首页 > 期刊投稿知识库 > 乙醇的毕业论文

乙醇的毕业论文

发布时间:

乙醇的毕业论文

化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5. 酶法双甘酯的制备6. 硅酸锆的提纯毕业论文7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9. 铝合金阳极氧化及封闭处理10. 贝氏体白口耐磨铸铁磨球的研究11. 80KW等离子喷涂设备的调试与工艺试验12. 2800NM3/h高温旋风除尘器开发设计13. 玻纤增强材料注塑成型工艺特点的研究14. 年处理30万吨铜选矿厂设计15. 年处理60万吨铁选厂毕业设计16. 广东省韶关市大宝山铜铁矿井下开采设计17. 日处理1750吨铅锌选矿厂设计18. 6000t/a聚氯乙烯乙炔工段初步工艺设计19. 年产50万吨焦炉鼓冷工段工艺设计20. 年产25万吨合成氨铜洗工段工艺设计21. PX装置异构化单元反应器进行自动控制系统设计22. PX装置异构化单元脱庚烷塔自动控制系统设计23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响24. 高温高压条件下浆态鼓泡床气液传质特性的研究25. 新型纳米电子材料的特性、发展及应用26. 发达国家安全生产监督管理体制的研究27. 工伤保险与事故预防28. 氯气生产与储存过程中危险性分析及其预防29. 无公害农产品的发展与检测30. 环氧乙烷工业设计31. 年产 21000吨 乙醇 水精 馏装置 工艺设计32. 年产26000吨乙醇精馏装置设计33. 高层大厦首层至屋面消防给水工程设计34. 某市航空发动机组试车车间噪声控制设计35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究36. 一株新的短程反硝化聚磷菌的鉴定及活性研究37. 广州地区酸雨特征及其与气象条件的关系38. 超声协同硝酸提取城市污泥重金属的研究39. 脱氨剂和铁碳法处理稀土废水氨氮的研究40. 稀土 超磁致 伸缩 材料 扬声器 研制41. 纳米氧化铋的发展42. 海泡石TiO2光敏催化剂的制备及其研究43. 超磁致伸缩复合材料的制备44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文45. APCVD法在硅基板上制备硅化钛纳米线46. 浅层地热能在热水系统中的利用初探及其工程设计47. 输配管网的软件开发

无水乙醇合成方法【发酵法】将富含淀粉的农产品如谷类、薯类等或野生植物果实经水洗、粉碎后,进行加压蒸煮,使淀粉糊化,再加入适量的水,冷却至60℃左右加入淀粉酶,使淀粉依次水解为麦芽糖和葡萄糖。然后加入酶母菌进行发酵制得乙醇。【水合法】以乙烯和水为原料,通过加成反应制取。水合法分为间接水合法和直接水合法两种。间接水合法也称硫酸酯法,反应分两步进行。先把95~98%的硫酸和50~60%的乙烯按2:1(重量比)在塔式反应器吸收反应,60~80℃、0.78~1.96MPa条件下生成硫酸酯。第二步是将硫酸酯在水解塔中,于80~100℃、0.2~0.29MPa压力下水解而得乙醇,同时生成副产物乙醚。烯直接与水反应生成乙醇。直接水合法即一步法。由乙烯和水在磷酸催化剂存在下高温加压水合制得。本法流程简单、腐蚀性小,不需特殊钢材,副产乙醚量少,但要求乙烯纯度高,耗电量大。无论用发酵法或乙烯水合法,制得的乙醇通常都是乙醇和水的共沸物,即浓度为95%的工业乙醇。纯化方法市售的无水乙醇一般只能达到99.5%纯度,在许多反应中需用纯度更高的无水乙醇,经常需自己制备。通常工业用的95.5%的乙醇不能直接用蒸馏法制取无水乙醇,因95.5%乙醇和4.5%的水形成恒沸点混合物。要把水除去,第一步是加入氧化钙(生石灰)煮沸回流,使乙醇中的水与生石灰作用生成氢氧化钙,然后再将无水乙醇蒸出。这样得到无水乙醇,纯度最高约99.5%。纯度更高的无水乙醇可用金属镁或金属钠进行处理。无色澄清液体。有灼烧味。易流动。极易从空气中吸收水分,能与水和氯仿、乙醚等多种有机溶剂以任意比例互溶。能与水形成共沸混合物(含水4.43%),共沸点78.15℃。相对密度(d204)0.789。熔点-114.1℃。沸点78.5℃。折光率(n20D)1.361。闭杯时闪点(在规定结构的容器中加热挥发出可燃气体与液面附近的空气混合,达到一定浓度时可被火星点燃时的温度)13℃。易燃。蒸气与空气能形成爆炸性混合物,爆炸极限3.5%~18.0%(体积)

随着医学的发展,中西药搭配使用越来越普遍了,但是两者搭配也有一些禁忌的。下面是我带来的关于中西药配伍禁忌论文的内容,欢迎阅读参考!中西药配伍禁忌论文篇1:《中西药配伍禁忌》 摘要:中西药联用在临床日趋普遍,如若配伍不当,则易发生一系列变化,从而引起疗效降低,增加毒副作用或发生药物不良反应。从药物配伍时发生的变化,谈谈对药动学,药效学的影响,目的在于提醒临床,注意中西药配伍的变化,避免不良反应的发生。 关键词:中西药配伍;相互作用;配伍禁忌 大量的临床实践表明,中西药合理应用具有提高疗效,降低毒副作用,扩大治疗范围,缩短疗程等优点,但中西药之间的相互作用是错综复杂的,如配伍不合理,会产生单一药没有的不良反应,合用后产生拮抗作用,甚至增加毒性。因此深入探讨中西药的配伍变化,对临床中西药合用的药物治疗具有一定的指导意义。如下从几个方面对中西药配伍产生的相互作用做一简析。 1 对药动学的影响 1.1 对吸收的影响 1.1.1 理化因素对吸收的影响 由于中药成分复杂,所以中西药合用产生的理化变化对药物吸收的影响也是多方面的,是中西药相互作用对吸收影响的主要因素。它包括中西药成份之间的络合、螯合、吸附等作用,根据中药的成分,分别从以下几个方面说明。 ①络合、螯合作用对吸收的影响:主要含有钙离子、镁离子、铝离子铁离子、铋离子等阳性金属离子的中药及其制剂不宜与四环素类、异烟肼等配伍。因此类药物结构中含有酰胺基和多个酚羟基,与含上述金属离子的中药合用后。生成难溶性的络合物或螯合物,影响药物的吸收。含钙离子的中药:石膏、海螵蛸、石决明、虎骨、龙骨、龙齿、牡蛎、蛤壳、瓦楞子等;含铝离子的有明矾;含铁离子的有代赭石、自然铜、禹余粮;含铁、镁离子的有礞石;含镁、铝离子的有滑石;含铁、镁、铝的有磁石;含铁、铝、镁、钙的有赤石脂,钟乳石等。含鞣质较多的中药可与维生素B1、B6形成螯合物使两者的作用均受影响。 ②形成难溶性盐影响吸收:含有雄黄、朱砂、鞣质成分的中药及其制剂遇部分西药易形成难溶性盐影响吸收。雄黄的主要成分为AsS,这类药物与含有铁盐的西药同服时,可发生化学反应,生成硫化砷酸盐,不利于机体吸收,导致其疗效降低;朱砂的主要成份为硫化汞,含朱砂的中药和中成药与还原性溴化钾、碘化钾、三溴合剂配伍时,汞离子可与溴或碘络合生成溴化汞或碘化汞沉淀,腐蚀胃肠道黏膜引起出血,引起药源性肠炎;含有鞣质成份的中药遇铁剂形成不溶性沉淀,沉淀物不能被小肠吸收;含有鞣质较多的中药可与地高辛等强心药生成盐沉淀,难于吸收;含有有机酸成份的中药可与钙离子、镁离子、铝离子等金属离子发生中和反应,生成相应的盐,不利于吸收。 ③吸附作用影响吸收:煅炭的中药如血余炭、蒲黄炭、炮姜炭、地榆炭、棕榈炭等,在炮制过程中可生成大量具有吸附作用的活性炭,使煅炭中药在胃肠道中产生强大的吸附作用,能吸附蛋白质、维生素、生物碱、激素、抗生素等,所以各种酶制剂、维生素及抗生素不宜与之联用,由于其吸附作用,影响其吸收;吸附作用还表现在含鞣质的中药及其制剂中,因为鞣质具有吸附作用,可使上述药物的透膜吸收减少。含鞣质较多的中药有大黄、虎杖、五倍子、石榴皮、侧柏叶、地榆、枣树皮、仙鹤草等。 1.1.2 酸碱因素对吸收的影响碱性较强的中药不宜与酸性较强的中药合用,而含有机酸的中药不宜与在碱性环境中吸收的中药合用。碱性中药如硼砂、煅牡蛎、女金丹等,可使氨基糖苷类抗生素等药物在碱性条件下排泄减少,吸收增加,血药浓度上升,同时增加脑组织中的浓度,使其毒付作用增强,故长期应用时要进行血药浓度监测;相反与使尿液酸化药物诺氟沙星、呋喃妥因、吲哚美辛、头孢类抗生素合用时,使此类药物的解离度增多,排泄加快,使作用时间和作用强度降低;冰硼散可使尿液碱化,增加青霉素与磺胺类药物的排泄速度,降低药物的有效浓度,使其抗菌作用明显降低;含有有机酸的中药如乌梅、山楂、五味子、山茱萸、木瓜、陈皮、川芎、女贞子等中药及其制剂,可使磺胺类及大环内酯类药物的溶解度降低,增加肾毒性,引起结晶尿或血尿;红霉素在碱性条件下作用强,当与山楂冲剂同服时,可使血浆pH值降低,导致红霉素分解,失去抗菌作用。 含有皂苷的中药如人参、三七、桔梗等中药不宜与酸性较强的药物如维生素C同服,酸性环境中皂苷易在酶的作用下水解而失效;含有蒽醌类物质的药物如大黄、虎杖、何首乌等在碱性溶液中易氧化失效,故不可与碱性药物同服。 1.1.3 药理因素对吸收的影响 中西药合用常常产生药理性的拮抗作用或增加毒副作用。如含蛋白质及其水解物的中成药珍珠丸、清热解毒丸等不宜与小檗碱同服,因其所含蛋白质等成份水解生成的多种氨基酸可拮抗小檗碱的抗菌效果,影响其抗杆菌的疗效;含氰苷的中药如杏仁、桃仁、枇杷叶等,如与中枢镇咳药长期配伍,中药所含氰苷在胃酸作用下经酶水解生成具有镇咳作用的氢氰酸,可在一定程度上抑制呼吸中枢,二者联用加重中枢镇咳药抑制呼吸中枢的作用,产生不良反应。因此含氰苷的药物不宜与吗啡、杜冷丁等麻醉、镇静、止咳药及氨基糖苷类、多黏菌素类合用,严重者可致呼吸衰竭;含强心苷的中药如夹竹桃、万年青、福寿草等与羧苄西林、两性霉素B联用可引起低钾血症,低钾血症可增加心肌对含强心苷类药的敏感性,诱发中毒反应;含酶的中药如神曲、麦芽、豆豉及其制剂,不宜与抗生素类同服,产生拮抗作用,不仅降低前者的药物活性,也降低后者的抗菌活性,如果联用要间隔3h。 1.1.4 其它 因素对吸收的影响甘草、鹿茸、何首乌具有糖皮质激素样作用,有水钠潴留和排钾效应,还能促进糖原异生,加速蛋白质和脂肪的分解,可使甘油、乳酸等各种成糖氨基酸转化成葡萄糖导致血糖升高,从而减弱胰岛素、甲苯磺丁脲、格列本脲等到降血糖药物的疗效;含碘的中药与异烟肼合用,在胃酸条件下,碘与异烟肼发生氧化反应,可使后者的抗痨作用下降;银杏叶与地高辛合用,可提高主动脉内皮细胞钙离子水平,使地高辛的血药浓度明显升高,易引起中毒,临床上两药合用时,注意适当降低地高辛的剂量,进行血药浓度监测;红霉素不宜与穿心莲同服,因红霉素可抑制穿心莲促白细胞的吞噬功能;含颠茄类生物碱的中药及制剂,不宜与强心苷类同服,因为颠茄类生物碱可抑制胃排空和肠蠕动,使强心苷类药物吸收增加,易引起中毒;颠茄类生物碱药物与红霉素合用时,可使红霉素在胃内滞留时间延长,被胃酸破坏而降低疗效。 1.2 对分布的影响 中西药配伍后,不同的药物的血浆蛋白结合率不同,使药物的血药浓度发生变化,从而影响其组织分布。如绣球葡属植物和黑柳可以取代与血浆蛋白结合率高的西药华法林与血浆蛋白结合,降低华法林的血浆蛋白结合率,影响治疗效果;含有鞣质类化合物的中药在与磺胺类药物合用时,导致血及肝脏内磺胺类药物浓度增加,严重者发生中毒性肝炎。 1.3 对代谢的影响 1.3.1 肝药酶诱导剂的作用中药的醑剂、酊剂、流浸膏剂中不同浓度的含有乙醇。乙醇是常见的肝药酶诱导剂,在与西药如苯巴妥、苯妥英钠、利福平、二甲双胍等具有酶促用的药物合用时,使上述药物在体内代谢加速,半衰期缩短,药效降低。 1.3.2 肝药酶抑制的作用麻黄及含有麻黄的中成药如大活络丹、人参再造丸、哮喘冲剂、半夏露、通宣理肺丸等中成药,不宜与单胺氧化酶抑制合用,如痢特灵、优降宁、苯乙肼、甲基苄肼、异烟肼等。二者合用时,单胺氧化酶抑制可抑制单胺氧化酶的活性,使去甲肾上腺素、多巴胺、5一羟色胺等单胺类神经递质不被酶破坏,贮存于神经未梢中,而麻黄中的有效成份麻黄碱,可促使这些递质大量释放,可引起头痛、头昏、恶心、呕吐、腹痛、呼吸困难、心律不齐、运动失调及心肌梗塞、严重可引起高血压危象。 1.4 对排泄的影响 尿液的酸碱性会影响肾脏的重吸收,酸化或碱化尿液可促进或减少药物的排泄。如山楂、乌梅等能酸化尿液,使利福平、阿斯匹林等酸性药物的吸收增加,加重肾脏的毒性反应;而与碱性药物四环素、大环内酯类药物合用时,使其排泄增加,疗效降低,其与磺胺类药物同服,使乙酰化后的磺胺溶解度降低,易在肾小管析出结晶,引起结晶尿或血尿。 2药效动力学的影响 若中西药配伍不当会使两者在疗效上产生拈抗作用,甚至产生严重的毒副作用。最常见的是甘草、鹿茸具有糖皮质激素样作用,会使阿斯匹林所致的溃疡的发生率增加,会使血糖升高,从而减弱降糖药的疗效;甘草与强心苷类药物合用,可使强心苷类药物中毒率增加;麻黄及含有麻黄的制剂不能与降压药合用,因麻黄碱可收缩动脉血管,使血压升高,台用时产生药理性拮抗。关于药理性的拮抗在影响吸收的因素中已经说过,对吸收的影响是药动学方面的,对药效学的影响是问题的另一方面,其结果是一致的,那就是影响临床联合用药的目的。 3讨论 上面主要阐述了中西药配伍对药动学和药效学的影响,由于中药成份的特殊性。中西药配伍的作用是错综复杂的,所以中西药配伍禁忌还不止于此,如中药注射液与常用输液间仍然存在着配伍禁忌,关于中西药配伍的问题还有待于在临床应用中引起注意,不断探索,使中西药合用更加合理,达到增加疗效降低毒副作用的目的。 中西药配伍禁忌论文篇2:《中西药配伍中的禁忌》 随着中西医结合的深入发展,中西药并用的机率也越来越高,因此,研究中西药之间相互作用就显得尤为重要。临床实践证明,有些中西药配伍应用,不仅不能提高疗效,反而使药物疗效降低,毒副反应增加,或引起药源性疾病,严重的甚至危及生命。现就近年来的临床研究如下。 1有些中西药联用,降低疗效 1.1中西药联用生成难溶性络合物 含Fe2+、Fe3+、Mg2+、Al3+、Ca2+等多种二价以上金属阳离子的中成药,如桔红丸、明目上清丸、牛黄上清丸、牛黄解毒丸、清胃黄连丸、女金丹、朱砂安神丸、当归浸膏丸、复方五味子片、追风丸等,与四环素族抗生素、异烟肼联用,生成难溶性络合物,影响吸收,降低疗效。 1.2中西药配伍形成沉淀,导致变性或失活 1.2.1含鞣质的中药及中成药与金属离子制剂、强心苷、含氨基比林成分的药物等合用,能发生化学反应,使药物发生沉淀、变性、失活而降低药物疗效。含鞣质的中药及中成药与胰酶、淀粉酶、胃蛋白酶等合用,会使上述酶制剂灭活,降低其生物利用度,也能使多种抗生素、维生素B1、B6失去活性而影响其吸收利用。 1.2.2黄连、黄柏、川乌、附子、麻黄、马钱子、洋金花、延胡索等含生物碱的中药及其制剂与酶制剂、金属盐类、碘化物联用,会产生沉淀反应,使药效降低或失去治疗作用。 1.3中西药合用影响疗效 1.3.1甘草、鹿茸及其制剂,如复方甘草合剂、甘草片、参茸片、鹿茸片等与本药降糖药胰岛素、优降糖、甲苯磺丁脲、降糖灵等同服,因甘草、鹿茸的类皮质激素功能有升血糖作用,多而降低了降血糖药物的疗效。 1.3.2含乙醇的中成药,如国公药酒、骨刺消痛液等药酒,若与西药鲁米那、苯妥英纳、安乃近、胰岛素、甲苯磺丁脲等同服,因乙醇能增强肝药酶活性,使上述西药在体内代谢加速,从而降低疗效。 1.3.3麻黄及其制剂的主要成分为麻黄碱,是交感神经兴奋剂,能对抗降压药的作用,故不宜与复方降压片、降压灵、胍乙腚等药物合用,也不宜与镇静催眠药如氯丙嗪等联用。 1.3.4延胡索及其制剂不宜与咖啡因、苯丙胺等同用,因延胡索所含的生物碱有对抗中枢兴奋作用,而使药效降低。 1.3.5含雄黄的的中成药,如牛黄消炎丸、六神丸、牛黄解毒丸、安宫牛黄丸等,不宜与亚铁盐、亚硝酸盐类同服,因雄黄的主要成分为ASS,可生成硫代砷酸盐使疗效下降。 2有些中西药联用,发生毒副反应 2.1中西药联用,可能造成中毒 2.1.1含大量有机酸的中药及制剂能增加呋喃妥因、利福平、阿司匹林、消炎痛等在肾脏的重吸收,加重对肾脏的毒性,故不宜长期合用。 2.1.2含雄黄的中成药也不宜与硝酸盐、硫酸盐同服,因这些西药在胃液里可产生微量硝酸、硫酸,使雄黄所含的ASS氧化,增加毒性。 2.1.3中药麻黄及制剂,不宜与洋地黄、地高辛、毒毛旋花子苷K等强心药配伍,因麻黄碱能兴奋心肌,而致心律加快,故增加强心药对心脏的毒性。 2.2中西药配伍不恰当可发生危险 2.2.1含麻黄的中成药,如大活络丸、人参再造丸、气管炎丸、气管炎糖浆、哮喘片、止嗽定喘丸等,若与西药单胺转化酶抑制剂如痢特灵、优降宁、闷可乐、苯乙肼等并用,因单胺氧化酶抑制剂口服后可抑制单胺氧化酶活性,使去甲肾上腺素、多巴胺、5-羟色胺等单胺类神经介质不被酶破坏而贮存于神经末梢中,而麻黄里的麻黄碱可促使贮存于神经末梢中的去甲肾上腺素大量释放,严重时可致高血压危象和脑出血。 2.2.2桃仁、苦杏仁、白果、枇杷仁等含氰苷的中药及制剂若同麻醉、镇静、止咳等西药合用,会引起严重的呼吸中枢抑制,甚至使病人死于呼吸衰竭。 2.2.3甘草及其制剂不宜与利尿酸、氯噻嗪类利尿药合用,因为合用能使血清钾离子浓度降低,有可能加重引起低血钾的危险。 2.3中西药合用,有时可使用毒副反应增强 2.3.1中药麻黄及制剂,不宜与肾上腺素联用,因麻黄碱有类似肾上腺素样作用,若与肾上腺素配伍应用,可增加后者的毒副作用。不宜与异烟肼联用,联用会使副作用增强;不宜与氨茶碱并用,虽二者均为平喘药,但临床观察表明,两药合用,疗效不仅不及单独使用,而且毒副反应如头痛、头昏、心律失常等的发生率明显增加。 2.3.2含朱砂的中成药,如朱砂安神丸、健脑丸、人丹、七厘散、紫雪丹、苏合香丸、冠心苏合丸等,不宜与还原性西药如溴化钾、溴化钠、碘化钾、碘化钠、硫酸亚铁、亚硝酸盐等同服,以免生成有毒的溴化汞、碘化汞等沉淀物,引起赤痢样大便,导致药源性肠炎。 3小结 中药与西药的配合使用可能存在的的配伍禁忌也许不止这些,这就要求广大医药工作者在以后的工作和学习中不断 总结 和探索。 [参考文献] [1]谢惠民.合理用药[M].第4版.北京:人民卫生出版社,2004.87. [2]张象麟.药物临床信息参考[M].成都:四川科学技术出版社,2006.87-88. [3]夏秋欣.临床护理药理学手册[M].上海:文汇出版社,2002.4-5. [4]朱璐卡,胡国华,王井和,等.射干麻黄汤对小儿咳嗽变异性哮喘的临床疗效及血清IgE,IL-4,TNT-α水平的影响[J].中国中药杂志,2008,33(10):2265-2266. [5]李宁.关注中药注射剂临床应用[J].中国医药导报,2008,5(11):165. 中西药配伍禁忌论文篇3:《浅谈中西药联用及配伍禁忌》 近年来随着中西医结合治疗的深入发展,中西药联用的情况日趋普遍,且已成为我国临床治疗的重要和普遍的手段。中西药联合若用之得当则可产生协同作用甚至相加作用,达到增强疗效的目的,减低药物的毒副作用;反之如不了解各药物成分的性质,配伍不当,可降低药效甚至产生毒性[1]。因此,在临床治疗过程中应避免不合理的中西药配伍使用,保证用药安全有效。笔者就中西药联用的研究 方法 及临床常见的中西药配伍禁忌分析如下。 1 中西药联用的研究方法 1.1 药效学方法 此类研究方法是通过对如血压、血糖、血沉等临床可测数值的测定;或者通过对如头痛、咳嗽、溃疡愈合、抗菌活性等患者可感觉或临床可观察到的症状或现象的改变来评价配伍用药的结果。 1.2 药效学和药动学相结合的方法 这种方法既有药动学参数的采集,又有临床疗效的客观表现,使药物相互作用结果的判断更加趋于正确。 2 药物相互作用分类 2.1 传统的药剂配伍分类 ①理化的配伍变化:主要指药物伍用后产生沉淀、吸附、螯合、缩合、水解等理化反应;②药理的配伍变化:不利的药理伍用其结果可产生拮抗作用而影响疗效,使病情延误。如吗丁啉与654-2伍用可促进胃动力作用抵消;相加、协同作用增加毒副作用,如链霉素与庆大霉素伍用,抗菌作用增强,但耳毒性相加。 2.2 按药效学分类 主要指药物的药理作用相加、协同、拮抗。中西药之间的相互作用也可产生协同作用和拮抗作用。临床用药追求中西药的协同作用,但拮抗作用的机会同样也很多,这不但降低药效,而且还可导致不良反应发生,甚至诱发某些药源性疾病。例如:含钙离子的中药石膏、牡蛎、珍珠母等,对神经有抑制作用。与某些治疗心血管疾病的西药,如洋地黄类强心苷、心可定、心痛定等合用时可引起心律失常和传导阻滞。甘草、鹿茸具有糖皮质激素样作用,呈现水钠潴留和排钾效应,还可促进糖原异生,加速蛋白质和脂肪的分解,使甘油、乳酸及各种成糖氨基酸转化为葡萄糖。与水杨酸钠合用,能诱发或加重消化道溃疡的发病率;与强心苷类西药同服,可加重其毒性反应;与降糖药胰岛素、D860、优降糖等同服时,能产生相互拮抗,减弱降糖药的效应。与西药双氢克尿噻等排钾利尿剂合用,可导致低血钾症的发生。甘草制剂如甘草浸膏,不宜与利血平、降压灵、复方降压片等降压药并用。因甘草能可引起高血压及发生低血钾现象,与利血平等降压药物相拮抗。含麻黄碱的中药及其中成药,如复方川贝精片、莱阳梨止咳糖浆、复方枇杷糖浆等不宜与强心药、降压药合用。因麻黄碱具有兴奋心肌受体、加强心肌收缩力的作用,与洋地黄、地高辛等合用可使强心药的作用增强,毒性增加,易致心律失常及心衰毒性反应。另外,麻黄碱也具有兴奋α受体和收缩周围血管的作用,减弱降压药降压作用,使疗效降低,甚至使血压难以控制,严重者可使高血压患者的病情加重。 3 药物相互作用的处理原则 3.1 改变用药途径 如选择分开服用或注射用药,可避免直接的物理或化学作用和大多数影响药物吸收的配伍。 3.2 调整药量 主要指相加作用的配伍或监测血药浓度。 3.3 临床观察及血生化监测 主要指增加毒副作用的配伍。 3.4 拒绝调剂 无法用药剂方法解决的配伍应禁止伍用,请医师修改后再进行调剂。 4 配伍禁忌 4.1 四环素与异烟肼等不能与石膏、龙骨、牡蛎等含钙、镁离子丰富的药并用,因会生成难溶于水的络合物,影响前者的吸收,使疗效降低。 4.2 舒肝丸不宜与甲氧氯普胺合用,因舒肝丸中含有芍药,有解痉、镇痛作用,而甲氧氯普 胺则能加强胃肠收缩,两者合用作用相反,会相互降低疗效。 4.3 中成药止咳定喘膏、麻杏石甘片、防风通圣丸与化学药复方利血平、帕吉林不能同时服用,因前三种中成药均含有麻黄素,能使动脉收缩,升高血压,联合应用影响降压效果。 4.4 中成药蛇胆川贝液与吗啡、哌替啶、可待因不能同时服用,因前者含有苦杏仁苷,有抑制呼吸作用,同时服用易致呼吸衰竭产生[2]。 4.5 中成药益心丹、麝香保心丸、六神丸不宜与化学药普罗帕酮、奎尼丁同时服用,因有导致心脏骤停的可能。 4.6 抗结核药异烟肼不宜与昆布合用,因昆布片中含碘,在胃酸条件下与异烟肼发生氧化反应,形成烟酸、氧化物和氮气,失去抗结核杆菌的功能。 4.7 乳酶生不宜与黄连上清丸联合应用,因为其中的黄连素成份明显抑制乳酶生的活性,使其失去消化能力。 4.8 磺胺类药不能与富含有机酸的乌梅、五味子、山楂等同用,因可导致磺胺药在尿中形成结晶[3]。 4.9 双黄连注射剂与诺氟沙星、环丙沙星、氧氟沙星注射剂配伍后,溶液pH值升高,药物的溶解度降低,有沉淀产生;双黄连注射剂与庆大霉素、阿米卡星注射液配伍后,颜色变为棕黑色。 4.10 头孢曲松与川芎嗪注射液配伍后,可产生白色混浊及结晶;川芎嗪注射液与青霉素G配伍可产生沉淀。 4.11 红霉素注射液与菌栀黄注射液混合后可产生浑浊。 4.12 庆大霉素、阿米卡星与穿琥宁注射液配伍后可有沉淀产生。 4.13 刺五加注射液与双嘧达莫、维拉帕米注射液配伍后可有沉淀产生。 2 小结 中西药联合产生的相互作用极其复杂,可能发生的不良反应也很多,若用之不当,会造成较为严重的后果。在临床工作中,笔者认为无论是中医师与西医师,应在中西医药理论的指导下,在联合应用时,应从物理、化学、药理、用药顺序、用药时间、剂量和患者个体差异等方面加以综合考虑,了解中西药配伍禁忌,掌握配伍原则,力求进行最佳的配伍,谨慎用药,从而达到理想的协同作用,提高疗效,缩短疗程,达到安全、合理有效的目的。 参考文献 [1] 马瑜红,黄川峰.116张不合理中西药配伍处方分析.中国现代药物应用,2009,3(18):137. [2] 席秋红,任光瑞,马雅斌.中西药配伍不合理剖析.新疆中医药,2007,25(4):86-87. [3] 李靖.中西药不合理配伍应用的预防.中国医学研究与临床,2005,3(10):92-93. 猜你喜欢: 1. 浅谈中医药的文化养生 2. 药学论文精选 3. 关于安全合理用药的论文 4. 药学毕业论文3000字 5. 药学毕业论文题目 6. 关于药学的论文

Grafts the Chinese hawthorn isoflavone extraction process and the oxidation resistance research Biology and food science institute 2003 level of food sciences and project specialty Abstract: This article introduced in the Chinese hawthorn main nutrient content and the Chinese hawthorn the isoflavone function characteristic, respectively and grafts the Chinese hawthorn take the ordinary Chinese hawthorn as a raw material, has analyzed the different extraction method and the isoflavone extraction rate relations, and to grafted the Chinese hawthorn isoflavone the oxidation resistance function effect to carry on the analysis. Uses the mellow formulation, the water formulation and the ethyl acetate law three extraction method, separately and grafts the Chinese hawthorn juice extraction isoflavone to the ordinary Chinese hawthorn juice, through to the respective extraction rate's comparison and analysis knowing, uses the ethyl alcohol law to withdraw the isoflavone content to be high, and grafts in the Chinese hawthorn the isoflavone content slightly to be higher than the ordinary Chinese hawthorn isoflavone. After the single factor experiment analysis, seeks for the material fluid compared to, the ethyl alcohol density, the extraction temperature and the time and so on four extraction condition suitable parameter, thus had determined L9 (34) the orthogonal test each influencing factor's three levels, screen the material fluid compared to are 1:10, ethyl alcohol density are 85%, extraction temperature for 50℃, withdraw 1 hour for the extraction method optimum condition; Obtains the isoflavone density take the Kudzu root element as the standard through the ultraviolet spectrophotometric method, thus calculates obtains grafts the Chinese hawthorn juice isoflavone extraction rate is 0.46%. Uses the color to respond and the paper chromatographic analysis law separately to withdraws the flavanone class material to carry on the appraisal. Through to joins the Chinese hawthorn juice, the sorbic acid potassium and does not have the antiseptic three kind of yogurt oxidation resistance abilities to carry on the experiment, finally indicated that the Chinese hawthorn juice yogurt's peroxide value is 0.023%, is three product minimum values. In the Chinese hawthorn fruit includes the rich nutrient content and the pharmacology active constituent, is the depth the health foods which is liked the people, at present has become has the high research value and the development potential resources. Key words: Grafts the Chinese hawthorn; Isoflavone; Orthogonal test; Oxidation resistance

乙二醇的毕业论文

电气自动化实习报告一.实习目的生产实习是教学与生产实际相结合的重要实践性教学环节。在生产实习过程中,可以培养我们观察问题、解决问题和向生产实际学习的能力和方法为目标。培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。通过这次生产实习,使我在生产实际中学习到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实践知识。在生产实践中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。我们在实习中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。通过生产实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。入厂主要安全注意事项1.防火防爆2、防尘防毒3、防止灼烫伤4.防止触电5.防止机械伤害6.防止高处坠落7.防止车辆伤害8.防止起重机械伤害9.防止物体打击 。.设备内作业须知:1.在各种储罐,槽车,塔等设备以及地下室,或是其他密闭场所内部进行工作均属于设备内作业2.设备上与外界连通的管道,孔等均应与外界有效的隔离3.进入设备内作业前,必须对设备内进行清洗和置换4.应采取措施,保持设备内空气良好5.作业前30分钟内,必须对设备内气体采取采样分析,采样应 有代表性6.进入不能达到清洗和置换要求的设备内作业时,必须采取相应的防护措施 7.在容器内工作时因照明良好,照明用电应小于等于36V的防 爆型灯具8.多工种,多层次交叉作业应采取互相之间避免伤害的措施,并且搭设安全梯或是安全平台,比要时由监护人用安全绳栓作业人员进行施工9.设备内作业必须有专人监护,并应有入抢救的措施及有效保 护手段化工生产特点的简要介绍:此次工厂生产以精对苯二甲酸(PTA)为原料,相对分子量为166.13,结构式HOOC[C6H4]COOH,在常温下是白色粉状晶体,无毒易燃,若与空气混合在一定限度内遇火即燃烧;故我的车间处于一级防爆区内(聚合电仪)。高纯度对苯二甲酸PTA与乙二醇(EG)缩聚得到聚对苯二甲酸乙二醇酯(PET),还可以与1,4-乙二醇或1,4-环己烷二甲酸反应生成相应的酯,主要用于生产聚酯。而聚酯纤维是合成纤维最主要的品种,在世界合成纤维总产量中占将近80%的比例,。乙二醇 对二甲苯作原料,用直接催化法方式合成聚酯。最终产品:涤纶长丝、涤纶短丝、低弹丝、高弹丝、差别化和功能化纤维及涤纶短纤维产品,化工生产的特点是1、原料,半成品,成品多分为易燃易爆或是有毒物 2、生产工艺多为高温,高压或是底温高压 3、生产的连续性强,自动化程度高 4、工业三废多,影响环境.实习过程2、组织参观 在实习开始时,我们对实习单位的参观,以便了解其概况。在实习期间,我们还到其它有关车间去进行专业性的参观,获得了更加广泛的生产实践知识,和更加准确理解了工厂的运作模式。参观中我们着重了解了先进的设计思想和方法、先进工艺方法、先进工装、先进设备的特点以及先进的组织管理形式等。3、车间实习 我们在车间实习是生产实习的主要方式。我们按照实习计划在指定的车间进行实习,通过观察、分析计算以及向车间工人和技术人员请教,圆满完成了规定的实习内容。4、理论与实际的结合 为了能够更加深入的进行车间实习,在实习过程中,我们结合了所学的书本知识与实习的要求,将理论与实际进行了完美的结合,也更加的促使我们不断地进行学习与研究。5、实习日记 在实习中,我们们每天的工作、观察研究的结果、收集的资料和图表、所听报告内容等均记入到了实习日记中以备以后翻阅。实习内容 (一)学习和了解变电所的主要结构种类和常规型变电所设备选型。(二)学习和了解变电所的主要部件的生产技术资料,包 括:各种技术标准,图纸,专用设备说明书等。(三)了解变各类变频器主要技术要求以及使用。常规型变电所设备选型(a)、设备的选择配置应力求小型化,要保证技术先进、工作性能稳定可靠,质量有保证且售后服务跟得上。(b)、所内应采用两台主变,要求节能且有载调压型,一般采用S10或SZ10型变压器,变压器容量要根据电力负荷情况而定,但两台主变容量比不应超过1∶3,阻抗电压、变比、接线组别应相同,误差不超过 5%,为以后变压器并列运行提供条件。(c)、所用变采用1~2台S10-50kVA/35/0.4kV直配变,装在35kV进线外侧或35kV母线上,所用变采用跌落熔断器控制。(d)、高压断路器应采用SF6断路器,35kV断路器采用LW8-35型,10kV断路器采用LW3-10型。(e)、35kV进线采用双回,为环网工程做好准备。(6)35kV母线使用LGJX-120铝绞线,采用单母线不分段接线,10kV母线采用分段接线,出线4~6回为好。(f)、无功补偿容量按主变容量的10%~15%而定,采用BWF-200-1W型电容器,电压为星形接线。(g)、避雷措施:35kV线路采用避雷线,所内采用避雷针和避雷器两种。避雷针使用镀锌圆钢焊接,装设在所区的4个角;避雷器采用金属氧化物避雷器,35kV侧装在母线上,10kV侧装在出线处。(h)、所内隔离开关操作机构上应设"五防"闭锁,由人工或由计算机综合自动化系统实现"五防"。(i)控制、保护、测量部分采用计算机综合自动化管理系统。部分设备简介 均速管流量传感器(以下简称均速管)是基于皮托管测速原理发展而来的一种差压流量传感器。均速管与差压变送器、显示仪表配套使用,可实现对圆管、矩形管道中的液体、气体或蒸汽流量进行测量。均速管可广泛应用与电力、石油、化工、轻纺等行业由于其压力损失小,安装维修简便,特别适合大口径管道流量的测量。起动器(又称软起动器,电机软起动器)软启动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。电磁阀电磁阀是用来控制流体的方向的自动化基础元件,属于执行器;通常用于机械控制和工业阀门上面,对介质方向进行控制,从而达到对阀门开关的控制。变频器实习期间主要接触到西门子、 富士、 安川 、丹拂斯等。我们知道交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中 n———异步电动机的转速; f———异步电动机的频率;s———电动机转差率;p———电动机极对数。由公式可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。变频器原理:利用二极管的单通性整流将交流变为直流;再用逆变块产生所需要频率的交流。而逆变块主要也是利用二极管的通断实现将直流变为交流,其频率大小由通断变化快慢决定,从而实现频率改变。变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。U/f=C的正弦脉宽调制(SPWM)控制方式电压空间矢量(SVPWM)控制方式矢量控制(VC)方式直接转矩控制(DTC)方式矩阵式交—交控制方式 .实习感悟生产实习是培养高素质工程技术人才的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。其目的是使我们通过实习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后走向工作岗位尽快成为业务骨干打下良好基础。通过生产习,使我们了解和掌握了变电所的主要结构、生产技术和工艺过程;使用的主要工装设备;产品生产用技术资料;生产组织管理等内容,加深对变电所的工作原理、设计、试验等基本理论的理解。使我们了解和掌握了变电所的工作原理和结构等方面的知识。为进一步学好专业课,从事这方面的研制、设计等打下良好的基础。在这次生产实习过程中,不但对所学习的知识加深了了解,更加重要的是更正了我们的劳动观点和提高了我们的独立工作能力等。

有个范文网,应该可以吧,不行的话,去论文网看看!如果是大学毕业论文,好像免费的很少,大多需要money!

肯定不允许抄袭呀,论文这个事儿抄袭就是学术不端,一旦被发现对自己对导师都不好,所以你还是自己去看看交通技术这本期刊的文献哈,免费下载查阅的

毕 业 论 文(设计)题目:汽车发动机冷却系统维护所在院系专业班级学 号学生姓名指导教师2010 年 03月 21 日目 录摘要 ………………………………………………………………………………1关键词 ……………………………………………………………………………11引言…………………………………………………………………………………22 冷却系统的作用……………………………………………………………23 冷却系统的组成………………………………………………………………24 冷却系统的构造及维护……………………………………………………………25 冷却系统的工作原理……………………………………………………………46 冷却系统的特点……………………………………………………………………47 冷却系统的检修……………………………………………………………………48冷却系统智能控制……………………………………………………………………68.1 系统组成……………………………………………………………………68.2 单片机控制系统工作原理……………………………………………………………68.3 单片机系统控制工作过程……………………………………………………………6结论…………………………………………………………………………………10谢辞…………………………………………………………………………………11参考文献 ………………………………………………………………………12摘 要本文论述了冷却系统的作用、组成、主要构造、工作原理、日常维护、故障的检测步骤和排除方法,同时论述了冷却系统系统化、模块化设计方法,以及冷却系统的智能控制,并举例做出简单介绍。关键词:冷却系统 冷却系统维护 温度设定点 冷却系统智能控制1 引言:如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。2 冷却系统的作用冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为气冷式引擎及水冷式引擎,气冷式引擎是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷式引擎则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。3 冷却系统的组成水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。水泵和节温器发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。空气的流动为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现在已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电动机运转。这两种形式的散热器电扇运转实际上都由温度传感器控制。散热器散热器兼作储水及散热作用,再此之上还装有膨胀水箱。因为单纯依赖散热器有几个缺点,一是水泵吸水一侧因压力低而容易沸腾,水泵的叶轮容易穴蚀;二是气水分离会产生气阻;三是温度高冷却液容易沸腾。因此设计师就加装了膨胀水箱,它的上下两根水管分别与散热器上部和水泵进水口联接,防止上述问题的产生。冷却介质虽然我们称其为水冷但冷却介质并不是单纯的水,而是由水、防冻液和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的凝固点,防止在低温下结冰而损坏发动机。整个冷却系统并不与大气相通,相当于高压锅的作用,水箱盖则相当于高压阀,一般情况下,轿车冷却液的允许工作温度可达摄氏120度,提高传热能4 冷却系统的构造及维护汽车发动机的冷却系统是保持发动机正常工作的重要部件,如果发动机冷却系统的维修率很高,就会引起发动机其他部件的损坏,使发动机的整体工作能力受到影响,因此,汽车发动机冷却系统的维护与保养就显得尤为重要,那么,怎样才能使汽车发动机的冷却系统保持良好的状态呢?驰耐普的汽车美容养护专家告诉我们,正确堆护发动机的冷却系统,首先应了解常用的水冷式发动机的主要部件:第一、冷却液,冷却液指清洁的软水,不是什么水都可以当作冷却液的,越娇贵的车对水质的要求越高。比如,清澈的泉水,虽然清澈,看起来也干净,但泉水中含有大量的矿物质,如果加入发动机的冷却系统中,就会产生大量的水垢,影响冷却系统正常作用的发挥,可见,冷却液水质的好坏是相当重要的,国际上普遍使用的乙二醇型冷却液是在软化水中按比例添加防冻剂乙二醇,配以适量的金属缓蚀剂、阻垢剂等添加剂进行科学调和,达到冬季防冻、夏季防沸、且能防腐蚀、防水垢等作用。1、防冻。用乙二醇配制的冷却液最低可在-70℃环境下使用。市场上销售的冷却液,乙二醇浓度一般保持在33~50%之间,也就是冰点在-20℃~-45℃之间,往往根据不同地域的实际需要合理选择,以满足使用要求。2、防沸。加到水中的乙二醇会改变冷却液的沸点。乙二醇浓度越高,冷却液的沸点也就越高,-20℃时冷却液的沸点为104.5℃,而-50℃时沸点达到108.5℃。如果冷却系统采用压力盖,冷却液的实际沸点会更高,即使在炎热的夏天,也能有效的防止冷却液“开锅”。3、防腐。冷却液最主要的功能是防腐蚀。腐蚀是一种化学、电化学和浸蚀作用,逐步破坏冷却系统内的金属表面,严重时可使冷却系统的壁穿孔,引起冷却液漏失,导致发动机损坏。使用去离子水及适当的添加剂能防止各种腐蚀的出现。4、防锈。锈蚀是由于冷却系统内的氧化作用造成的。热量和湿气使锈蚀的过程加速。锈蚀留下的残余物会阻塞冷却系统,加速磨损和降低热传导的效率。冷却液中的添加剂有助于防止冷却系统通道内锈蚀的出现。5、防垢。水源中所含的各种杂质,其中包括金属离子、无机盐等,决定了结垢和沉淀的形成,会大大地降低冷却系统的导热效率,在许多情况下会对发动机造成严重损害。冷却液所使用的去离子水,可以避免结垢和沉淀的形成,从而保护发动机。第二、汽缸水套,它相当于发动机燃烧室周围的水道,当发动机产生大量的热时,汽缸水套将发挥降温的作用在发动机中,水和油的管道泾渭分明、互不干涉,如果发现冷却液中有油,就说明水路和油路发生了穿孔现象,一旦出现这种情况,水温表的水温会急剧上升,这时一定要及时采取措施。第三、散热水箱和冷却风扇,散热水箱从外观看状似蜂窝,做成这种形状是为了增加水箱的散热面积,以增强散热效果;冷却风扇有在正面安装的,也有在侧面安装的,汽车在高速行驶过程中,冷却风扇将外面的空气吸引进来,利用自然风,起到冷却的作用。冷却系和空调冷凝器共同的风扇是直流永磁电动机风扇,用装在散热器上的温度控制开关来控制,当散热器中冷却液温度下降至93℃-98℃时风扇停转。由于电动风扇的电源不受点火开关的控制,因此发动机熄火后,散热器中液温若高于88℃-93℃,电动风扇运转是不正常的。如果低于88℃时风扇仍转,则是不正常的;而温度高于98℃时,仍不转也是不正常的。当温度高于105℃时,温控开关高温部分接通,电源接通电动机便高速运转;当温度达到120℃时,冷却水温过高,报警指示灯闪亮,为风扇有故障或冷却液不足。如电动机风扇不转,先检查和更换熔断丝,或检修温控开关,必要时再查看电风扇有无损坏。第四、冷却水泵和节温器,冷却液在冷却系统中的流动,主要依靠冷却水泵的动力;节温器能感知发动机的工作温度,低温时,它封住水套中的水,令其在水套内流动,当达到一定温度时再打开,让水经过散热水箱,发挥散热作用。这里值得说明的是,切勿将节温器摘掉,否则会导致发动机过冷而难以启动。正确维护发动机的冷却系统,应了解经常出现的几种冷却系统故障:1、由于冷却液水质不好,水箱中经常会出现锈污和水垢,它们积聚在水箱通道结合处、弯角处,阻碍水流畅通,造成散热不良,如果出现这种情况,应及时清洗干净,日常加水时,尽量加清洁软水,如果用除垢防锈液,养护效果会更好,这里给您推荐驰耐普的S-510冷却系快速除垢剂,它可以迅速溶解冷却系统中形成的水垢、油泥和锈皮,恢复冷却系统的功能,使冷却液循环顺畅,防止过热、开锅而引发的发动机损坏及动力不足;另外,驰耐普的S-520冷却系防锈润滑剂也是一款不错的产品,它能防止冷却系统锈蚀和腐蚀,有效抑制水垢生成,润滑水泵、节温器,消除水泵异响,保护铜、铝、锡和其它金属部件,延长水箱寿命,防止水箱开锅,使发动机在正常温度下工作。维护时清除冷却系水垢措施:可采用2%苛性钠水溶液加入冷却系统,使汽车行驶一天后全部放出,再用清水冲洗;然后再加入同样苛性钠溶液,使用一天后放净,最后用清水冲净即可。也可在冷却系统中加满清水后,从膨胀箱的加水口加入1kg苏打,让汽车行驶一天放净后,使发动机低速运行,并不断从加水口加入清水,即可彻底清除水垢。2、漏水,只要是流体,都有泄漏的可能,汽缸水套中的水一旦发生泄漏,水温表的水温就会急剧上升,出现这种情况,您一定要及时采取必要的措施,以免发生不必要的麻烦,这里给您介绍驰耐普的S-530冷却系止漏剂,它对于冷却系统的修复和保护作用等同于“99超强修复剂”和“S-201”,对于发动机的修复和保护,对于阻止水箱、散热器、水泵、节温器等部件的渗漏是独到的,它可与任何冷却液相融使用,并可减缓冷却系统杂质的产生。总的来讲,冷却系统还有很多故障,不能一一列举。一般情况下,各位车主应遵循这样一个原则,车辆每行驶1000千米,就应查看一下发动机的工作情况。另外,汽车刚停车时,不可立即打开水箱盖,以免出现烫伤的情况。5 冷却系统工作原理冷却系的功用就是使发动机在任何工况下都得到适度的冷却,从而保持在适宜的温度(冷却液温度)下工作。夏利TJ376Q型发动机采用闭式强制循环水冷却系,其组成如图所示。图1-1 发动机的冷却系(A)冷却系的布置示意图;(b)发动机机体内的水套l-风扇;2-散热器;3-散热器出水管;4-水泵;5-节温器;6-进气管;7-风扇电机控制开关;8-空阀散热器进水管;9-旁通软管;10-蓄电池;11-点火开关;12-膨胀水箱;13-空调散热器出水管;14-散热器进水管;l5—风扇电机;I6-进气管底部水套;17-气缸盖水套;l8-气缸体水套;A-到空调散热器去;B-由空调散热器来当发动机工作时,在水泵4的作用下,进入水泵4中的冷却液被压入缸体水套l8中,并进入缸盖水套l7中,然后经缸盖侧向水道进入进气管底部的水套16中,对进气管6进行加热,以促进其中的混合气中的汽油蒸发、混合。在进气管6的后端装有节温器5,在冷却液温度低于82℃时,节温器阀门关闭,冷却液仅经空调散热器进水管8、空调散热器、空调散热器出水管l3流入散热器出水管3。如果空调暖风开关处于关闭,冷却液则不流经空调散热器,而直接由空调散热器进水管8经旁通管9流进散热器出水管3,最后进入水泵4,即进行小循环;在冷却液温度高于82℃时,节温器阀门打开,冷却液除进行上述小循环外,还经散热器进水管8流入散热器2中冷却降温,再沿散热器出水管3流入水泵4,即进行大循环。冷却液如此不断地循环流动,就使得发动机能在适宜的温度下进行工作。冷却液的循环路线如图2-2所示。图2-2 冷却液循环路线示意图图3-3 散热器盖(A)压力阀打开;(B)真空阀打开1-溢流管;2-压力阀弹簧;3-压力阀;4-散热器加水口;5-真空阀6 冷却系统的特点传统冷却系统的作用是可靠地保护发动机,而还应具有改善燃料经济性和降低排放的作用。为此,现代冷却系统要综合考虑下面的因素:发动机内部的摩擦损失;冷却系统水泵的功率;燃烧边界条件,如燃烧室温度、充量密度、充量温度。先进的冷却系统采用系统化、模块化设计方法,统筹考虑每项影响因素,使冷却系统既保证发动机正常工作,又提高发动机效率和减少排放。6.1 温度设定点发动机工作温度的极限值取决于排气门周围区域最高温度。最理想的情况是按金属温度而不是冷却液温度控制冷却系统,这样才能更好地保护发动机。由于冷却系统设定的冷却温度是以满负荷时最大散热率为基础,因此,发动机和冷却系统在部分负荷时处于不太理想状态,如市区行驶和低速行驶时,会产生高油耗和排放。通过改变冷却液温度设定点可改善发动机和冷却系统在部分负荷时的性能。根据排气门周围区域温度极限值,可升高或降低冷却液或金属温度设定点。升高或降低温度点都各有特点,这取决于希望达到的目的。6.2 提高温度设定点提高工作温度设定点是一种比较受欢迎的方法。提高温度有许多优点,它直接影响发动机损耗和冷却系统的效果以及发动机排放物的形成。提高工作温度将提高发动机机油温度,降低发动机摩擦磨损,降低发动机燃油消耗。研究表明,发动机工作温度对摩擦损失有很大影响。将冷却液排出温度提高到150℃,使气缸温度升高到195℃,油耗则下降4%-6%。将冷却液温度保持在90-115℃范围内,使发动机机油的最高温度为140℃,则油耗在部分负荷时下降10%。提高工作温度也明显影响冷却系统的效能。提高冷却液或金属温度会改善发动机和散热气热传递传递的效果,降低冷却液的流速,减小水泵的额定功率,从而降低发动机的功率消耗。此外,可采用不同的方式,进一步减小冷却液的流速。6.3 降低温度设定点降低冷却系统的工作温度可提高发动机充气效率,降低进气温度。这对燃烧过程、燃油效率及排放有利。降低温度设定点可以节省发动机运行成本,提高部件使用寿命。研究表明,若气缸盖温度降低到50℃,点火提前角可提前3℃A而不发生爆震,充气效率提高2%,发动机工作特性改善,有助于优化压缩比和参数选择,取得更好的燃油效率和排放性能。7 冷却系统的检修常见引起发动机过热的原因有:冷却空气流量减少(如散热器阻塞等);散热风扇不工作;低速上坡,环境温度过高;V型皮带过松,转动效率差;以及缸体有水垢,节温器失效,水泵损坏,热敏开关失灵等。为防止冷却液温度过高,在使用中必须保持散热器和水套清洁、冷却液数量充足、风扇皮带张紧适当,以防发动机在负荷工作时间过长。必须注意以下要点:1.保持冷却系(尤其散热器)外部和内部清洁,是提高散热效能的重要条件。散热器外部沾有泥污或碰撞变形,均合影响风量流通,使冷却液温度过高,必要时清洗或修复。2.按规定使用防冻冷却液,保持冷却液数量充足。正确的冷却液液面高度:当发动机处于冷态时,冷却液液面在膨胀箱内,位于最高和最低标志之间。膨胀箱内装有自动液位报警传感器,当箱内液面过低时、位于仪表板上的冷却液温度报警灯问烁,应及时予以添加。3.应保持风扇皮带张紧力适当,风扇正常工作。皮带过松影响水循环,加剧其磨损;过紧易损坏轴承。4.热敏开关连接良好,若有松动会影响风扇换档变速及正常运转;如果发现冷却系溢水,应及时检查节温器技术状况。5.防止发动机大负荷、长时间工作,以免水温过高;上坡及时换档,减轻负荷。汽车长时间坡道行驶、挡住低或是环境温度较高时,应注意散热。更换冷却液时,将仪表板的暖风开关拨至右端使暖风控制阀全开,拆下冷却液膨胀箱盖,松开水泵口软管夹箍,拉出冷却液软管,放出冷却液后再将软管夹箍拧紧。在膨胀箱中加入冷却液,直到液面高度与最高标志齐平为止。拧紧膨胀箱盖。启动发动机,直到风扇运转,将发动机熄火,检查冷却液高度,必要时补充。膨胀箱内冷却液不能注满,加注1/2即可,一般使用2年左右更换一次。8 冷却系统智能控制系统由于汽车运行过程中产生强烈的振动、热辐射和电磁干扰,因此对该系统电路有特殊要求:1.电路要有较高的抗振动能力,以适应不同路况、车况的要求。提高系统整体的可靠性和稳定性。2.电路应采取有效的防护隔离措施,以提高其抗干扰能力。8.1 系统组成该系统由电控冷却风扇、电控节温器、电控导风板、微控制机构组成。电控冷却风扇由电动机驱动;电控节温器利用电加热引起双金属片变形,由双金属片变形带动节温阀旋转运动,来改变大小循环;电控导风板由双向电动机通过传动机构使之打开或关闭;微控制机构是利用89C51开发的单片机控制系统。8.2 单片机控制系统工作原理由温度传感器感受发动机水温的变化,同时把温度信号转变为同其成反比关系的电压模拟信号。这些信号经过处理(电容器低通滤波、校正和电压跟随器耦合)送入A/D转换器(ADC0809)中INO信号通道。由A/D转换器把采集来的模拟电压信号转换为数字信号并读入单片机,89C510单片机89C51根据不同的输入信号分析处理去控制驱动电路,实现对节温器继电器、导风板继电器和风扇继电器的控制。即可实现对发动机冷却能力的智能控制。8.3 单片机 系统控制过程当发动机预热时(发动机水温(70℃),单片机根据检测来的温度数据处理分析向执行元件发出控制信号,使其完成如下操作。a.电控冷却风扇不工作;b.电控导风板关闭状态;c.电控节温器处于小循环状态。由于导风板关闭,冷却风扇不工作,以至冷却空气不能进入散热器;同时节温器处于小循环(加热电阻丝通电),发动机水温上升很快。当水温升至75℃,单片机根据检测来的温度数据处理分析向执行元件发出控制信号,使电控节温器的加热电阻丝断电(让其进入大循环控制状态)。当水温达到80℃时,单片机又发出指令,使电控导风板处于敞开状态。此时可充分利用汽车行驶迎面风对散热器的冷却作用,尽量减少冷却风扇的工作时间。当水温高达95℃时,单片机经数据分析发出控制指令使电控冷却风扇工作,而让节温器仍处于大循环状态,导风板仍处于敞开状态。这时冷却系统的冷却能力最大,实现快速降温。当发动机水温降至89℃时,单片机根据采样数据分析处理发出控制指令,使执行元件完成以下操作。a.电控冷却风扇不工作;b.电控导风板处于敞开状态;c.电控节温器处于大循环状态。这样,直到发动机水温返升至95℃,电控冷却风扇又重新工作。结 论汽车冷却系统对汽车来说是至关重要的,发动机就如同人类的心脏,如果不好好保护就会受到威胁,现在随着科技发展,冷却系统不象以往那样只是单纯的水冷循环,现在冷却系统智能控制很受欢迎,所以在以后的汽车发展中,单纯的冷却系统不会站主导位置了,虽然智能控制要求很高,但是在高级轿车中很实用,它代表着未来冷却系统的发现方向,智能冷却系统控制将会作为标准装置在汽车上,未来一段时间在冷却系统中将占主导位置;而智能控制将会提高发动机的使用寿命,保障汽车的安全行驶,提高人身安全等原因,将来智能控制冷却系统的发展将占主导位置.谢 辞时间过的很快,两年的大学生活就这么结束了,有些匆忙、有些不舍,却也很充实。感谢我的母校黑龙江旅游职业技术学院让我有一段值得回忆的快乐充实的大学生活。感谢我的辅导员XXX老师。他给予我学习上的指导和生活上的无私帮助,表示衷心感谢!祝X老师工作顺利,桃李满天下!谢我的论文导师,XX老师,X老师在我写论文过程中为我提出了许多宝贵建议,指正了我论文中的诸多不足,使我的论文得以顺利完成,在此对导师的细心指导表示衷心感谢!在两年的大学生活中还有很多老师和同学给予我学习和生活上的帮助,在此我向他们表示我衷心地感谢!最后,祝母校蒸蒸日上!祝所有老师工作顺利!参考文献[1] 杨万福.发动机原理与汽车性能.北京:高等教育出版社,2004[2] 孔宪辉.张广坤。汽车故障诊断技术。北京:高等教育出版社,2002[3] 张子波.汽车发动机构造与维修。北京:高等教育出版社,2005[4] 陈家瑞等.汽车构造.北京:人民交通出版社,2003[5] 黄虎等.现代汽车维修.上海:上海交通大学出版社,2001

毕业论文乙醇水

通常工业用的95.5%的乙醇不能直 接用蒸馏法制取无水乙醇,因95.5%乙醇和4.5%的水形成恒沸点混合物。要把水除去,第一步是加入氧化钙(生石灰)煮沸回流,使乙醇中的水与生石灰作 用生成氢氧化钙,然后再将无水乙醇蒸出。这样得到无水乙醇,纯度最高越99.5%。纯度更高的无水乙醇可用金属镁或金属钠进行处理在250ml的圆底烧瓶中,放置0.6g干燥纯净的镁条,10ml99.5%乙醇,装上回流冷凝管,并在冷凝管上附加一只无水氯化钙干燥管。在沸水浴或用火直接加热使达微沸,移去热源,立刻加入几粒碘片(此时注意不要振荡),顷刻即在碘粒附近发生作用,最后可以达到相当剧烈的程度。有时作用太慢则需要加热,如果在加碘后,作用仍不开始,则可再加入数粒碘(一般的将,乙醇与镁作用是缓慢的,如所用乙醇含水量超过0.5%则作用尤其困难)。待全部镁已经作用完毕后,加入100ml99.5%乙醇和几粒沸石。回流1h,蒸馏,产物收存于玻璃瓶中,用一橡皮塞或磨口塞塞住。 [color=red]②[/color] [color=red]用金属钠制取。[/color] 装置和操作同①,在250ml圆底烧瓶中,放置2g金属钠和100ml纯度至少为99.5%的乙醇,加入几粒沸石。加热回流300min后,加入4g邻苯二甲酸二乙脂,再回流10min。取下冷凝管改成蒸馏装置,按收集无水乙醇的要求进行蒸馏。产品储于带有磨口塞或橡皮塞的容器中。 [b] [color=red]检验乙醇是否有水分,常用的方法是:取一支干燥试管,加入制得的绝对乙醇1 mL,随即加入少量无水硫酸铜粉末。如乙醇中含水分,则无水硫酸铜变为蓝色硫酸铜。

化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5. 酶法双甘酯的制备6. 硅酸锆的提纯毕业论文7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9. 铝合金阳极氧化及封闭处理10. 贝氏体白口耐磨铸铁磨球的研究11. 80KW等离子喷涂设备的调试与工艺试验12. 2800NM3/h高温旋风除尘器开发设计13. 玻纤增强材料注塑成型工艺特点的研究14. 年处理30万吨铜选矿厂设计15. 年处理60万吨铁选厂毕业设计16. 广东省韶关市大宝山铜铁矿井下开采设计17. 日处理1750吨铅锌选矿厂设计18. 6000t/a聚氯乙烯乙炔工段初步工艺设计19. 年产50万吨焦炉鼓冷工段工艺设计20. 年产25万吨合成氨铜洗工段工艺设计21. PX装置异构化单元反应器进行自动控制系统设计22. PX装置异构化单元脱庚烷塔自动控制系统设计23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响24. 高温高压条件下浆态鼓泡床气液传质特性的研究25. 新型纳米电子材料的特性、发展及应用26. 发达国家安全生产监督管理体制的研究27. 工伤保险与事故预防28. 氯气生产与储存过程中危险性分析及其预防29. 无公害农产品的发展与检测30. 环氧乙烷工业设计31. 年产 21000吨 乙醇 水精 馏装置 工艺设计32. 年产26000吨乙醇精馏装置设计33. 高层大厦首层至屋面消防给水工程设计34. 某市航空发动机组试车车间噪声控制设计35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究36. 一株新的短程反硝化聚磷菌的鉴定及活性研究37. 广州地区酸雨特征及其与气象条件的关系38. 超声协同硝酸提取城市污泥重金属的研究39. 脱氨剂和铁碳法处理稀土废水氨氮的研究40. 稀土 超磁致 伸缩 材料 扬声器 研制41. 纳米氧化铋的发展42. 海泡石TiO2光敏催化剂的制备及其研究43. 超磁致伸缩复合材料的制备44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文45. APCVD法在硅基板上制备硅化钛纳米线46. 浅层地热能在热水系统中的利用初探及其工程设计47. 输配管网的软件开发

乙二醇项目毕业论文

电气自动化实习报告一.实习目的生产实习是教学与生产实际相结合的重要实践性教学环节。在生产实习过程中,可以培养我们观察问题、解决问题和向生产实际学习的能力和方法为目标。培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。通过这次生产实习,使我在生产实际中学习到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实践知识。在生产实践中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。我们在实习中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。通过生产实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。入厂主要安全注意事项1.防火防爆2、防尘防毒3、防止灼烫伤4.防止触电5.防止机械伤害6.防止高处坠落7.防止车辆伤害8.防止起重机械伤害9.防止物体打击 。.设备内作业须知:1.在各种储罐,槽车,塔等设备以及地下室,或是其他密闭场所内部进行工作均属于设备内作业2.设备上与外界连通的管道,孔等均应与外界有效的隔离3.进入设备内作业前,必须对设备内进行清洗和置换4.应采取措施,保持设备内空气良好5.作业前30分钟内,必须对设备内气体采取采样分析,采样应 有代表性6.进入不能达到清洗和置换要求的设备内作业时,必须采取相应的防护措施 7.在容器内工作时因照明良好,照明用电应小于等于36V的防 爆型灯具8.多工种,多层次交叉作业应采取互相之间避免伤害的措施,并且搭设安全梯或是安全平台,比要时由监护人用安全绳栓作业人员进行施工9.设备内作业必须有专人监护,并应有入抢救的措施及有效保 护手段化工生产特点的简要介绍:此次工厂生产以精对苯二甲酸(PTA)为原料,相对分子量为166.13,结构式HOOC[C6H4]COOH,在常温下是白色粉状晶体,无毒易燃,若与空气混合在一定限度内遇火即燃烧;故我的车间处于一级防爆区内(聚合电仪)。高纯度对苯二甲酸PTA与乙二醇(EG)缩聚得到聚对苯二甲酸乙二醇酯(PET),还可以与1,4-乙二醇或1,4-环己烷二甲酸反应生成相应的酯,主要用于生产聚酯。而聚酯纤维是合成纤维最主要的品种,在世界合成纤维总产量中占将近80%的比例,。乙二醇 对二甲苯作原料,用直接催化法方式合成聚酯。最终产品:涤纶长丝、涤纶短丝、低弹丝、高弹丝、差别化和功能化纤维及涤纶短纤维产品,化工生产的特点是1、原料,半成品,成品多分为易燃易爆或是有毒物 2、生产工艺多为高温,高压或是底温高压 3、生产的连续性强,自动化程度高 4、工业三废多,影响环境.实习过程2、组织参观 在实习开始时,我们对实习单位的参观,以便了解其概况。在实习期间,我们还到其它有关车间去进行专业性的参观,获得了更加广泛的生产实践知识,和更加准确理解了工厂的运作模式。参观中我们着重了解了先进的设计思想和方法、先进工艺方法、先进工装、先进设备的特点以及先进的组织管理形式等。3、车间实习 我们在车间实习是生产实习的主要方式。我们按照实习计划在指定的车间进行实习,通过观察、分析计算以及向车间工人和技术人员请教,圆满完成了规定的实习内容。4、理论与实际的结合 为了能够更加深入的进行车间实习,在实习过程中,我们结合了所学的书本知识与实习的要求,将理论与实际进行了完美的结合,也更加的促使我们不断地进行学习与研究。5、实习日记 在实习中,我们们每天的工作、观察研究的结果、收集的资料和图表、所听报告内容等均记入到了实习日记中以备以后翻阅。实习内容 (一)学习和了解变电所的主要结构种类和常规型变电所设备选型。(二)学习和了解变电所的主要部件的生产技术资料,包 括:各种技术标准,图纸,专用设备说明书等。(三)了解变各类变频器主要技术要求以及使用。常规型变电所设备选型(a)、设备的选择配置应力求小型化,要保证技术先进、工作性能稳定可靠,质量有保证且售后服务跟得上。(b)、所内应采用两台主变,要求节能且有载调压型,一般采用S10或SZ10型变压器,变压器容量要根据电力负荷情况而定,但两台主变容量比不应超过1∶3,阻抗电压、变比、接线组别应相同,误差不超过 5%,为以后变压器并列运行提供条件。(c)、所用变采用1~2台S10-50kVA/35/0.4kV直配变,装在35kV进线外侧或35kV母线上,所用变采用跌落熔断器控制。(d)、高压断路器应采用SF6断路器,35kV断路器采用LW8-35型,10kV断路器采用LW3-10型。(e)、35kV进线采用双回,为环网工程做好准备。(6)35kV母线使用LGJX-120铝绞线,采用单母线不分段接线,10kV母线采用分段接线,出线4~6回为好。(f)、无功补偿容量按主变容量的10%~15%而定,采用BWF-200-1W型电容器,电压为星形接线。(g)、避雷措施:35kV线路采用避雷线,所内采用避雷针和避雷器两种。避雷针使用镀锌圆钢焊接,装设在所区的4个角;避雷器采用金属氧化物避雷器,35kV侧装在母线上,10kV侧装在出线处。(h)、所内隔离开关操作机构上应设"五防"闭锁,由人工或由计算机综合自动化系统实现"五防"。(i)控制、保护、测量部分采用计算机综合自动化管理系统。部分设备简介 均速管流量传感器(以下简称均速管)是基于皮托管测速原理发展而来的一种差压流量传感器。均速管与差压变送器、显示仪表配套使用,可实现对圆管、矩形管道中的液体、气体或蒸汽流量进行测量。均速管可广泛应用与电力、石油、化工、轻纺等行业由于其压力损失小,安装维修简便,特别适合大口径管道流量的测量。起动器(又称软起动器,电机软起动器)软启动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。电磁阀电磁阀是用来控制流体的方向的自动化基础元件,属于执行器;通常用于机械控制和工业阀门上面,对介质方向进行控制,从而达到对阀门开关的控制。变频器实习期间主要接触到西门子、 富士、 安川 、丹拂斯等。我们知道交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中 n———异步电动机的转速; f———异步电动机的频率;s———电动机转差率;p———电动机极对数。由公式可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。变频器原理:利用二极管的单通性整流将交流变为直流;再用逆变块产生所需要频率的交流。而逆变块主要也是利用二极管的通断实现将直流变为交流,其频率大小由通断变化快慢决定,从而实现频率改变。变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。U/f=C的正弦脉宽调制(SPWM)控制方式电压空间矢量(SVPWM)控制方式矢量控制(VC)方式直接转矩控制(DTC)方式矩阵式交—交控制方式 .实习感悟生产实习是培养高素质工程技术人才的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。其目的是使我们通过实习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后走向工作岗位尽快成为业务骨干打下良好基础。通过生产习,使我们了解和掌握了变电所的主要结构、生产技术和工艺过程;使用的主要工装设备;产品生产用技术资料;生产组织管理等内容,加深对变电所的工作原理、设计、试验等基本理论的理解。使我们了解和掌握了变电所的工作原理和结构等方面的知识。为进一步学好专业课,从事这方面的研制、设计等打下良好的基础。在这次生产实习过程中,不但对所学习的知识加深了了解,更加重要的是更正了我们的劳动观点和提高了我们的独立工作能力等。

加我求求吧。里面有我的联系方式

【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1~3.0 μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而85.9%以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在5.1~25.0 μm范围的占总数87.36%,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的1.58倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为4.66,比未修饰纳米粒的靶向效率高3.7倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 67.6与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1):72-78.Zhang ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8):650-655.Zhang L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12):751-752.Han Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7):549-555.Wang JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

聚乙烯醇论文文献

纺织材料生态化及其发展趋势摘要:从采用绿色原料、利用生物技术和开发可降解纤维3方面,综述了纺织材料生态化的发展现状,指出循环材料开发和使用是纺织生态材料发展的趋势。关键词:纺织材料;绿色;生态化;趋势目前在全球可持续发展战略影响下,许多国家都在致力于研究既不影响生态环境,又能利用生态资源的新型纤维。并提出纺织用材料必须经过毒理学测试,具有相应标志,符合环保、生态、人体健康要求。纺织材料生态化已成为全世界关注的发展方向。采用绿色原料开发生态纤维,利用生物技术发展可降解纤维,选择节约资源、可回收利用纤维原料已成为目前纺织生态材料发展的趋势[1~2]。1采用绿色原料开发生态纤维利用绿色原料开发生态纤维已成为获得生态型纺织材料的主要途径和研究、开发热点。从食用的香蕉、小麦、大豆、玉米、牛奶、虾、蟹等到木材、昆虫、蜘蛛都成为了生态纤维材料的来源。现今的绿色原料包括原生态自然物质,以自然物质为基础的提炼物及原有纤维的再加工产物3种[3]。1·1利用原生态自然物开发生态纤维自然界中原生态的物质即常规的天然纤维,以其自然本色和环保特性赢得人们喜爱。但天然纤维并非完全无毒,如天然纤维在生长过程中所施用的化肥及杀虫剂等化学药品是有害物质进入的主要途径。目前生态天然纤维主要致力于开发对杀虫剂和除草剂较少依赖的天然纤维和新型绿色纤维,如有机棉、有机麻等。同时许多新型原生态的纤维原料如木棉、菠萝叶纤维、香蕉茎纤维、竹纤维等生态纤维也在积极的开发与应用中。发现更多的天然纤维材料,进一步扩大天然纤维的可利用性,使天然纤维材料的发展日益扩大是当前利用原生态的自然物质开发生态纤维的主要研究方向[4~5]。1·2用自然物的提取物开发再生生态性纤维直接取自天然高分子物质,以自然物质为基础的提取物可形成绿色环保纤维,如Tencel、Modal、大豆蛋白纤维、牛奶、海藻酸钠纤维、甲壳素纤维、竹浆纤维等。这些纤维多属于再生纤维素或蛋白质纤维类,纤维本身主要由纤维素或蛋白质组成,易生物降解,符合环保要求。有关再生生态纤维方面的研究较早也较多,许多纤维的开发和应用也较成熟[6]。如甲壳素纤维,所用甲壳质广泛存在于虾、蟹等水产品和昆虫、蜘蛛等节肢动物的外壳中,也存在于菌类、藻类的细胞壁中。甲壳质纤维是一种可降解的环保型动物纤维素纤维,废弃后可被微生物分解。这种纤维具有生物活性,有良好的吸附性、粘结性、抗菌性和治伤性能。它是自然界唯一带正电荷的动物纤维,对危害人体的大肠菌杆、金色葡萄球菌等具有较强的抑制能力,适合制造特殊的医用功能纤维产品。此外,近年开发的新型蛋白复合蚕蛹蛋白粘胶长丝纤维,利用与粘胶纺丝原液共混,纤维素形成芯部,蛋白质集中于表面,构成分子上的稳定结合,形成具有特定皮芯结构的蛹蛋白粘胶皮芯复合长丝。纤维中蛋白质含量为10%~20%左右,纤维与皮肤的亲合性好,保健功能显著[7~8]。1·3利用原有纤维的再加工开发生态性纺织材料采用自然原料通过高分子化学合成的方法可加工、生产生态纤维材料,如聚乳酸纤维(PLA)、聚羟基乙酸纤维(PGA),及它们的聚合纤维(PLGA)。这些纤维原料资源可再生和重复利用,使用过程安全。纤维开发途径包括微生物合成生态纤维和化学合成高分子生态材料。由微生物合成的聚羟基链烷酸酯、短梗霉多糖、功能蛋白高分子等都可以纺制成纤维。另外,微生物还可直接用于生产可生物降解的纤维。如短梗霉多糖(Pullulan)纤维就是以谷物或马铃薯为原料,由出芽短梗霉产生的一种胞外水溶性多糖(由麦芽三糖1,6键接形成的聚合物)合成,其强度和硬度等物理性质与聚苯乙烯相当。Pullulan纤维具有平滑、透明、光泽好、强度高(与尼纶相当)、无毒、无味、无色、能生物降解的特点,适合作手术缝合线和医用敷料。还可利用多糖液中培养出的细菌(膜醋菌)获得直径大于40 nm的生物纤维丝条,用微菌类霉菌体合成支化营养菌丝或长度达几厘米的由孢子囊柄组成的丝条,分离纯化后丝条能够织成无纺布,用于湿法无纺布的过滤材料[9]。化学合成高分子材料是将天然物质通过化学加工方法合成,如美国杜邦公司2000年10月投产的索罗那(Sorona)纤维就是以玉米为原料的全新多聚体化合物。其纤维制品在舒适、耐磨、弹性、抗皱、防护等性能方面,大大优于现有的化纤制品。制成的人造皮革更柔软,更似真皮,且可回收再利用,为重要的环保产品。还有以玉米、小麦等农作物为原料发酵成乳酸再聚合而成的高分子化合物聚乳酸纤维(PLA)等[10]。2运用生物技术和基因工程开发生态纺织材料将现代生物技术巧妙地用于纺织纤维的开发,不仅能有效地改进现有纺织原料的不足,还可根据需要开发出适合纺织生产的新型纺织纤维,为纺织原料研发开辟新的途径。天然彩色棉纤维是美国科学家利用基因改性技术开发出的一种新型棉花品种,通过将彩色基因移植到白棉DNA中而获得。彩棉产品省去染色、印花等工序,减少了加工污水的排放和能源消耗,实现了从纤维生长到纺织成衣全过程的“零污染”。利用基因改性技术可生产抗虫棉,避免农药对环境及棉本身造成危害。中国农科院等单位将苏芸金杆菌的毒蛋白基因转入棉细胞内,培育出了十多个抗虫棉品种,能产生一种对抗鳞翅目昆虫的毒素,抗棉铃虫能力达80%以上。此外,转基因抗蚜虫棉、转基因抗虫抗病棉也相继培育成功,已在我国实验推广[11]。利用现代生物、基因工程技术还可向棉纤维中引入其他成分,形成天然多成分棉,改善棉纤维的性能。如利用在棉纤维中腔内具有可生物降解的聚酯内芯来生产天然的涤棉混合纤维,或引入动物纤维蛋白,从而形成含动物纤维的天然多成分棉,对改善棉纤维自身的不足,提高棉纤维的性能有很大贡献[12]。五彩丝、彩色羊毛的取得主要靠蚕的基因突变。利用染色体技术把需要的基因组合输入家蚕体内,培育出能吐彩丝的新蚕种。选择合适的彩色基因导入绵羊体内,也可培育出具有天然色彩的彩色羊毛[13]。运用现代生物技术还可扩大纤维的生产。例如,蜘蛛丝因具有超高强力是开发高强织物的理想原料,但如何获得大量的蜘蛛丝来满足纺织生产的需要就成了产品开发过程的难题。为此,加拿大Nexia公司将从蜘蛛丝蛋白中分离出的有关基因转入奶牛和山羊的乳腺细胞中,从其分泌的乳液中获得经过重组的蜘蛛丝蛋白,并从中提取到与蜘蛛丝性能相似的丝蛋白纤维。此外,还可利用微生物发酵技术从蜘蛛丝蛋白中分离出有关基因,人工重组到可以用发酵法大量生产蛋白质的诸如大肠杆菌或酵母菌等微生物体内,在其细胞中产生蜘蛛丝蛋白[14~15]。3可生物降解材料开发可生物降解纤维是指在一定时间和适当的自然条件下能够被微生物(如细菌、真菌、藻类等)或其分泌物在醇或化学分解作用下发生降解的纤维。可生物降解纤维制成的纺织品,通常在微生物作用下,可分解为二氧化碳和水等对环境无害的物质,是理想的石油类纤维材料替代品。降解采用的方法有堆肥降解、土地埋入降解、在活性污泥中降解、海水浸渍降解,以及在聚合物中通过添加组分进行共聚来加速降解等。目前美、欧、日对可生物降解纤维的研究处于领先地位,我国的研究起步较晚[16]。常见的天然纤维及目前研究较多的纤维素纤维、蛋白纤维、甲壳素纤维、淀粉纤维等都具有良好的生物降解。而合成纤维可降解中较大的一类是水溶性聚合物,它是一种亲水性的高分子材料,在水中能溶解或溶胀形成溶液或分散液,其分子链上一般含有一定数量的强亲水基团(如羧基、羟基、氨基、醚基和酞胺基等)。常见的生物降解性合成高分子有聚乙烯醇(PVA)、聚丙二醇(PPG)和聚乙二醇(PEG)等。聚乙烯醇(PVA)是人们最熟悉的水溶性高聚物,它在纤维和纤维改性及制作膜材料等方面都有广泛的应用。Planet Packaging Technologies公司用PEG共混制造生物降解高分子材料。美国Air Product & Chemical公司也开发了一种商品名为Vinex的材料,它是由聚乙烯醇和聚烯烃、丙烯酸酯接枝聚合而成,材料具有可降解性[17-18]。另一类是利用自然界中存在的天然物质经化学加工形成的合成纤维,如聚乳酸纤维(PLA),虽为合成纤维,但其原料来源于地球上不断再生而取之不竭的农作物,其废弃物埋入土中后,在土壤和水中微生物作用下大约经过1~2年时间,纤维可被完全分解为CO2和H2O从而发生降解[19]。虽然可降解纤维材料的开发已取得一定进展,但研究进行得还很不够,也没有取得较大的突破。随着人们生活水平的不断提高,对可生物降解功能纤维需求的增长,可以预见在新技术的应用和新材料的涌现下,可生物降解纤维将会被更广泛地应用[20~21]。4生态材料的发展趋势循环材料最基本的特点就是在主产业链上向前、向后延伸,实现闭合循环发展,使所用的原料和能源在不断的循环中得到合理利用,节约生态资源。现代纺织要求材料可循环、再生,产业发展可持续,因此,循环材料的开发和利用应是未来生态材料发展的趋势。最近日本提出了“完全循环型”新概念,要求彻底实现纤维从原料使用到最终制品回收全过程完全循环。吉玛公司、杜邦公司对聚酯等装置也提出了“全循环”概念[22]。天然纤维材料是地球上巨大的再生性生物高分子资源,作为“从自然产生又回到自然”的资源循环型材料,具有不可替代的发展优势。人造纤维材料作为传统的纺织材料,其原料多为天然可再生的非石油资源(木、棉、亚麻、竹、麦杆等),符合可持续发展的需求。合成纤维多为石油化合物,而石油属原生资源,且常规合成纤维具有不可再生、不可降解性。目前合成纤维如何进行回收再生是生态材料研究的重点,也是治理环境污染,节约资源和能源,促进合成材料循环使用的一种最积极的废弃物处理方法。已开发了有回收聚合物、纤维的原料再循环和回收单体的化学再循环系统[23~25]。回归自然、适应环境是纺织材料总的发展趋势。生态化纺织材料的发展为保护生存环境,实现纺织工业可持续发展提供了保障,符合21世纪绿色环保型时代的要求。随着社会的文明和进步,可认为未来的纺织工业将是绿色生态工业。参考文献:[1]吴湘济,沈晶.纺织工业绿色纺织品的设计与开发[J].上海工程技术大学学报,2002,(12):298-317.[2]黄猛.我国绿色纺织品的现状及发展趋势[J].棉纺织技术,2000,(2):31-33.[3]甘应近,白越,等.绿色纺织品的现状与展望[J].纺织学报,2003,(6):93-95.[4]Peter F Greenwood,Consultant.How green are cotton and linen?[J].textiles,1999,(3).[5]付群锋.浅谈新世纪纺织面料的发展趋势[J].印染,2000,(7):49-50.[6]A P Aneja,等.21世纪的纤维[J].国外纺织技术,2000,(1):1-3.[7]李晓燕.生态纺织纤维的性能与应用[J].棉纺织技术,2002,(11):

[1] Yu,M.-F.,Files,B. S.,Arepalli,S.,Ruoff,R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties .Phys. Rev. Lett. 2000, 84 :5552~5555 . [2] J. Hone,B. Batlogg,Z. Benes,A. T. Johnson,J. E. Fischer. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes .Science, 2000, 289 (5485) :1730 - 1733 . [3] Li Wenzhen, Liang Changhai, Qiu Jieshan. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell .Carbon, 2002, 40(7) :787 . [4] N. M. Rodriguez M. S. Kim F. Fortin I. Mochida and R. T. K. Baker. Carbon deposition on iron-nickel alloy particles .Applied Catalysis A: General, 1997, 148 (2) :265-282 . [5] R. Gao, C. D. Tan and R. T. K. Baker. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts .Catalysis Today, 2001, 65 (1) :19-29 . [6] Cuong Pham-Huua,Nicolas Keller a,Gabrielle Ehret c,et al. Carbon nanofiber supported palladium catalyst for liquid-phase re-actions:An active and selective catalyst for hydrogenation of cin-namaldehyde into hydrocinnamaldehyde[J] .Journal of MolecularCatalysis A:Chemical. 2001, 170 :155-163 . [7] P. A. Simonov, A. V. Romanenko, I. R. Prosvirin et al. On the nature of the interaction of H_2PdCl_4 with the surface of graphite-like carbon materials .Carbon, 1997, 35 :73-82 . [8] Rodriguez N M. Review of Catalyst of a catalytically growncarbon nanofibers[J] .Mater Res, 1993, 8 (12) :29-33 . [9] Chamber A,Nemes T,Rodriguez N M,et al. Catalytic be-havior of Graphite nanofiber supported nickel parti-cles.1.Comparison with other support media[J] .Phys ChemB, 1998, 102 (12) :2251-2258 . [10] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel particles.2.The influence of the nanofiberstructure[J] .Phys Chem B, 1998, 102 (26) :5168-5177 . [11] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel particles.3.The effect of chemical blocking onthe performance of the system[J] .Phys Chem B, 1999, 103 (13) :2454-2460 . [12] Mestl G,Maksimova N I,Schlogl R. Catalytic activity ofcarbon nanotubes and other carbon materials for oxidative de-hydrogenation of ethylbenzene to styrene[J] .Stud Sur SciCatal, 2001, 40 :2066-2072 . [13] Keller N,Maksimova N I,Roddatis V V,et al. The cata-lytic use of onion-like carbon materials for styrene synthesisby oxidative dehydrogenation of ethylbenzene[J] .AngewChem Int Ed, 2002, 41 (11) :1885-1888 . [1] 李权龙,袁东星,林庆梅. 多壁碳纳米管的纯化[J]. 化学学报, 2003,(06) . 中国期刊全文数据库 共找到 2 条[1] 项丽. 应用纳米碳管固相萃取环境中有机污染物研究进展[J]. 安徽农学通报, 2008,(21) . [2] 张晓明,王洪艳,李俊锋. 改性MWNTs/纳米HA/PLA骨修复材料的制备[J]. 吉林大学学报(工学版), 2008,(04) . 中国优秀硕士学位论文全文数据库 共找到 1 条[1] 韩素芳. 普鲁士蓝类化合物/碳纳米管修饰电极的制备及其性能研究[D]. 北京化工大学, 2007 . 中国期刊全文数据库 共找到 8 条[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) . [2] 温轶,施利毅,方建慧,曹为民. 压缩集结碳纳米管电极对活性艳红染料的电催化降解研究[J]. 化学学报, 2006,(05) . [3] 张新荣,姚成漳,王路存,曹勇,戴维林,范康年,吴东,孙予罕. 甲醇水蒸气重整制氢的高效碳纳米管改性Cu/ZnO/Al_2O_3催化剂[J]. 化学学报, 2004,(21) . [4] 唐文华,邹洪涛,张艾飞,刘吉平. 碳纳米管纯化技术评价与研究进展[J]. 炭素, 2005,(03) . [5] 陈灿辉,李红,朱伟,张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005,(10) . [6] 方建慧,温轶,施利毅,曹为民. 碳纳米管电极电催化氧化降解染料溶液的研究[J]. 无机材料学报, 2006,(06) . [7] 赵弘韬,张丽芳,张玉宝. 碳纳米管纯化工艺的研究[J]. 科技创新导报, 2008,(26) . [8] 李权龙,袁东星. 多壁碳纳米管用于富集水样中有机磷农药残留的研究[J]. 厦门大学学报(自然科学版), 2004,(04) . 中国博士学位论文全文数据库 共找到 4 条[1] 王哲. 多壁碳纳米管的形态控制及场发射性能研究[D]. 哈尔滨工业大学, 2007 . [2] 邓春锋. 碳纳米管增强铝基复合材料的制备及组织性能研究[D]. 哈尔滨工业大学, 2007 . [3] 胡长员. 碳纳米管功能化及其负载非晶态NiB合金催化剂的加氢性能研究[D]. 南昌大学, 2006 . [4] 米万良. 多孔陶瓷负载碳纳米管膜的制备及其气体渗透性能[D]. 天津大学, 2005 . 中国优秀硕士学位论文全文数据库 共找到 8 条[1] 张仲荣. 气相色谱应用于尾气排放的分析技术研究[D]. 天津大学, 2006 . [2] 张娟玲. 多壁碳纳米管/聚乙烯醇复合材料膜的制备及其性能研究[D]. 天津大学, 2006 . [3] 王翔. 催化裂解无水乙醇制备纳米碳管研究[D]. 西北工业大学, 2007 . [4] 张麟. 碳纳米管改性双马来酰亚胺复合材料的研究[D]. 西北工业大学, 2007 . [5] 李柳斌. 聚氯乙烯的熔融共混改性研究[D]. 武汉理工大学, 2008 . [6] 高远. 碳纳米管/丁苯橡胶/天然橡胶复合材料结构与性能的研究[D]. 南京理工大学, 2007 . [7] 华丽. 大孔径CNTs功能化处理及NiB/CNTs合金催化性能研究[D]. 南昌大学, 2006 . [8] 仪海霞. 碳纳米管球的制备及其应用研究[D]. 北京化工大学, 2007 . 中国重要会议论文全文数据库 共找到 2 条[1] 李权龙,袁东星. 碳纳米管作为吸附剂在环境分析中的应用[A]. 第二届全国环境化学学术报告会论文集[C], 2004 . [2] 徐雪梅,黄碧纯. 碳纳米管负载V_2O_5脱氮催化剂的研究[A]. 第五届全国环境催化与环境材料学术会议论文集[C], 2007 .

  • 索引序列
  • 乙醇的毕业论文
  • 乙二醇的毕业论文
  • 毕业论文乙醇水
  • 乙二醇项目毕业论文
  • 聚乙烯醇论文文献
  • 返回顶部