽水分: 6%; 大米水分: 12%无水麦芽浸出率78%; 无水大米浸出率:90%啤酒损失率(对热麦汁): 冷却损失:7%;发酵损失:1.5%; 过滤损失:1.5%:装瓶损失:2%; 总损失: 12%糖化次数: 生产旺季(150天) 8次/天生产淡季(150天) 4次/天工艺指标: 由具体指导老师下达。设计内容: 1.根据以上设计任务,查阅有关资料、文献,搜集必要的技术资料,工艺参数与数据,进行生产方法的选择,工艺流程与工艺条件的确定与论证。2.工艺计算:全厂的物料衡算;糖化车间的热量衡算(即蒸汽耗量的计算);水用量的计算;发酵车间耗冷量计算。3.糖化车间、发酵车间设备的选型计算:包括设备的 容量,数量,主要的外形尺寸。4.选择其中某一重点设备进行单体设备的详细化工计算与设计。设计要求: 1.根据以上设计内容,书写设计说明书(以《发酵工厂工艺设计概论》P.254车间初步设计说明书的编写要求书写)。2.完成图纸两张(1号图纸):全厂工艺流程图(初步设计阶段),重点单体设备总装图。二、酒精工厂设计(重点为蒸煮糖化车间)基础数据:生产规模: 20,000吨/年(50,000吨/年)产品规格: 国标食用酒精生产方法: 以薯干为原料,双酶糖化,连续蒸煮,间歇发酵;三塔蒸馏副产品: 次级酒精(成品酒精的3%)杂醇油(成品酒精的O.6%)原料: 薯干(含淀粉68%,水分12%)酶用量: 高温一淀粉酶(20,000U/m1):10 U/g原料糖化酶(100,000U/m1):150 U/g原料(糖化醪)300 U/g原料(酒母醪)硫酸铵用量: 7kg/吨酒精硫酸用量: 5kg/吨酒精蒸煮醪粉料加水比: 1:2.5发酵成熟醪酒精含量:11%(V)酒母醪接种量: 糖化醪的10%(V)酒母醪的组成: 65%为液化蒸煮醪,35%为糖化剂与水发酵罐酒精捕集器用水:发酵成熟醪5%发酵罐洗罐用水:发酵成熟醪的2%生产过程淀粉总损失率: 9%蒸馏效率: 98%全年生产天数: 320天(其他工艺指标由具体指导老师下达。)设计内容:1.根据设计任务,查阅有关资料、文献,搜集必要的技术资料及工艺参数,进行生产方法的选择与比较,工艺流程与工艺条件的确定和论证。2.工艺计算:全厂的物料衡算;连续蒸煮及蒸馏蒸汽耗 量的计算;蒸馏车间水用量的衡算。3.蒸煮糖化车间(或蒸馏车间)的生产设备选型计算:包括设备的选型,容量,数量及主要的外形尺寸。4.选择一重点设备进行单体设备的详细化工设计与计算设计要求:1.根据以上设计内容书写设计说明书(以《发酵工厂工艺设计概论》车间初步设计说明书的编写要求书写)。2.完成二张图纸(1号图纸)蒸煮糖化车间(或蒸馏车间)工艺流程图;重点单体设备总装图。发酵工厂设计 2002.10——————————————————————————————三、味精工厂设计(重点为发酵车间)基础数据:生产规模: 1万吨/年(或2万吨/年)生产规格: 纯度为99%的味精生产方法: 以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取生产天数: 300天/年 倒罐率: O.5%发酵周期:40-42小时 生产周期:48-50小时种子发酵周期:8-10小时种子生产周期:12-16小时发酵醪初糖浓度: 15%(W/V)流加糖浓度:45%(W/V)发酵谷氨酸产率: 10% 糖酸转化率: 56%淀粉糖转化率: 98% 谷氨酸提取收率: 92%味精对谷氨酸的精制收率:112%原料淀粉含量:86% 发酵罐接种量: 10%发酵罐填充系数: 75%发酵培养基(W/V): 水解糖:15%,糖蜜:O.3%,玉米浆:O.2%,MgS04 0.04%,KCl.O.12%,Na2HP04:O.16%,尿素:4%,消泡剂:0.04%种子培养基(W/V): 水解糖:2.5%,糖蜜:2%,玉米浆:l %,MgS04 0.04%,K2HP04:0.1%,尿素:0.35%,消泡剂:、0.03%设计内容:1.根据设计任务查阅有关文献,收集必要的技术资料与工艺数据,进行生产方法的选择比较,生产工艺流程与工艺条件的确定与论证。2.工艺计算:全厂的物料衡算;发酵车间的热量蘅算(蒸汽耗量的计算);无菌空气耗量的计算。3.发酵车间(包括糖液连消)生产设备的选型计算(包括设备的容量、数量、主要外形尺寸)。4.选择一重点设备进行单体设备的详细化工设计与计算。设计要求:1.根据以上设计内容,书写设计说明书(以《发酵工厂工艺设计概论》P.254车间初步设计说明书的编写要求书写)。2.完成图纸两张(一号图纸),发酵车间工艺流程图(包括糖液连消),重点单体设备总装图。四、酶制剂工厂设计(重点糖化酶车间)基础数据:生产规模:1000M3/年(或3000 M3/年)产品规格:食品级液体糖化酶(50,000U/m1)生产天数:180天(其他时间生产其他酶)罐发酵单位:25,000U/ml 提取总收率:82%发酵罐装料系数:85% 生产周期:8天发酵培养基: 玉米淀粉:22%; 豆饼粉:4%;玉米浆: 1%;(NH4)2S04:O.4%;NaHP04:O:1%;接种量: 10%种子培养基: (培养周期4-6天)麦芽糊精: 4%;玉米浆:1%;(NH4)2S04:0.2% KHP04:O.2%设计内容: 1.根据设计任务,查阅有关资料、文献,搜集必要的技术资料,工艺参数,进行生产方法的选择比较,工艺流程与工艺条件确定的论证。2.工艺计算:全厂的物料衡算,发酵车间的热量衡算,无菌空气用量的计算。3.糖化酶生产设备的选型计算(包括设备的容量、数量、主要的外形尺寸)。4.选择一重点设备进行单体设备的详细的化工计算与设计。设计要求: 1.根据以上设计内容书写设计说明书(以《发酵工厂工艺设计概论》P.254车间初步设计说明书的编写要求书写)。2.完成图纸二张(1号图纸):全厂工艺流程图(初步设计阶段):重点单体设备总装图。

1、如何降低白酒中的杂醇油。 2、什么白酒杂醇油含量最少。 3、讨论白酒中杂醇油的来源与危害。 4、白酒中的杂醇油会自然挥发么。1.发酵醪中添加氮凉,能减少杂醇油的生成,杂醇油是酵母繁殖过程中大量生成的,醪液中越是贫氨,生成量就越多。 2.发酵醇中如果有这些容易被酵母利用的氨源,则能阻止或延迟氨基酸的分解,从而减少杂醇油的生成。 3.适当加大酵母接种量,减少酵母在发酵过程中的增殖倍数,少消费一些氨基酸,也是减少杂醇油生成的途径。 4.严格控制制曲工艺,提高夫曲质量,减少夫曲的蛋白酶活力,生产中尽量多用商品糖化酶,适当减少夫曲用量,也能降低杂醇油含量。 5.严格控制发酵温度,避免在过高的温度下发酵。

监测酒中甲醇论文参考文献

如何测定酒中的甲醇浓度?醇香的美酒是很多人的大爱,但是劣质酒中往往含有超量的甲醇。倘若有谁知道自己杯中的“佳酿”里面的甲醇超标,再怎么嗜酒的人也会大惊失色。有数据表明,人若误饮甲醇超过10毫升即可造成失明,而超过30毫升将危及生命。图1在我国,有关标准对酒类中甲醇最大残留量分别作出了具体的规定,其中,蒸馏酒(60度)、白(桃红)葡萄酒、红葡萄酒和伏特加分别为1200、250、400和50毫克/升。那么,在对酒的检验实践中,人们又是采取何种方式定量检测酒中的甲醇浓度的呢?事实上,我国卫生部门颁布过明确的检验办法(图2)。图2 GB/T5009.48-2003遵照GB/T5009.48-2003标准,检测人员可以采用气相色谱法来检测酒中甲醇的浓度(克/百毫升),所谓气相色谱法,就是经过气相色谱仪将被测物质气化并分离其中各组分,将各组分浓度信号转变成电信号,显示为图谱与数字形式(图3)。一般而言,组分所占图谱峰面积的大小,直观的代表了其浓度的特征。具体可以根据所得的信号值,按照计算公式并结合参数校正换算成浓度大小。图3 气相色谱仪及甲醇检测气相色谱图除了气相色谱法外,GB/T5009.48-2003也提到可用比色法来测定甲醇的浓度,比色法的原理是,将试样中所含有的甲醇氧化成甲醛,生成的甲醛与品红亚硫酸反应,进一步生成蓝紫色物质。利用生成的蓝紫色物质的颜色深浅与已知甲醇浓度的对照品作比较来测定试样中甲醇的浓度。比色法使用的仪器为分光光度计(图4)。图4 分光光度计上述两种方法是我国国家标准所制定的检验方法。很多研究者也提出了诸如高效液相色谱法、酶电极法、折射法等方案。但每一种方案都或多或少受到经济成本、检测效果、灵敏度等条件的制约。总的来说,在检测酒类产品中所含甲醇浓度的时候,气相色谱法和比色法是比较经典的手段。参考文献:GB/T5009.48-2003《多维气相色谱法检测酒中甲醇》,伊雄海等,《分析化学》,2011,Vol. 39,No .5《食用酒中甲醇分析方法概述》,丁卓丽,《计量与测试技术》,2009,Vol. 36,No .8《酒中甲醇含量的测定方法》,江达,《科教导刊》2014(1)《食用酒中甲醇气相色谱分析方法研究》,张良,重庆大学 2002

1、白酒样品稀释。将酒样品用吸管吸取0.5mL(毫升)到试管中,然后再加入5mL纯净水或蒸馏水,将其混合摇匀。再用吸管吸取1mL已经稀释好了的酒样到比色管中,准备检测。注:对果酒检测甲醇含量时,则需要预先将果酒进行脱色处理。脱色方法:需要制备脱色管(类似于注射器,管的前段预先装有活性炭过滤物),一是用吸管吸取果酒样品至脱色管中;二是将脱色管的活塞安放好后缓缓推入,使果酒液通过脱色管中的脱色物过滤出无色酒液。然后即可采取与白酒相同的方法进行稀释。2、加氧化液。向比色管中加入一滴氧化液,摇匀放置10分钟以上,待其充分氧化。3、加脱色剂。向比色管中加入一滴脱色液,摇匀放置,待紫色完全退去。4、加显色液。向比色管中加入一滴显色液,摇匀放置在40度左右的水中4分钟,然后立刻与色卡(甲醇含量比色卡)进行比对,即可获得白酒中甲醇的含量数据。

酱油三氯丙醇毕业论文

酱油主要分为酿造酱油、配制酱油两大类:酿造酱油—— 以大豆、小麦为原料,经过微生物天然发酵制成的具有特殊色、香、味的液体调味品。配制酱油——以酿造酱油为主体,与调味液、食品添加剂等配制而成的液体调味品。酿造酱油是经微生物发酵制成的,没有毒副作用、其酱香、醋香浓厚。而配置酱油有可能含有三氯丙醇(有毒副作用),虽然符合国家的标准的产品不会对人体造成危害,可以安全食用,但还是建议大家购买酿造酱油。酿造酱油又可分为生抽和老抽:生抽——以优质黄豆和面粉为原料,经发酵成熟后提取而成。“色泽淡雅,酯香、酱香浓郁,味道鲜美。老抽——是在生抽中加入焦糖,经过特别工艺制成的浓色酱油,适用于红烧肉、烧卤食品及烹调深色菜肴。色泽浓郁,具有醋香和酱香。生抽,老抽二者最大的区别是老抽由于添加了焦糖而颜色浓,粘稠度较大;而生抽酱油盐度较低,颜色也较浅。如果做粤菜或者需要保持菜肴原味时可以选用生抽酱油;如果想做口味重的菜或需要上色的菜肴如红烧肉,最好选用老抽酱油酱油用豆、麦、麸皮酿造的液体调味品。色泽红褐色,有独特酱香,滋味鲜美,有助于促进食欲。是中国的传统调味品。发展简况 酱油是从豆酱演变和发展而成的。中国历史上最早使用“酱油”名称是在宋朝,林洪著《山家清供》中有“韭叶嫩者,用姜丝、酱油、滴醋拌食”的记述。此外,古代酱油还有其他名称,如清酱、豆酱清、酱汁、酱料、豉油、豉汁、淋油、柚油、晒油、座油、伏油、秋油、母油、套油、双套油等。公元755年后,酱油生产技术随鉴真大师传至日本。后又相继传入朝鲜、越南、泰国、马来西亚、菲律宾等国。生产工艺 酱油用的原料是植物性蛋白质和淀粉质。植物性蛋白质遍取自大豆榨油后的豆饼,或溶剂浸出油脂后的豆粕,也有以花生饼、蚕豆代用,传统生产中以大豆为主;淀粉质原料普遍采用小麦及麸皮,也有以碎米和玉米代用,传统生产中以面粉为主。原料经蒸熟冷却,接入纯粹培养的米曲霉菌种制成酱曲,酱曲移入发酵池,加盐水发酵,待酱醅成熟后,以浸出法提取酱油。制曲的目的是使米曲霉在曲料上充分生长发育,并大量产生和积蓄所需要的酶,如蛋白酶、肽酶、淀粉酶、谷氨酰胺酶、果胶酶、纤维素酶、半纤维素酶等。在发酵过程中味的形成是利用这些酶的作用。如蛋白酶及肽酶将蛋白质水解为氨基酸,产生鲜味;谷氨酰胺酶把万分中无味的谷氨酰胺变成具有鲜味的俗谷氨酸;淀粉酶将淀份水解成糖,产生甜味;果胶酶、纤维素酶和半纤维素酶等能将细胞壁完全破裂,使蛋白酶和淀粉酶水解等更彻底。同时,在制曲及发酵过程中,从空气中落入的酵母和细菌也进行繁殖并分泌多种酶。也可添加纯粹培养的乳酸菌和酵母菌。由乳酸菌产生适量乳酸,由酵母菌发酵生产乙醇,以及由原料成分、曲霉的代谢产物等所生产的醇、酸、醛、酯、酚、缩醛和呋喃酮等多种成分,虽多属微量,但却能构成酱油复杂的香气。此外,由原料蛋白质中的酪氨酸经氧化生成黑色素及淀份经典霉淀粉酶水解为葡萄糖与氨基酸反应生成类黑素,使酱油产生鲜艳有光泽的红褐色。发酵期间的一系列极其复杂的生物化学变化所产生的鲜味、甜味、酸味、酒香、酯香与盐水的咸味相混和,最后形成色香味和风味独特的酱油。酱油的原料处理 分为3步。①饼粕加水及润水:加水量以蒸熟后曲料水分达到47—50%为标准。②混和:饼粕润水后,与轧碎小麦及麸皮充分混和均匀。③蒸煮:用旋转式蒸锅加压(0.2MPa)蒸料,使蛋白质适度变性,淀粉蒸熟糊化,并杀灭附着在原料上的微生物。制曲分两步。①冷却接种:熟料快速冷却至45℃,接入米曲霉菌种经纯粹扩大培养后的种曲0.3—0.4%,充分拌匀。②厚层通风制曲:接种后的曲料送入曲室曲池内。先间歇通风,后连续通风。制曲温度在孢子发芽阶段控制在30—32℃,菌丝生长阶段控制在最高不超过35℃。这期间要进行翻曲及铲曲。孢子着生初期,产酶最为旺盛,品温以控制在30—32℃为宜。发酵 成曲加12—13°Be'热盐水拌和入发酵池,品温42—45℃维持20天左右,酱醅基本成熟。浸出淋油将前次生产留下的三油加热至85℃,再送入成熟的酱醅内浸泡,使酱油万分溶于其中,然后从发酵池假底下部把生酱油(头油徐徐放出,通过食盐层补足浓度及盐分。淋油是把酱油与酱渣通过分离出来。一般采用多次浸泡,分别依序淋出头油、二油及三油,循环套用才能把酱油成分基本上全部提取出来。后处理 酱油加热至80—85℃消毒灭,再配制(勾兑)、澄清及质量检验,得到符合质量标准的成品。营养功效:在烹调时加入一定量的酱油,可增加食物的香味,并使其色泽更加好看,从而增进食欲,提倡后放酱油,这样能够将酱油中的有效的氨基酸和营养成分能够保留。酱油具有解热除烦、调味开胃的功效。酱油含有异黄醇,这种特殊物质可降低人体胆固醇,降低心血管疾病的发病率。新加坡食物研究所发现,酱油能产生一种天然的抗氧化成分。它有助于养活自由基对人体的损害,其功效比常见的维生素 C和E等抗氧化剂大十几倍。用少量酱油所达到的抑制自由基的效果,与一杯红葡萄酒相当。食而有道:烹饪时酌量加入,每次10~30毫升。服用治疗血管疾病、胃肠道疾病的药物时应禁止食用酱油烹制的菜肴,以免引起恶心、呕吐等副作用。在烹饪绿色蔬菜时不必放酱油,因为酱油会使这些蔬菜的色泽变得黑褐暗淡,并失去了蔬菜原有的清香。精选妙藏:优质酱油大都呈鲜艳的深红褐色,不混浊,无沉淀,无霉花浮膜,酱香浓郁,味鲜,咸淡适中,无异味。酱油应置于阴凉干燥处存储,尽量养活与空气的接触。保质期一般不低于6个月。酱油不是油在生活中,和我们打交道的“油”可真不少。花生油,菜籽油,猪油,牛油,汽油,酱油……你可知道,它们虽然都叫“油”,但却是几类完全不同的物质。汽油、煤油是碳和氢的化合物,不能吃,用做燃料。我们吃的动物油和植物油都是各种脂肪酸和甘油结合而成的碳、氢、氧的化合物(有机化学中叫酯)。酱油的名字虽然也带“油”,但和油没有一点关系。中国的酱油在国际上享有极高的声誊。三千多年前,我们的祖先就会酿造酱油了。最早的酱油是用牛、羊、鹿和鱼虾肉等动物性蛋白质酿制的,后来才逐渐改用豆类和谷物的植物性蛋白质酿制。将大豆蒸熟,拌和面粉,接种上一种霉菌,让它发酵生毛。经过日晒夜露,原料里的蛋白质和淀粉分解,就变化成滋味鲜美的酱油啦。酱油是好几种氨基酸、糖类、芳香酯和食盐的水溶液。它的颜色也很好看,能促进食欲。 除了酿造的酱油外,还有一种化学酱油。那是用盐酸分解大豆里的蛋白质,变成单个的氨基酸,再用碱中和,加些红糖做为着色剂,就制成了化学酱油。这样的酱油,味道同样鲜美。不过它的营养价值远不如酿造酱油。酱油是烹饪中的一种亚洲特色的调味料,普遍使用大豆为主要原料,加入水,食盐经过制曲和发酵,再在各种微生物繁殖分泌的各种酶的作用下,酿造出来的一种液体。制作酱油的原料因国家、地区的不同,使用的配料不同,风味也不同,比较出名的是泰国的鱼露(使用鲜鱼)和日本的味噌(使用海苔)。酱油只有两种分类:酿造酱油酿造酱油是用大豆和/或脱脂大豆,或用小麦和/或麸皮为原料,采用微生物发酵酿制而成的酱油。配制酱油配制酱油是以酿造酱油为主体,与酸水解植物蛋白调味液、食品添加剂等配制而成的液体调味品。只要在生产中使用了酸水解植物蛋白调味液,即是配制酱油。中国GB18186-2000《酿造酱油》标准将在商品标签上注明是「酿造酱油」或「配制酱油」列为强制执行内容。因著色力不同,酱油亦有生抽、老抽之别,前者著色力弱而后者强,至于生抽王,是厂商故意表示好的意思,没什么特别。

酱油是生活中的必备生活用品,它还有其他名称,如清酱、豆酱清、酱汁、酱料、豉油、豉汁、淋油、柚油、晒油、座油、伏油、秋油、母油、套油、双套油等。 一、起源 三千多年前,我们的祖先就会酿造酱油了。最早的酱油是用牛、羊、鹿和鱼虾肉等动物性蛋白质酿制的,后来才逐渐改用豆类和谷物的植物性蛋白质酿制。 将大豆蒸熟,拌和面粉,接种上一种酱油霉菌,让它发酵生毛。经过日晒夜露,原料里的蛋白质和淀粉分解,就变化成滋味鲜美的酱油。 这样看来,酱油是从豆酱演变发展而成。 历史上最早使用酱油这一名词是在宋朝。林洪在《山家清供》中有“韭叶嫩者,用姜丝、酱油、滴醋拌食”的记述。 公元755年后,酱油生产技术随鉴真大师由中国传至日本。后又相继传入朝鲜、越南、泰国、马来西亚、菲律宾等国 二、成份 酱油用的原料是植物性蛋白质和淀粉质。 植物性蛋白质传统生产中以大豆为主,现普遍取自大豆榨油后的豆饼,或溶剂浸出油脂后的豆粕,也有以花生饼、蚕豆代用。 淀粉质原料普遍采用小麦及麸皮,也有以碎米和玉米代用,传统生产中以面粉为主。 加工好的纯酿造酱油主要成分是: 1.氨基酸:酱油在制曲时借霉菌所产生之蛋白酶和淀粉酶将原科中的蛋白质及淀粉分解。下缸后,这些酶仍继续将未被分解的蛋白质和糖类进行分解。酱油中游离态氨基酸常以氨基态氮表示。 2.有机酸。 3.醣类。 4.劣质酱油的有害成分——焦糖。 5.其他食品添加成份。 三、质量等级 市场上酱油有特级、一级、二级、三级之分。 国家明确规定,在酱油的外包装上必须标明质量等级和氨基酸含量。 酱油的鲜味取决于氨基酸酞氮含量的高低,一般来说氨基酸酞氮越高,酱油的等级就越高,也就是说品质越好。 按照我国酿造酱油的标准,氨基酸态氮>0.8克/100ml为特级;>0.7/100ml为一级;>0.55/100ml为二级;>0.4/100ml为三级。 但是,并不是说氨基酸酞氮越高,酱油就越好。因为配兑酱油的氨基酸酞氮也很高,或者是有一些不法的供应商在里面加了很多鲜味剂,氨基酸也很高,这也不等于是完全很好的酱油。 价格越高并不代表酱油等级越高。很多消费者购物时,喜欢根据价格高低判定其质量优劣,其实并不尽然。专家认为,优质酱油澄清、无沉淀、无浮膜、色泽呈红褐色,比较粘稠,细闻有酱香味和酯香味。 三、加工 原料经蒸熟冷却,接入纯粹培养的米曲霉菌种制成酱曲。酱曲移入发酵池,加盐水发酵,待酱坯成熟后,以浸出法提取酱油。 四、香味组成 酱油制曲的目的是使米曲霉在曲料上充分生长发育,并大量产生和积蓄所需要的酶,如蛋白酶、肽酶、淀粉酶、谷氨酰胺酶、果胶酶、纤维素酶、半纤维素酶等。 在发酵过程中味的形成是利用这些酶的作用。 如蛋白酶及肽酶将蛋白质水解为氨基酸,产生鲜味; 谷氨酰胺酶把万分中无味的谷氨酰胺变成具有鲜味的俗谷氨酸; 淀粉酶将淀份水解成糖,产生甜味; 果胶酶、纤维素酶和半纤维素酶等能将细胞壁完全破裂,使蛋白酶和淀粉酶水解等更彻底。 同时,在制曲及发酵过程中,从空气中落入的酵母和细菌也进行繁殖并分泌多种酶。也可添加纯粹培养的乳酸菌和酵母菌。由乳酸菌产生适量乳酸,由酵母菌发酵生产乙醇,以及由原料成分、曲霉的代谢产物等所生产的醇、酸、醛、酯、酚、缩醛和呋喃酮等多种成分,虽多属微量,但却能构成酱油复杂的香气。 此外,由原料蛋白质中的酪氨酸经氧化生成黑色素及淀粉酶,水解为葡萄糖与氨基酸反应生成类黑素,使酱油产生鲜艳有光泽的红褐色。 发酵期间的一系列极其复杂的生物化学变化所产生的鲜味、甜味、酸味、酒香、酯香与盐水的咸味相混和,最后形成色香味和风味独特的酱油。 五、营养 酱油具有解热除烦、调味开胃的功效。 酱油含有异黄醇,这种特殊物质可降低人体胆固醇,降低心血管疾病的发病率。新加坡食物研究所发现,酱油能产生一种天然的抗氧化成分。它有助于养活自由基对人体的损害,其功效比常见的维生素C和E等抗氧化剂大十几倍。用少量酱油所达到的抑制自由基的效果,与一杯红葡萄酒相当。 烹饪时酌量加入,每次10~30毫升。服用治疗血管疾病、胃肠道疾病的药物时应禁止食用酱油烹制的菜肴,以免引起恶心、呕吐等副作用。在烹饪绿色蔬菜时不必放酱油,因为酱油会使这些蔬菜的色泽变得黑褐暗淡,并失去了蔬菜原有的清香。 铁强化酱油对缺铁性贫血人群有极大的帮助 六、酿造酱油和配制酱油 配制酱油是以酿造酱油为主体,与酸水解植物蛋白调味液、食品添加剂等配制而成的液体调味品。只要在生产中使用了酸水解植物蛋白调味液,即是配制酱油。 中国GB18186-2000《酿造酱油》标准将在商品标签上注明是“酿造酱油”或“配制酱油”列为强制执行内容。 酱油是好几种氨基酸、糖类、芳香酯和食盐的混合水溶液。它的颜色好看,能促进食欲。 除了酿造的酱油、配制酱油外,还有一种化学酱油。那是用盐酸分解大豆里的蛋白质,变成单个的氨基酸,再用碱中和,加些红糖做为着色剂,就制成了化学酱油。这样的酱油,味道同样鲜美。不过它的营养价值远不如酿造酱油。 酱油是烹饪中的一种亚洲特色的调味料,普遍使用大豆为主要原料,加入水、食盐经过制曲和发酵,再在各种微生物繁殖分泌的各种酶的作用下,酿造出来的一种液体。制作酱油的原料因国家、地区的不同,使用的配料不同,风味也不同,比较出名的是泰国的鱼露(使用鲜鱼为配料)和日本的味噌(使用海苔为配料)。 酱油是有大豆和小麦发酵制成的,在东西方都是普遍应用的调味品。酱油的盐分含量较高。但也是具有一些豆类的营养成分,还具有解热除烦,解毒的作用。可用于治疗暑热烦满、疔疮初起,妊辰尿血等病症。此外还可治疗食物,药物中毒及汤火灼伤,虫兽咬伤。 患高血压,心脏病的人要少用酱油。 国外有研究者认为酱油有抗癌成分。 七、分类 因著色力不同,酱油亦有生抽、老抽之别,前者著色力弱而后者强,至于生抽王,是厂商故意表示好的意思,没什么特别。老抽较咸,用于提色;生抽用于提鲜。 生抽的颜色比较淡,呈红褐色,味道较咸。主要用来调味,因颜色淡,故做一般的炒菜或者凉菜的时候用得多。 生抽酱油是酱油中的一个品种,以大豆、面粉为主要原料,人工接入种曲,经天然露晒,发酵而成。其产品色泽红润,滋味鲜美协调,豉味浓郁,体态清澈透明,风味独特。 老抽是加入了焦糖色、颜色很深,呈棕褐色有光泽的。吃到嘴里后有种鲜美微甜的感觉。一般用来给食品着色用。比如做红烧等需要上色的菜时使用比较好。 老抽酱油是在生抽酱油的基础上,把榨制的酱油再晒制2~3个月,经沉淀过滤即为老抽酱油。其产品质量比生抽酱油更加浓郁。 生抽和老抽的鲜味 辨别生抽和老抽主要看颜色。可以把酱油倒入一个白色瓷盘里晃动颜色,生抽是红褐色的,而老抽是棕褐色并且有光泽。也可以尝味道:生抽吃起来味道比较咸;老抽吃到嘴里后,有一种鲜美的微甜。 九、致癌 2001年欧洲各国发现国产的酱油中所含的3氯丙醇(3-MCPD)远远超过欧洲委员会允许的上限。而且一些酱油品种还含有另一种致癌物质1,3二氯丙醇(1,3-DCP)。据了解这是由于一些生产商在调味品的生产过程中,为了增产而加入酸水解植物蛋白,因而制造出3氯丙醇和1,3二氯丙醇。专家一般建议,任何食物的1,3二氯丙醇含量应为零。目前关于这件事情还没有更多的后续报道。 十、网络中另类词意: 酱油男:原义指皮肤较黑的人,热带地区说法。酱油男一词意在调侃那些对新事物漠不关心,甚至无知的人。也表达对楼主发的主题表示不关心没兴趣、不参与话题讨论的意思。 酱油族:在中华网军事论坛里,网友经常展示“我出来买酱油的……”的贴图,而且经过网友们不断的修改,他的对白和说辞越来越搞笑。不过也令众多网友不满,因此将那些乐此不疲地PS那张图片的网友归为“酱油族”。 酱油了:酱油了,与“抽”或‘囧’同意。例句:看了这部小说后,我酱油(抽了)了……类似的表达方式还有:满地都是酱油啊!这个世界上到处都是酱油啊! 打酱油:有路过之意。 ~~~~~~~~~~~~~~~~~~~ 原文发表于新浪博客 《听雪文集》 鸣谢澳玉原石《澳玉四方》(Wechat ID:JewelryAtlas)。 鸣谢天然澳玉澳宝淘宝店《异珍阁澳玉四方》。 鸣谢健康捍卫者《健康橡树屋》(Wechat ID:Oakhome)。

原文地址:酱油的发展历史,及酱油的种类作者:zhangjiang1q酱油主要分为酿造酱油、配制酱油两大类:酿造酱油—— 以大豆、小麦为原料,经过微生物天然发酵制成的具有特殊色、香、味的液体调味品。配制酱油——以酿造酱油为主体,与调味液、食品添加剂等配制而成的液体调味品。酿造酱油是经微生物发酵制成的,没有毒副作用、其酱香、醋香浓厚。而配置酱油有可能含有三氯丙醇(有毒副作用),虽然符合国家的标准的产品不会对人体造成危害,可以安全食用,但还是建议大家购买酿造酱油。酿造酱油又可分为生抽和老抽:生抽——以优质黄豆和面粉为原料,经发酵成熟后提取而成。“色泽淡雅,酯香、酱香浓郁,味道鲜美。老抽——是在生抽中加入焦糖,经过特别工艺制成的浓色酱油,适用于红烧肉、烧卤食品及烹调深色菜肴。色泽浓郁,具有醋香和酱香。生抽,老抽二者最大的区别是老抽由于添加了焦糖而颜色浓,粘稠度较大;而生抽酱油盐度较低,颜色也较浅。如果做粤菜或者需要保持菜肴原味时可以选用生抽酱油;如果想做口味重的菜或需要上色的菜肴如红烧肉,最好选用老抽酱油酱油用豆、麦、麸皮酿造的液体调味品。色泽红褐色,有独特酱香,滋味鲜美,有助于促进食欲。是中国的传统调味品。发展简况 酱油是从豆酱演变和发展而成的。中国历史上最早使用“酱油”名称是在宋朝,林洪著《山家清供》中有“韭叶嫩者,用姜丝、酱油、滴醋拌食”的记述。此外,古代酱油还有其他名称,如清酱、豆酱清、酱汁、酱料、豉油、豉汁、淋油、柚油、晒油、座油、伏油、秋油、母油、套油、双套油等。公元755年后,酱油生产技术随鉴真大师传至日本。后又相继传入朝鲜、越南、泰国、马来西亚、菲律宾等国。生产工艺 酱油用的原料是植物性蛋白质和淀粉质。植物性蛋白质遍取自大豆榨油后的豆饼,或溶剂浸出油脂后的豆粕,也有以花生饼、蚕豆代用,传统生产中以大豆为主;淀粉质原料普遍采用小麦及麸皮,也有以碎米和玉米代用,传统生产中以面粉为主。原料经蒸熟冷却,接入纯粹培养的米曲霉菌种制成酱曲,酱曲移入发酵池,加盐水发酵,待酱醅成熟后,以浸出法提取酱油。制曲的目的是使米曲霉在曲料上充分生长发育,并大量产生和积蓄所需要的酶,如蛋白酶、肽酶、淀粉酶、谷氨酰胺酶、果胶酶、纤维素酶、半纤维素酶等。在发酵过程中味的形成是利用这些酶的作用。如蛋白酶及肽酶将蛋白质水解为氨基酸,产生鲜味;谷氨酰胺酶把万分中无味的谷氨酰胺变成具有鲜味的俗谷氨酸;淀粉酶将淀份水解成糖,产生甜味;果胶酶、纤维素酶和半纤维素酶等能将细胞壁完全破裂,使蛋白酶和淀粉酶水解等更彻底。同时,在制曲及发酵过程中,从空气中落入的酵母和细菌也进行繁殖并分泌多种酶。也可添加纯粹培养的乳酸菌和酵母菌。由乳酸菌产生适量乳酸,由酵母菌发酵生产乙醇,以及由原料成分、曲霉的代谢产物等所生产的醇、酸、醛、酯、酚、缩醛和呋喃酮等多种成分,虽多属微量,但却能构成酱油复杂的香气。此外,由原料蛋白质中的酪氨酸经氧化生成黑色素及淀份经典霉淀粉酶水解为葡萄糖与氨基酸反应生成类黑素,使酱油产生鲜艳有光泽的红褐色。发酵期间的一系列极其复杂的生物化学变化所产生的鲜味、甜味、酸味、酒香、酯香与盐水的咸味相混和,最后形成色香味和风味独特的酱油。酱油的原料处理 分为3步。①饼粕加水及润水:加水量以蒸熟后曲料水分达到47—50%为标准。②混和:饼粕润水后,与轧碎小麦及麸皮充分混和均匀。③蒸煮:用旋转式蒸锅加压(0.2MPa)蒸料,使蛋白质适度变性,淀粉蒸熟糊化,并杀灭附着在原料上的微生物。制曲分两步。①冷却接种:熟料快速冷却至45℃,接入米曲霉菌种经纯粹扩大培养后的种曲0.3—0.4%,充分拌匀。②厚层通风制曲:接种后的曲料送入曲室曲池内。先间歇通风,后连续通风。制曲温度在孢子发芽阶段控制在30—32℃,菌丝生长阶段控制在最高不超过35℃。这期间要进行翻曲及铲曲。孢子着生初期,产酶最为旺盛,品温以控制在30—32℃为宜。发酵 成曲加12—13°Be'热盐水拌和入发酵池,品温42—45℃维持20天左右,酱醅基本成熟。浸出淋油将前次生产留下的三油加热至85℃,再送入成熟的酱醅内浸泡,使酱油万分溶于其中,然后从发酵池假底下部把生酱油(头油徐徐放出,通过食盐层补足浓度及盐分。淋油是把酱油与酱渣通过分离出来。一般采用多次浸泡,分别依序淋出头油、二油及三油,循环套用才能把酱油成分基本上全部提取出来。后处理 酱油加热至80—85℃消毒灭,再配制(勾兑)、澄清及质量检验,得到符合质量标准的成品。营养功效:在烹调时加入一定量的酱油,可增加食物的香味,并使其色泽更加好看,从而增进食欲,提倡后放酱油,这样能够将酱油中的有效的氨基酸和营养成分能够保留。酱油具有解热除烦、调味开胃的功效。酱油含有异黄醇,这种特殊物质可降低人体胆固醇,降低心血管疾病的发病率。新加坡食物研究所发现,酱油能产生一种天然的抗氧化成分。它有助于养活自由基对人体的损害,其功效比常见的维生素 C和E等抗氧化剂大十几倍。用少量酱油所达到的抑制自由基的效果,与一杯红葡萄酒相当。食而有道:烹饪时酌量加入,每次10~30毫升。服用治疗血管疾病、胃肠道疾病的药物时应禁止食用酱油烹制的菜肴,以免引起恶心、呕吐等副作用。在烹饪绿色蔬菜时不必放酱油,因为酱油会使这些蔬菜的色泽变得黑褐暗淡,并失去了蔬菜原有的清香。精选妙藏:优质酱油大都呈鲜艳的深红褐色,不混浊,无沉淀,无霉花浮膜,酱香浓郁,味鲜,咸淡适中,无异味。酱油应置于阴凉干燥处存储,尽量养活与空气的接触。保质期一般不低于6个月。酱油不是油在生活中,和我们打交道的“油”可真不少。花生油,菜籽油,猪油,牛油,汽油,酱油…… 你可知道,它们虽然都叫“油”,但却是几类完全不同的物质。 汽油、煤油是碳和氢的化合物,不能吃,用做燃料。 我们吃的动物油和植物油都是各种脂肪酸和甘油结合而成的碳、氢、氧的化合物(有机化学中叫酯)。 酱油的名字虽然也带“油”,但和油没有一点关系。 中国的酱油在国际上享有极高的声誊。三千多年前,我们的祖先就会酿造酱油了。最早的酱油是用牛、羊、鹿和鱼虾肉等动物性蛋白质酿制的,后来才逐渐改用豆类和谷物的植物性蛋白质酿制。将大豆蒸熟,拌和面粉,接种上一种霉菌,让它发酵生毛。经过日晒夜露,原料里的蛋白质和淀粉分解,就变化成滋味鲜美的酱油啦。 酱油是好几种氨基酸、糖类、芳香酯和食盐的水溶液。它的颜色也很好看,能促进食欲。 除了酿造的酱油外,还有一种化学酱油。那是用盐酸分解大豆里的蛋白质,变成单个的氨基酸,再用碱中和,加些红糖做为着色剂,就制成了化学酱油。这样的酱油,味道同样鲜美。不过它的营养价值远不如酿造酱油。酱油是烹饪中的一种亚洲特色的调味料,普遍使用大豆为主要原料,加入水,食盐经过制曲和发酵,再在各种微生物繁殖分泌的各种酶的作用下,酿造出来的一种液体。制作酱油的原料因国家、地区的不同,使用的配料不同,风味也不同,比较出名的是泰国的鱼露(使用鲜鱼)和日本的味噌(使用海苔)。酱油只有两种分类:酿造酱油酿造酱油是用大豆和/或脱脂大豆,或用小麦和/或麸皮为原料,采用微生物发酵酿制而成的酱油。配制酱油配制酱油是以酿造酱油为主体,与酸水解植物蛋白调味液、食品添加剂等配制而成的液体调味品。只要在生产中使用了酸水解植物蛋白调味液,即是配制酱油。中国GB18186-2000《酿造酱油》标准将在商品标签上注明是「酿造酱油」或「配制酱油」列为强制执行内容。因著色力不同,酱油亦有生抽、老抽之别,前者著色力弱而后者强,至于生抽王,是厂商故意表示好的意思,没什么特别。附:酱油是我们厨房里、餐桌上少不了的调味品。然而许多人分不清什么是老抽,什么是生抽?它们怎么使用,做菜时,老抽生抽无所谓,随便放一点。要做出有特色的菜肴,老抽和生抽一定要分清,知道老抽和生抽各自的特点及怎么使用。生抽和老抽都是经过酿造发酵加工而成的酱油。生抽颜色:生抽颜色比较淡,呈红褐色。味道:生抽是用做一般的烹调用的,吃起来味道较咸。用途:生抽用来调味,因颜色淡,故做一般炒菜或者凉菜的时候用得多。生抽的制作:生抽酱油是酱油中的一个品种,以大豆、面粉为主要原料,人工接人种曲,经天然露晒,发酵而成。其产品色泽红润,滋味鲜美协调,豉味浓郁,体态清澈透明,风味独特。老抽颜色:老抽是加入了焦糖色,颜色很深,呈棕褐色,有光泽。味道:吃到嘴里后有种鲜美微甜的感觉。用途:一般用来给食品着色用。比如做红烧等需要上色的菜时使用比较好。老抽的制作:老抽酱油是在生抽酱油的基础上,把榨制的酱油再晒制2-3个月,经沉淀过滤即为老抽酱油。其产品质量比生抽酱油更加浓郁。生抽和老抽的鲜味酱油的鲜味取决于氨基酸酞氮含量的高低,一般来说氨基酸酞氮越高,酱油的等级就越高,也就是说品质越好。按照我国酿造酱油的标准,氨基酸酞氮>0.8g/100 ml为特级;>0.7/100 ml为一级;>0.55/100 ml为二级;>0.4/100 ml为三级。但是,并不是说氨基酸酞氮越高,酱油就越好。因为配兑酱油的氮基酸酞氦也很高,或者是有一些不法的供应商在里面加了很多鲜味剂,氨基酸也很高,但这并不等于是很好的酱油。辨别生抽和老抽看颜色:可以把酱油倒入一个白色瓷盘里晃动颜色,生抽是红褐色的,而老抽是棕褐色并且有光泽。尝味道:生抽吃起来味道比较咸;老抽吃到嘴里后,有一种鲜美的微甜。购买酱油看标志选择酱油时要看一下酱油的包装上有没有一个QS的标志,这是酱油进入市场的准入标志;再看看酱油是酿造的还是配兑的,如果酱油没有标明是酿造还是配制,这个酱油就是不合格产品;最后要看标签上标明的是佐餐用还是烹调用,因为这两者的卫生指标是不同的,供佐餐用的酱油是可以直接入口,卫生指标较好,而烹调的可不能直接入口了,只能用于烹调炒菜用。

水中砷的测定毕业论文

用原子发射光谱仪测定就行了

砷的测定(古蔡氏测砷法) 一、目的与要求: 1、掌握古蔡氏法测定砷含量的原理方法。 二、原理: 样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷然后与锌粒和酸产生的新生态氢生成砷化氢,再与溴化汞试纸生成黄色至橙色的色斑比较定量。 三、试剂与仪器: 1、 5%溴化汞乙醇溶液 2、 溴化汞试纸:将滤纸剪成直径为2cm的圆片,浸泡于溴化汞乙醇溶液中。使用前取出,使其自然干燥后备用。 3、 40%酸性氯化亚锡溶液:称取20克氯化亚锡(Sncl2.2H2O),溶于12.5毫升浓盐酸中,用水稀释至50毫升。另加2颗锡粒于溶液中。 4、 10%醋酸铅溶液。 5、 醋酸铅棉花:将脱脂棉浸泡于10%醋酸铅溶液中,1小时后取出,并使之疏松,在100℃烘箱内干燥,取出置于玻璃瓶中塞紧保存备用。 6、 醋酸铅试纸:将普通滤纸浸入10%醋酸铅溶液中,1小时候取出,自然晾干,剪成条状(8×5cm),置于瓶中保存,备用。 7、无砷锌细粒。 8、浓盐酸。 9、20%碘化钾溶液。 10、10%硝酸镁溶液。 11、氧化镁; 12、砷标准溶液:精确称取预先在硫酸干燥器中干燥过的或在100℃干燥2小时的三氧化二砷0.1320克,溶于l0毫升lN氢氧化钠溶液中,加1N硫酸溶液10毫升将此溶液仔细地移入1000毫升容量瓶中, 并用水稀释至刻度。此液每毫升含0.1毫克砷。使用时可将此液稀释成每毫升含l或10mg的砷。 13、1N氢氧化钠:量取52毫升氢氧化钠饱和溶液,注入l000毫升不含二氧化碳的水中,混匀。 14、1N硫酸溶液。 15、古蔡氏砷斑法测定器(见下图) 四、操作方法: 1、样品处理:准确称取样品10克,置于瓷坩埚中,加入氧化镁粉2克,10%硝酸镁溶液10毫升,在水浴上蒸干。小火炭化后,移入550℃高温炉中灰化至白色灰烬,冷却,加人l0毫升浓盐酸溶解残渣,然后用水移入100毫升量瓶中,并稀释至刻度,摇匀。 2、样品分析:准确吸取样品溶液20毫升,移入砷斑法测定器,分别置于三角瓶中,分别加入每毫升含1mg的砷的标准溶液0.0、1.0、2.0、3.0、4.0、5.0毫升。于各瓶中加入20%碘化钾溶液5毫升。40%氯化亚锡溶液2毫升于样品溶液中再加入浓盐酸13毫升,于标准溶液中各加入浓盐酸15毫升,并各加入水使总体积为45毫升。放置10分钟后。加入锌粒5克迅速装上已装有溴化汞试纸,醋酸铅棉花和滤纸的试砷管。在25-30℃下避光放置45分钟。取出溴化汞试纸,将样品和标准色斑目测比较,求出样品溶液中的含砷量。 计算: 砷(mg/kg)=C/W×100 C:相当于砷的标准量(mg) W:测定时样液相当于样品的重量(g), 说明: (1)吸取样品溶液的量可视样品中含砷量而定,最后总体积达45毫升即可。 (2)样品色斑相当于砷的量应扣除空白液的色斑相当于砷的量。 (3)试剂空白只允许呈现极浅的淡黄色(一般不应显色)砷斑。如空白显色砷,应找出原因。 (4)对试剂要求纯度高,必须是无砷锌粒,一级盐酸。 (5)装入醋酸铅棉花时,不要太紧和太软,紧与松要适应。 (6)加入锌粒时,要每加一次锌粒,立即盖上一支预先准备好的醋酸铅棉花,溴化汞试纸的玻璃管。 (7)如样品中含有锑,也能够生成与砷斑类似的锑斑,锑能溶解在80%乙醇中,而砷斑不溶解。 实验(二) (DDC-Ag)比色法 一、原理 样品消化后,以碘化钾,氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢声称砷化氢,经银盐溶液吸收后,形成红色胶态物,与标准系列比较定量。 二、试剂与仪器 1、砷的吸收:称取0.25克DDC-Ag和0.25克奎宁(C20H24O2N2),溶于100毫升氯仿中静置过夜,必要时过滤。澄清的吸收液应贮于棕色瓶中。 奎宁的处理:一般奎宁以盐类形式存在,如硫酸奎宁。将它溶于沸水中,加入1N氢氧化钠溶液使溶液呈碱性,此时有大量奎宁析出。过滤,氯渣用水洗涤数次,然后溶于氯仿中此氯仿液置于分液漏斗中,用水洗至水层呈中性,氯仿层用无水硫酸钠干燥后,蒸发氯仿,残氯仿液置于分液漏斗中,用水洗至水层呈中性。氯仿层用无水硫酸钠干燥后,蒸发氯仿,残渣以少量丙酮处理之,即得到奎宁粉末。 砷吸收液中加奎宁的目的,是使吸收液呈碱性,能加速胶态银稳定的形成。其他如吡啶也有类色作用。 2、其他试剂的配制同古蔡氏砷班法。 3、分光光度计; 4、砷化氢吸收装置:如下图所示。 1-150ml锥形瓶 2-气管 3-醋酸铅棉花 4-10ml刻度离心管 三、操作方法: 1、样品处理:按古蔡砷斑法的样品处理,所得的灰分,加水l0毫升,1:1 H2S04溶液10毫升,使残渣溶解,并过滤于100毫升容量瓶中,用水稀释至刻度。 2、样品分析:吸取一定量样品溶液(视样品中含砷量而定)置于三角烧瓶中。另准确吸取每毫升相当于1微克砷的标准溶液0.0、1.0、2.0、3.0、4.0、5.0毫升,分别置于三角烧瓶中。在盛有样品溶液或标准溶液的三角烧瓶中各加入水60毫升,l:1H2SO4溶液15毫升,15%碘化钾溶液5毫升,40%氯化亚锡溶液2毫升,摇匀,放置10分钟后,加入锌粒6克,立即塞紧带有玻璃弯管的橡皮塞,并将出口的尖管浸插在预先加有5毫升.吸收液的比色试管中,在室温下(25℃左右)反应吸收40分钟。取下吸收管,用氯仿补足各管的吸收液的体积至5毫升。用分光光度计于500nm波长处测定光密度。根据各标准管读得的光密度绘制标准曲线。根据样品溶液测得的光密度,从标准曲线中查得相应的砷含量。 计算: 砷(mg/kg)=C/W×1000 C:相当于砷的标准量(mg); W:测定时样品溶液相当样品的重量(g) 注: (1)砷的反应吸收尽量控制在25℃左右进行。天热时测定,吸收管应放在冰水中,避免吸收液挥发。 (2)使用无砷锌粒时,最好加人两颗颗粒较大的锌粒,其余仍用细锌粒。如全部用细锌粒,反应太激烈。

砷检测(ArsenicCheck™)概述可快速检测水龙头或井水是否含砷 易于确认检测结果 灵敏度最低至10ppb 检测剂无味、无毒、可任意使用 砷(俗称砒霜)是一种剧毒自然元素,存在于与之接触过的岩石、土壤和水中。近年来,由于岩石的自然风化、燃油的使用、熔炼矿石、生产半导体、木材防护和杀虫剂的使用导致砷在自然环境中的含量不断增长。业已发现砷在私有或公共供水系统中的含量已经达到美国环境保护署所确定安全饮水标准的100倍。同时,长期在含砷环境下生活,容易引起各种不利于身体健康的病变,比如:肺癌、皮肤癌及其它内部器官的癌变等。 描述每个检测套具都包含有测定安全饮用水中是否含砷所要求的所有化学物质。原理应用于水测定的砷检测套具基于所添加的化学物质在存在砷的情况下会产生一种气体的原理来测定。如果经过特殊处理的检测瓶瓶盖垫片从黄色变为棕色,那么表明待测定的水含砷。灵敏度在一些实验室的反复测试中,砷检测套具能检测出水样中5-10ppb浓度的砷。 背景砷是自然环境中的元素,但也是一种剧毒物质并威胁着人类健康。采矿、半导体生产、户外木材保护剂和杀虫剂的使用导致了水被砷污染,世界很多地方发现甚至连井水也被砷污染。砷已经被明确认定为是剧毒物质,并被默认为是肺癌和皮肤癌罪魁之一。世界卫生组织认为井水中砷浓度如果低于100ppb,那么可以安全饮用。测定流程如果依照说明书的指示操作,检测过程非常简单、安全。先将待测水样和提供的化学物质(一种粉末状的非毒性、弱酸性物质)充分混合,然后将瓶盖盖严。如果水样中的砷浓度超过10ppb,30分钟内瓶内将会有气体形成,该气体与经过处理的瓶盖垫片产生化学反应,并在垫片上留下从黄色到棕色变化过程的斑点。

用银器试试就行了!

乙醇的毕业论文

化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5. 酶法双甘酯的制备6. 硅酸锆的提纯毕业论文7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9. 铝合金阳极氧化及封闭处理10. 贝氏体白口耐磨铸铁磨球的研究11. 80KW等离子喷涂设备的调试与工艺试验12. 2800NM3/h高温旋风除尘器开发设计13. 玻纤增强材料注塑成型工艺特点的研究14. 年处理30万吨铜选矿厂设计15. 年处理60万吨铁选厂毕业设计16. 广东省韶关市大宝山铜铁矿井下开采设计17. 日处理1750吨铅锌选矿厂设计18. 6000t/a聚氯乙烯乙炔工段初步工艺设计19. 年产50万吨焦炉鼓冷工段工艺设计20. 年产25万吨合成氨铜洗工段工艺设计21. PX装置异构化单元反应器进行自动控制系统设计22. PX装置异构化单元脱庚烷塔自动控制系统设计23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响24. 高温高压条件下浆态鼓泡床气液传质特性的研究25. 新型纳米电子材料的特性、发展及应用26. 发达国家安全生产监督管理体制的研究27. 工伤保险与事故预防28. 氯气生产与储存过程中危险性分析及其预防29. 无公害农产品的发展与检测30. 环氧乙烷工业设计31. 年产 21000吨 乙醇 水精 馏装置 工艺设计32. 年产26000吨乙醇精馏装置设计33. 高层大厦首层至屋面消防给水工程设计34. 某市航空发动机组试车车间噪声控制设计35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究36. 一株新的短程反硝化聚磷菌的鉴定及活性研究37. 广州地区酸雨特征及其与气象条件的关系38. 超声协同硝酸提取城市污泥重金属的研究39. 脱氨剂和铁碳法处理稀土废水氨氮的研究40. 稀土 超磁致 伸缩 材料 扬声器 研制41. 纳米氧化铋的发展42. 海泡石TiO2光敏催化剂的制备及其研究43. 超磁致伸缩复合材料的制备44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文45. APCVD法在硅基板上制备硅化钛纳米线46. 浅层地热能在热水系统中的利用初探及其工程设计47. 输配管网的软件开发

无水乙醇合成方法【发酵法】将富含淀粉的农产品如谷类、薯类等或野生植物果实经水洗、粉碎后,进行加压蒸煮,使淀粉糊化,再加入适量的水,冷却至60℃左右加入淀粉酶,使淀粉依次水解为麦芽糖和葡萄糖。然后加入酶母菌进行发酵制得乙醇。【水合法】以乙烯和水为原料,通过加成反应制取。水合法分为间接水合法和直接水合法两种。间接水合法也称硫酸酯法,反应分两步进行。先把95~98%的硫酸和50~60%的乙烯按2:1(重量比)在塔式反应器吸收反应,60~80℃、0.78~1.96MPa条件下生成硫酸酯。第二步是将硫酸酯在水解塔中,于80~100℃、0.2~0.29MPa压力下水解而得乙醇,同时生成副产物乙醚。烯直接与水反应生成乙醇。直接水合法即一步法。由乙烯和水在磷酸催化剂存在下高温加压水合制得。本法流程简单、腐蚀性小,不需特殊钢材,副产乙醚量少,但要求乙烯纯度高,耗电量大。无论用发酵法或乙烯水合法,制得的乙醇通常都是乙醇和水的共沸物,即浓度为95%的工业乙醇。纯化方法市售的无水乙醇一般只能达到99.5%纯度,在许多反应中需用纯度更高的无水乙醇,经常需自己制备。通常工业用的95.5%的乙醇不能直接用蒸馏法制取无水乙醇,因95.5%乙醇和4.5%的水形成恒沸点混合物。要把水除去,第一步是加入氧化钙(生石灰)煮沸回流,使乙醇中的水与生石灰作用生成氢氧化钙,然后再将无水乙醇蒸出。这样得到无水乙醇,纯度最高约99.5%。纯度更高的无水乙醇可用金属镁或金属钠进行处理。无色澄清液体。有灼烧味。易流动。极易从空气中吸收水分,能与水和氯仿、乙醚等多种有机溶剂以任意比例互溶。能与水形成共沸混合物(含水4.43%),共沸点78.15℃。相对密度(d204)0.789。熔点-114.1℃。沸点78.5℃。折光率(n20D)1.361。闭杯时闪点(在规定结构的容器中加热挥发出可燃气体与液面附近的空气混合,达到一定浓度时可被火星点燃时的温度)13℃。易燃。蒸气与空气能形成爆炸性混合物,爆炸极限3.5%~18.0%(体积)

随着医学的发展,中西药搭配使用越来越普遍了,但是两者搭配也有一些禁忌的。下面是我带来的关于中西药配伍禁忌论文的内容,欢迎阅读参考!中西药配伍禁忌论文篇1:《中西药配伍禁忌》 摘要:中西药联用在临床日趋普遍,如若配伍不当,则易发生一系列变化,从而引起疗效降低,增加毒副作用或发生药物不良反应。从药物配伍时发生的变化,谈谈对药动学,药效学的影响,目的在于提醒临床,注意中西药配伍的变化,避免不良反应的发生。 关键词:中西药配伍;相互作用;配伍禁忌 大量的临床实践表明,中西药合理应用具有提高疗效,降低毒副作用,扩大治疗范围,缩短疗程等优点,但中西药之间的相互作用是错综复杂的,如配伍不合理,会产生单一药没有的不良反应,合用后产生拮抗作用,甚至增加毒性。因此深入探讨中西药的配伍变化,对临床中西药合用的药物治疗具有一定的指导意义。如下从几个方面对中西药配伍产生的相互作用做一简析。 1 对药动学的影响 1.1 对吸收的影响 1.1.1 理化因素对吸收的影响 由于中药成分复杂,所以中西药合用产生的理化变化对药物吸收的影响也是多方面的,是中西药相互作用对吸收影响的主要因素。它包括中西药成份之间的络合、螯合、吸附等作用,根据中药的成分,分别从以下几个方面说明。 ①络合、螯合作用对吸收的影响:主要含有钙离子、镁离子、铝离子铁离子、铋离子等阳性金属离子的中药及其制剂不宜与四环素类、异烟肼等配伍。因此类药物结构中含有酰胺基和多个酚羟基,与含上述金属离子的中药合用后。生成难溶性的络合物或螯合物,影响药物的吸收。含钙离子的中药:石膏、海螵蛸、石决明、虎骨、龙骨、龙齿、牡蛎、蛤壳、瓦楞子等;含铝离子的有明矾;含铁离子的有代赭石、自然铜、禹余粮;含铁、镁离子的有礞石;含镁、铝离子的有滑石;含铁、镁、铝的有磁石;含铁、铝、镁、钙的有赤石脂,钟乳石等。含鞣质较多的中药可与维生素B1、B6形成螯合物使两者的作用均受影响。 ②形成难溶性盐影响吸收:含有雄黄、朱砂、鞣质成分的中药及其制剂遇部分西药易形成难溶性盐影响吸收。雄黄的主要成分为AsS,这类药物与含有铁盐的西药同服时,可发生化学反应,生成硫化砷酸盐,不利于机体吸收,导致其疗效降低;朱砂的主要成份为硫化汞,含朱砂的中药和中成药与还原性溴化钾、碘化钾、三溴合剂配伍时,汞离子可与溴或碘络合生成溴化汞或碘化汞沉淀,腐蚀胃肠道黏膜引起出血,引起药源性肠炎;含有鞣质成份的中药遇铁剂形成不溶性沉淀,沉淀物不能被小肠吸收;含有鞣质较多的中药可与地高辛等强心药生成盐沉淀,难于吸收;含有有机酸成份的中药可与钙离子、镁离子、铝离子等金属离子发生中和反应,生成相应的盐,不利于吸收。 ③吸附作用影响吸收:煅炭的中药如血余炭、蒲黄炭、炮姜炭、地榆炭、棕榈炭等,在炮制过程中可生成大量具有吸附作用的活性炭,使煅炭中药在胃肠道中产生强大的吸附作用,能吸附蛋白质、维生素、生物碱、激素、抗生素等,所以各种酶制剂、维生素及抗生素不宜与之联用,由于其吸附作用,影响其吸收;吸附作用还表现在含鞣质的中药及其制剂中,因为鞣质具有吸附作用,可使上述药物的透膜吸收减少。含鞣质较多的中药有大黄、虎杖、五倍子、石榴皮、侧柏叶、地榆、枣树皮、仙鹤草等。 1.1.2 酸碱因素对吸收的影响碱性较强的中药不宜与酸性较强的中药合用,而含有机酸的中药不宜与在碱性环境中吸收的中药合用。碱性中药如硼砂、煅牡蛎、女金丹等,可使氨基糖苷类抗生素等药物在碱性条件下排泄减少,吸收增加,血药浓度上升,同时增加脑组织中的浓度,使其毒付作用增强,故长期应用时要进行血药浓度监测;相反与使尿液酸化药物诺氟沙星、呋喃妥因、吲哚美辛、头孢类抗生素合用时,使此类药物的解离度增多,排泄加快,使作用时间和作用强度降低;冰硼散可使尿液碱化,增加青霉素与磺胺类药物的排泄速度,降低药物的有效浓度,使其抗菌作用明显降低;含有有机酸的中药如乌梅、山楂、五味子、山茱萸、木瓜、陈皮、川芎、女贞子等中药及其制剂,可使磺胺类及大环内酯类药物的溶解度降低,增加肾毒性,引起结晶尿或血尿;红霉素在碱性条件下作用强,当与山楂冲剂同服时,可使血浆pH值降低,导致红霉素分解,失去抗菌作用。 含有皂苷的中药如人参、三七、桔梗等中药不宜与酸性较强的药物如维生素C同服,酸性环境中皂苷易在酶的作用下水解而失效;含有蒽醌类物质的药物如大黄、虎杖、何首乌等在碱性溶液中易氧化失效,故不可与碱性药物同服。 1.1.3 药理因素对吸收的影响 中西药合用常常产生药理性的拮抗作用或增加毒副作用。如含蛋白质及其水解物的中成药珍珠丸、清热解毒丸等不宜与小檗碱同服,因其所含蛋白质等成份水解生成的多种氨基酸可拮抗小檗碱的抗菌效果,影响其抗杆菌的疗效;含氰苷的中药如杏仁、桃仁、枇杷叶等,如与中枢镇咳药长期配伍,中药所含氰苷在胃酸作用下经酶水解生成具有镇咳作用的氢氰酸,可在一定程度上抑制呼吸中枢,二者联用加重中枢镇咳药抑制呼吸中枢的作用,产生不良反应。因此含氰苷的药物不宜与吗啡、杜冷丁等麻醉、镇静、止咳药及氨基糖苷类、多黏菌素类合用,严重者可致呼吸衰竭;含强心苷的中药如夹竹桃、万年青、福寿草等与羧苄西林、两性霉素B联用可引起低钾血症,低钾血症可增加心肌对含强心苷类药的敏感性,诱发中毒反应;含酶的中药如神曲、麦芽、豆豉及其制剂,不宜与抗生素类同服,产生拮抗作用,不仅降低前者的药物活性,也降低后者的抗菌活性,如果联用要间隔3h。 1.1.4 其它 因素对吸收的影响甘草、鹿茸、何首乌具有糖皮质激素样作用,有水钠潴留和排钾效应,还能促进糖原异生,加速蛋白质和脂肪的分解,可使甘油、乳酸等各种成糖氨基酸转化成葡萄糖导致血糖升高,从而减弱胰岛素、甲苯磺丁脲、格列本脲等到降血糖药物的疗效;含碘的中药与异烟肼合用,在胃酸条件下,碘与异烟肼发生氧化反应,可使后者的抗痨作用下降;银杏叶与地高辛合用,可提高主动脉内皮细胞钙离子水平,使地高辛的血药浓度明显升高,易引起中毒,临床上两药合用时,注意适当降低地高辛的剂量,进行血药浓度监测;红霉素不宜与穿心莲同服,因红霉素可抑制穿心莲促白细胞的吞噬功能;含颠茄类生物碱的中药及制剂,不宜与强心苷类同服,因为颠茄类生物碱可抑制胃排空和肠蠕动,使强心苷类药物吸收增加,易引起中毒;颠茄类生物碱药物与红霉素合用时,可使红霉素在胃内滞留时间延长,被胃酸破坏而降低疗效。 1.2 对分布的影响 中西药配伍后,不同的药物的血浆蛋白结合率不同,使药物的血药浓度发生变化,从而影响其组织分布。如绣球葡属植物和黑柳可以取代与血浆蛋白结合率高的西药华法林与血浆蛋白结合,降低华法林的血浆蛋白结合率,影响治疗效果;含有鞣质类化合物的中药在与磺胺类药物合用时,导致血及肝脏内磺胺类药物浓度增加,严重者发生中毒性肝炎。 1.3 对代谢的影响 1.3.1 肝药酶诱导剂的作用中药的醑剂、酊剂、流浸膏剂中不同浓度的含有乙醇。乙醇是常见的肝药酶诱导剂,在与西药如苯巴妥、苯妥英钠、利福平、二甲双胍等具有酶促用的药物合用时,使上述药物在体内代谢加速,半衰期缩短,药效降低。 1.3.2 肝药酶抑制的作用麻黄及含有麻黄的中成药如大活络丹、人参再造丸、哮喘冲剂、半夏露、通宣理肺丸等中成药,不宜与单胺氧化酶抑制合用,如痢特灵、优降宁、苯乙肼、甲基苄肼、异烟肼等。二者合用时,单胺氧化酶抑制可抑制单胺氧化酶的活性,使去甲肾上腺素、多巴胺、5一羟色胺等单胺类神经递质不被酶破坏,贮存于神经未梢中,而麻黄中的有效成份麻黄碱,可促使这些递质大量释放,可引起头痛、头昏、恶心、呕吐、腹痛、呼吸困难、心律不齐、运动失调及心肌梗塞、严重可引起高血压危象。 1.4 对排泄的影响 尿液的酸碱性会影响肾脏的重吸收,酸化或碱化尿液可促进或减少药物的排泄。如山楂、乌梅等能酸化尿液,使利福平、阿斯匹林等酸性药物的吸收增加,加重肾脏的毒性反应;而与碱性药物四环素、大环内酯类药物合用时,使其排泄增加,疗效降低,其与磺胺类药物同服,使乙酰化后的磺胺溶解度降低,易在肾小管析出结晶,引起结晶尿或血尿。 2药效动力学的影响 若中西药配伍不当会使两者在疗效上产生拈抗作用,甚至产生严重的毒副作用。最常见的是甘草、鹿茸具有糖皮质激素样作用,会使阿斯匹林所致的溃疡的发生率增加,会使血糖升高,从而减弱降糖药的疗效;甘草与强心苷类药物合用,可使强心苷类药物中毒率增加;麻黄及含有麻黄的制剂不能与降压药合用,因麻黄碱可收缩动脉血管,使血压升高,台用时产生药理性拮抗。关于药理性的拮抗在影响吸收的因素中已经说过,对吸收的影响是药动学方面的,对药效学的影响是问题的另一方面,其结果是一致的,那就是影响临床联合用药的目的。 3讨论 上面主要阐述了中西药配伍对药动学和药效学的影响,由于中药成份的特殊性。中西药配伍的作用是错综复杂的,所以中西药配伍禁忌还不止于此,如中药注射液与常用输液间仍然存在着配伍禁忌,关于中西药配伍的问题还有待于在临床应用中引起注意,不断探索,使中西药合用更加合理,达到增加疗效降低毒副作用的目的。 中西药配伍禁忌论文篇2:《中西药配伍中的禁忌》 随着中西医结合的深入发展,中西药并用的机率也越来越高,因此,研究中西药之间相互作用就显得尤为重要。临床实践证明,有些中西药配伍应用,不仅不能提高疗效,反而使药物疗效降低,毒副反应增加,或引起药源性疾病,严重的甚至危及生命。现就近年来的临床研究如下。 1有些中西药联用,降低疗效 1.1中西药联用生成难溶性络合物 含Fe2+、Fe3+、Mg2+、Al3+、Ca2+等多种二价以上金属阳离子的中成药,如桔红丸、明目上清丸、牛黄上清丸、牛黄解毒丸、清胃黄连丸、女金丹、朱砂安神丸、当归浸膏丸、复方五味子片、追风丸等,与四环素族抗生素、异烟肼联用,生成难溶性络合物,影响吸收,降低疗效。 1.2中西药配伍形成沉淀,导致变性或失活 1.2.1含鞣质的中药及中成药与金属离子制剂、强心苷、含氨基比林成分的药物等合用,能发生化学反应,使药物发生沉淀、变性、失活而降低药物疗效。含鞣质的中药及中成药与胰酶、淀粉酶、胃蛋白酶等合用,会使上述酶制剂灭活,降低其生物利用度,也能使多种抗生素、维生素B1、B6失去活性而影响其吸收利用。 1.2.2黄连、黄柏、川乌、附子、麻黄、马钱子、洋金花、延胡索等含生物碱的中药及其制剂与酶制剂、金属盐类、碘化物联用,会产生沉淀反应,使药效降低或失去治疗作用。 1.3中西药合用影响疗效 1.3.1甘草、鹿茸及其制剂,如复方甘草合剂、甘草片、参茸片、鹿茸片等与本药降糖药胰岛素、优降糖、甲苯磺丁脲、降糖灵等同服,因甘草、鹿茸的类皮质激素功能有升血糖作用,多而降低了降血糖药物的疗效。 1.3.2含乙醇的中成药,如国公药酒、骨刺消痛液等药酒,若与西药鲁米那、苯妥英纳、安乃近、胰岛素、甲苯磺丁脲等同服,因乙醇能增强肝药酶活性,使上述西药在体内代谢加速,从而降低疗效。 1.3.3麻黄及其制剂的主要成分为麻黄碱,是交感神经兴奋剂,能对抗降压药的作用,故不宜与复方降压片、降压灵、胍乙腚等药物合用,也不宜与镇静催眠药如氯丙嗪等联用。 1.3.4延胡索及其制剂不宜与咖啡因、苯丙胺等同用,因延胡索所含的生物碱有对抗中枢兴奋作用,而使药效降低。 1.3.5含雄黄的的中成药,如牛黄消炎丸、六神丸、牛黄解毒丸、安宫牛黄丸等,不宜与亚铁盐、亚硝酸盐类同服,因雄黄的主要成分为ASS,可生成硫代砷酸盐使疗效下降。 2有些中西药联用,发生毒副反应 2.1中西药联用,可能造成中毒 2.1.1含大量有机酸的中药及制剂能增加呋喃妥因、利福平、阿司匹林、消炎痛等在肾脏的重吸收,加重对肾脏的毒性,故不宜长期合用。 2.1.2含雄黄的中成药也不宜与硝酸盐、硫酸盐同服,因这些西药在胃液里可产生微量硝酸、硫酸,使雄黄所含的ASS氧化,增加毒性。 2.1.3中药麻黄及制剂,不宜与洋地黄、地高辛、毒毛旋花子苷K等强心药配伍,因麻黄碱能兴奋心肌,而致心律加快,故增加强心药对心脏的毒性。 2.2中西药配伍不恰当可发生危险 2.2.1含麻黄的中成药,如大活络丸、人参再造丸、气管炎丸、气管炎糖浆、哮喘片、止嗽定喘丸等,若与西药单胺转化酶抑制剂如痢特灵、优降宁、闷可乐、苯乙肼等并用,因单胺氧化酶抑制剂口服后可抑制单胺氧化酶活性,使去甲肾上腺素、多巴胺、5-羟色胺等单胺类神经介质不被酶破坏而贮存于神经末梢中,而麻黄里的麻黄碱可促使贮存于神经末梢中的去甲肾上腺素大量释放,严重时可致高血压危象和脑出血。 2.2.2桃仁、苦杏仁、白果、枇杷仁等含氰苷的中药及制剂若同麻醉、镇静、止咳等西药合用,会引起严重的呼吸中枢抑制,甚至使病人死于呼吸衰竭。 2.2.3甘草及其制剂不宜与利尿酸、氯噻嗪类利尿药合用,因为合用能使血清钾离子浓度降低,有可能加重引起低血钾的危险。 2.3中西药合用,有时可使用毒副反应增强 2.3.1中药麻黄及制剂,不宜与肾上腺素联用,因麻黄碱有类似肾上腺素样作用,若与肾上腺素配伍应用,可增加后者的毒副作用。不宜与异烟肼联用,联用会使副作用增强;不宜与氨茶碱并用,虽二者均为平喘药,但临床观察表明,两药合用,疗效不仅不及单独使用,而且毒副反应如头痛、头昏、心律失常等的发生率明显增加。 2.3.2含朱砂的中成药,如朱砂安神丸、健脑丸、人丹、七厘散、紫雪丹、苏合香丸、冠心苏合丸等,不宜与还原性西药如溴化钾、溴化钠、碘化钾、碘化钠、硫酸亚铁、亚硝酸盐等同服,以免生成有毒的溴化汞、碘化汞等沉淀物,引起赤痢样大便,导致药源性肠炎。 3小结 中药与西药的配合使用可能存在的的配伍禁忌也许不止这些,这就要求广大医药工作者在以后的工作和学习中不断 总结 和探索。 [参考文献] [1]谢惠民.合理用药[M].第4版.北京:人民卫生出版社,2004.87. [2]张象麟.药物临床信息参考[M].成都:四川科学技术出版社,2006.87-88. [3]夏秋欣.临床护理药理学手册[M].上海:文汇出版社,2002.4-5. [4]朱璐卡,胡国华,王井和,等.射干麻黄汤对小儿咳嗽变异性哮喘的临床疗效及血清IgE,IL-4,TNT-α水平的影响[J].中国中药杂志,2008,33(10):2265-2266. [5]李宁.关注中药注射剂临床应用[J].中国医药导报,2008,5(11):165. 中西药配伍禁忌论文篇3:《浅谈中西药联用及配伍禁忌》 近年来随着中西医结合治疗的深入发展,中西药联用的情况日趋普遍,且已成为我国临床治疗的重要和普遍的手段。中西药联合若用之得当则可产生协同作用甚至相加作用,达到增强疗效的目的,减低药物的毒副作用;反之如不了解各药物成分的性质,配伍不当,可降低药效甚至产生毒性[1]。因此,在临床治疗过程中应避免不合理的中西药配伍使用,保证用药安全有效。笔者就中西药联用的研究 方法 及临床常见的中西药配伍禁忌分析如下。 1 中西药联用的研究方法 1.1 药效学方法 此类研究方法是通过对如血压、血糖、血沉等临床可测数值的测定;或者通过对如头痛、咳嗽、溃疡愈合、抗菌活性等患者可感觉或临床可观察到的症状或现象的改变来评价配伍用药的结果。 1.2 药效学和药动学相结合的方法 这种方法既有药动学参数的采集,又有临床疗效的客观表现,使药物相互作用结果的判断更加趋于正确。 2 药物相互作用分类 2.1 传统的药剂配伍分类 ①理化的配伍变化:主要指药物伍用后产生沉淀、吸附、螯合、缩合、水解等理化反应;②药理的配伍变化:不利的药理伍用其结果可产生拮抗作用而影响疗效,使病情延误。如吗丁啉与654-2伍用可促进胃动力作用抵消;相加、协同作用增加毒副作用,如链霉素与庆大霉素伍用,抗菌作用增强,但耳毒性相加。 2.2 按药效学分类 主要指药物的药理作用相加、协同、拮抗。中西药之间的相互作用也可产生协同作用和拮抗作用。临床用药追求中西药的协同作用,但拮抗作用的机会同样也很多,这不但降低药效,而且还可导致不良反应发生,甚至诱发某些药源性疾病。例如:含钙离子的中药石膏、牡蛎、珍珠母等,对神经有抑制作用。与某些治疗心血管疾病的西药,如洋地黄类强心苷、心可定、心痛定等合用时可引起心律失常和传导阻滞。甘草、鹿茸具有糖皮质激素样作用,呈现水钠潴留和排钾效应,还可促进糖原异生,加速蛋白质和脂肪的分解,使甘油、乳酸及各种成糖氨基酸转化为葡萄糖。与水杨酸钠合用,能诱发或加重消化道溃疡的发病率;与强心苷类西药同服,可加重其毒性反应;与降糖药胰岛素、D860、优降糖等同服时,能产生相互拮抗,减弱降糖药的效应。与西药双氢克尿噻等排钾利尿剂合用,可导致低血钾症的发生。甘草制剂如甘草浸膏,不宜与利血平、降压灵、复方降压片等降压药并用。因甘草能可引起高血压及发生低血钾现象,与利血平等降压药物相拮抗。含麻黄碱的中药及其中成药,如复方川贝精片、莱阳梨止咳糖浆、复方枇杷糖浆等不宜与强心药、降压药合用。因麻黄碱具有兴奋心肌受体、加强心肌收缩力的作用,与洋地黄、地高辛等合用可使强心药的作用增强,毒性增加,易致心律失常及心衰毒性反应。另外,麻黄碱也具有兴奋α受体和收缩周围血管的作用,减弱降压药降压作用,使疗效降低,甚至使血压难以控制,严重者可使高血压患者的病情加重。 3 药物相互作用的处理原则 3.1 改变用药途径 如选择分开服用或注射用药,可避免直接的物理或化学作用和大多数影响药物吸收的配伍。 3.2 调整药量 主要指相加作用的配伍或监测血药浓度。 3.3 临床观察及血生化监测 主要指增加毒副作用的配伍。 3.4 拒绝调剂 无法用药剂方法解决的配伍应禁止伍用,请医师修改后再进行调剂。 4 配伍禁忌 4.1 四环素与异烟肼等不能与石膏、龙骨、牡蛎等含钙、镁离子丰富的药并用,因会生成难溶于水的络合物,影响前者的吸收,使疗效降低。 4.2 舒肝丸不宜与甲氧氯普胺合用,因舒肝丸中含有芍药,有解痉、镇痛作用,而甲氧氯普 胺则能加强胃肠收缩,两者合用作用相反,会相互降低疗效。 4.3 中成药止咳定喘膏、麻杏石甘片、防风通圣丸与化学药复方利血平、帕吉林不能同时服用,因前三种中成药均含有麻黄素,能使动脉收缩,升高血压,联合应用影响降压效果。 4.4 中成药蛇胆川贝液与吗啡、哌替啶、可待因不能同时服用,因前者含有苦杏仁苷,有抑制呼吸作用,同时服用易致呼吸衰竭产生[2]。 4.5 中成药益心丹、麝香保心丸、六神丸不宜与化学药普罗帕酮、奎尼丁同时服用,因有导致心脏骤停的可能。 4.6 抗结核药异烟肼不宜与昆布合用,因昆布片中含碘,在胃酸条件下与异烟肼发生氧化反应,形成烟酸、氧化物和氮气,失去抗结核杆菌的功能。 4.7 乳酶生不宜与黄连上清丸联合应用,因为其中的黄连素成份明显抑制乳酶生的活性,使其失去消化能力。 4.8 磺胺类药不能与富含有机酸的乌梅、五味子、山楂等同用,因可导致磺胺药在尿中形成结晶[3]。 4.9 双黄连注射剂与诺氟沙星、环丙沙星、氧氟沙星注射剂配伍后,溶液pH值升高,药物的溶解度降低,有沉淀产生;双黄连注射剂与庆大霉素、阿米卡星注射液配伍后,颜色变为棕黑色。 4.10 头孢曲松与川芎嗪注射液配伍后,可产生白色混浊及结晶;川芎嗪注射液与青霉素G配伍可产生沉淀。 4.11 红霉素注射液与菌栀黄注射液混合后可产生浑浊。 4.12 庆大霉素、阿米卡星与穿琥宁注射液配伍后可有沉淀产生。 4.13 刺五加注射液与双嘧达莫、维拉帕米注射液配伍后可有沉淀产生。 2 小结 中西药联合产生的相互作用极其复杂,可能发生的不良反应也很多,若用之不当,会造成较为严重的后果。在临床工作中,笔者认为无论是中医师与西医师,应在中西医药理论的指导下,在联合应用时,应从物理、化学、药理、用药顺序、用药时间、剂量和患者个体差异等方面加以综合考虑,了解中西药配伍禁忌,掌握配伍原则,力求进行最佳的配伍,谨慎用药,从而达到理想的协同作用,提高疗效,缩短疗程,达到安全、合理有效的目的。 参考文献 [1] 马瑜红,黄川峰.116张不合理中西药配伍处方分析.中国现代药物应用,2009,3(18):137. [2] 席秋红,任光瑞,马雅斌.中西药配伍不合理剖析.新疆中医药,2007,25(4):86-87. [3] 李靖.中西药不合理配伍应用的预防.中国医学研究与临床,2005,3(10):92-93. 猜你喜欢: 1. 浅谈中医药的文化养生 2. 药学论文精选 3. 关于安全合理用药的论文 4. 药学毕业论文3000字 5. 药学毕业论文题目 6. 关于药学的论文

Grafts the Chinese hawthorn isoflavone extraction process and the oxidation resistance research Biology and food science institute 2003 level of food sciences and project specialty Abstract: This article introduced in the Chinese hawthorn main nutrient content and the Chinese hawthorn the isoflavone function characteristic, respectively and grafts the Chinese hawthorn take the ordinary Chinese hawthorn as a raw material, has analyzed the different extraction method and the isoflavone extraction rate relations, and to grafted the Chinese hawthorn isoflavone the oxidation resistance function effect to carry on the analysis. Uses the mellow formulation, the water formulation and the ethyl acetate law three extraction method, separately and grafts the Chinese hawthorn juice extraction isoflavone to the ordinary Chinese hawthorn juice, through to the respective extraction rate's comparison and analysis knowing, uses the ethyl alcohol law to withdraw the isoflavone content to be high, and grafts in the Chinese hawthorn the isoflavone content slightly to be higher than the ordinary Chinese hawthorn isoflavone. After the single factor experiment analysis, seeks for the material fluid compared to, the ethyl alcohol density, the extraction temperature and the time and so on four extraction condition suitable parameter, thus had determined L9 (34) the orthogonal test each influencing factor's three levels, screen the material fluid compared to are 1:10, ethyl alcohol density are 85%, extraction temperature for 50℃, withdraw 1 hour for the extraction method optimum condition; Obtains the isoflavone density take the Kudzu root element as the standard through the ultraviolet spectrophotometric method, thus calculates obtains grafts the Chinese hawthorn juice isoflavone extraction rate is 0.46%. Uses the color to respond and the paper chromatographic analysis law separately to withdraws the flavanone class material to carry on the appraisal. Through to joins the Chinese hawthorn juice, the sorbic acid potassium and does not have the antiseptic three kind of yogurt oxidation resistance abilities to carry on the experiment, finally indicated that the Chinese hawthorn juice yogurt's peroxide value is 0.023%, is three product minimum values. In the Chinese hawthorn fruit includes the rich nutrient content and the pharmacology active constituent, is the depth the health foods which is liked the people, at present has become has the high research value and the development potential resources. Key words: Grafts the Chinese hawthorn; Isoflavone; Orthogonal test; Oxidation resistance

  • 索引序列
  • 酒中杂醇油测定的毕业论文
  • 监测酒中甲醇论文参考文献
  • 酱油三氯丙醇毕业论文
  • 水中砷的测定毕业论文
  • 乙醇的毕业论文
  • 返回顶部