用word简单的处理了一下。
此本来自自己硕士论文的综述部分。
FT-MIR在检测某特定物质时会根据该物质的官能键与官能团,产生属于该物质的特征波。研究表明在使用多自变量建立预测某物质模型的过程中,选出该物质特征波来作为自变量,不仅能提高模型预测的准确性,还能增强模型的稳定性(Leardi et al 2002, Zou et al 2010, Vohland et al 2014)。John等较早提出了特征选择主要分为两大类,第一类为过滤法,其是独立于预测变量的特征选择算法,并且单独度量各个自变量的重要性,过滤掉在数据分析中几乎没有用的特征;第二类为封装法,其是将所有自变量逐一添加或删除应用在某类算法中,根据模型结果找到最佳自变量组合(John et al 1994)。两者各有优缺点,过滤法速度快,但其不能根据建立模型的结果来分析自变量,而封装法能够结合建立模型准确性的结果来选择变量,但其计算量比过滤法大且有过拟合的风险(Saeys et al 2007)。但随后还出现了第三种嵌入法,其在算法构建中加入了特征波选择,与封装法类似,但其不能用于其他算法(只能适用筛选特征波的算法),优点在于比封装法降低了计算量(Saeys et al 2007)。所以比较合理的筛选光谱特征波方法是先使用过滤法缩小范围,再使用封装法或嵌入法筛选最终特征波。
定性判别分析(Discriminant Analysis)是在已知特征与类别的训练集上建立判别模型,再使用判别模型对已知特征与未知类别的新数据进行分类预测。 定性判别分析根据判别准则可分为Fisher判别、距离判别和Bayes判别。Fisher判别是将多维数据投影到某一个维度上,使各类的总体之间最大限度分开,再选择合适判别规则将新的样本分类判别。距离判别是先计算出已知分类的各类别的重心,再对未知类别的数据计算其与各类重心的距离,与某类重心距离最近则归于该类。Bayes判别是由先验概率计算出后验概率,再根据后验概率分布对新数据作出统计推断。 定量分析(Quantitative Analysis)是通过某类算法使自变量能够较为精确地预测因变量的一种回归方法,且因变量一般为连续变化的数据,其一般分为线性、广义线性与非线性三种。主要有:偏最小二乘法(Partial least squares, PLS),主成分分析-线性判别分析(PCA-LDA),决策树(Decision Tree, DT),人工神经网络(Artificial neural network,ANN),支持向量机(Support Vector Machine, SVM),K最近邻算法(K Nearest Neighbor, KNN),逻辑回归(Logistic Regression, LR),随机森林(Random Forest, RF)。这8中算法的理论部分请查看 机器学习 部分 11 与 12 篇。
定性判别模型的评价可使用混淆矩阵,混淆矩阵及其相关参数是最简单与最直观的评价指标之一,以二分类为例,混淆矩阵如表1-3,可基于混淆矩阵计算出判别模型的评价指标
推导出的参数有:
定量分析模型的评价指标主要有决定系数(coefficient of determination,R2 )和均方根误差(Root Mean Squared Error,RMSE),R2值越大表示模型越好(0≤R2≤1),RMSE越小表示模型越好(RMSE≥0)。 计算公式如下:
在不同数据集中,可分别计算出相应的R2与RMSE参数。在训练集中,其中公式(2)中n=样本数-主成分数-1时,全部数据建模的参数表示为校正R2C(Calibration coefficient of determination,R2C)与校正RMSEC(Root mean square error of calibration,RMSEC);当公式(2)中n=样本数-交叉验证时留出的样本数时,建模的参数表示为交叉R2CV(Cross-calibration coefficient of determination,R2CV)与交叉RMSECV(Root mean square error of cross-calibration,RMSECV);在测试集中,当公式(2)中n=样本数时,验证结果得到的参数为验证R2V(Validation coefficient of determination,R2V)与验证RMSE p (Root mean square error of validation,RMSEp)。
在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
1.1原材料
苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
1.2PANIF的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
1.4PANIF/rGO复合材料制备
按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
1.5仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.
2结果与讨论
2.1形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
2.2FTIR分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
2.4电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
2.1 研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
2.2 试验与研究
2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
2.3 产品的性能
2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
2.4 产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
红外比较复杂,不容易分析,一般只是看主要的键的主要峰。如果产品够纯,能够找到所有的震动吸收。丁二酸二乙酯,里面有很多键,有C-H、C-C、酯基。我认为你只需要找到酯基对应的吸收峰就可以了,具体的方法可以找一本红外工具书,然后找对应的吸收。上面说的是通用的方法。丁二酸二乙酯也算是常见的物质,应该有标准红外谱图,和你的图对比一下就行了。不过需要有数据库哦,自己找找吧。
橡胶种类添加配合剂等感觉这样的提问没有意义建议自己下去查查资料
搞化学的基本都会去小木虫,那里的专业性比较强,百度一搜就找到了
色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。
涂料检测中的现代色谱分析技术应用分析
摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。
关键词:涂料检测;现代色谱;气相色谱法
1 高效液相色谱法
该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。
涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。
HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。
2 气相色谱法
2.1 裂解气相色谱-傅里叶变换红外光谱联用
能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。
我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。
红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。
2.2 裂解气相色谱-质谱联用
涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。
了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。
涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。
3 结论
快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。
参考文献
[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).
[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).
点击下页还有更多>>>色谱分析技术论文
金属-空气电池,如锂空气,可能是大规模储能的关键,因为它们在所有电化学设备中具有最高的能量密度。然而,这些设备避免了导致电池失效的不可逆副反应,特别是当环境空气被用作氧气源时,因此对表面化学演变的深入了解对于制造更好的设备是必不可少的。
来自坎皮纳斯大学的学者 首次利用同步红外纳米光谱仪(SINS)对电池放电过程中电极表面进行了多尺度(纳米-微观)FTIR分析,以跟踪纳米尺度上的化学成分变化,并成功地与运行的显微FTIR表征相关联。 现场测试结果表明,产物从纳米级到微米级分布均匀,放电率不影响化学成分。在Operando中,显微傅立叶变换红外光谱(MicroFTIR)显示了大气对Li产物形成的依赖性,在水、LiOH和Li2CO3中还检测到CO2电还原产生的HCOO-颗粒的存在,甚至最低浓度的CO2和H2O都会影响O2反应。最后,电池放电140秒后,Li2O2与DMSO反应生成DMSO2的证据表明,这项新技术在帮助寻找稳定的电解质方面具有重要意义。
相关文章以“In Situ Infrared Micro and Nanospectroscopy for Discharge Chemical Composition Investigation of Non-Aqueous Lithium–Air Cells”标题发表在Advanced Energy Materials。
论文链接:
图1.a)区域1的捷联惯导相位谱(AFM地形图插图中的开放蓝色圆圈)和b)用显微FTIR技术获得的FTIR。
图2.a)放大倍数为4倍的分析区域,b)放大25倍的显微照片,以及c、d)电池放电时间的红外光谱。
图3.a)纯锂暴露在大气中之前(t=0)和之后的图像(t=1200s),b)锂暴露时间的红外光谱,c,d)来自分析波数范围的2D变焦图像。
本文利用显微傅里叶变换红外光谱和捷联惯导光谱研究了锂-空气电池放电过程中的微米和纳米尺度的红外振动特征。首先,本文介绍了一种新的电池设计,采用适合于开放式电池的碳基阴极。使用相同的电池进行操纵杆测试,两种技术都提供了有关放电产物的形成和电解质降解的有价值的信息。结果强调了三相对放电反应发生的重要性,即使在阴极表面不均匀的情况下,尽管放电速率不同,微米和纳米级的分析检测到的放电产物是相同的。通过微观FTIR表征,对该体系在放电状态下的性能进行了研究。结果表明,在恒流控制下,锂的氧化反应发生在140s的放电过程中,包括过氧化锂、碳酸盐、氢氧化物和甲酸盐。基于这些发现,本文指出了多尺度FTIR技术的适用性,并强调了高时间分辨率和高灵敏度,这使得本文所报道的方法成为研究转换电池中典型的复杂放电过程的重要工具,就像这里研究的锂-空气一样。(文:SSC)
1. 吴静,曹知平,谢超波等.石化废水的三维荧光光谱特征. 光谱学与光谱分析.2011(收录)2. Zhang J B, Poncin S., Wu J. et al. A multiscale approach for studying an anaerobic multiphase bioreactor. Chemical Engineering Science (2011), doi:10.1016/j.ces.2011.01.0213. 吴静,赵鹏娟,田磊等.高温污泥厌氧消化器的启动.环境科学.2011,32(2):217-220.4. 吴静,崔硕,苏伟,曹知平. 北京城市水体的三维荧光特征. 光谱学与光谱分析.2011(收录)5. 蒋剑凯,吴静,刘雪华.景观湖水质的三维荧光指纹. 光谱学与光谱分析, 2010, 30(6):1525~15296. Wu J, Zhou HM, Li HZ, et al. Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor, Water Research,2009, 43, 12 , 30297. J. Wu, H.M. Zhou, J. Jiang, Y.M. Xie. Quantitative investigation on nucleation of flocculent sludge under different hydraulic conditions in anaerobic reactors.Journal of Biotechnology, 136(Supplement 1), 2008, S4668. 周红明, 吴静, 谢宇铭等. 厌氧反应器中絮状污泥成核过程研究.环境科学, 2008. 29(11): 122~1269. Wu J, Lu Z Y, J C Hu, Feng L, Huang J D, Gu X S. Disruption of Granules by Hydrodynamic Force in Internal Circulation Anaerobic Reactor. Water Science & Technology. 2006, 54 (9): 9-1610. Wu J., Pons M.N. and Potier O. Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy. Water Science & Technology. 2006, 53(4/5),449-456获得专利一种热泵和污泥干化集成方法及系统(发明,第一发明人)复合内循环厌氧反应器(发明,第一发明人)一种竖流式自动隔油沉淀装置(发明,第一发明人)医院污水全封闭处理工艺与一体化装置(发明,第一发明人)一种好氧厌氧两用废水处理装置(发明,第一发明人)新型内循环厌氧反应器(实用新型,第一发明人)内循环厌氧膨胀床/流化床反应器(实用新型,第一发明人)
徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演. 地球物理学报, 2015, 58(3): 741-747, SCI, EI.徐涵秋, 林中立, 潘卫华. 单通道算法地表温度反演的若干问题讨论——以Landsat系列数据为例. 武汉大学学报(信息科学版), 2015, 40(4): 487-492, EI.徐涵秋, 唐菲. 新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义. 生态学报, 2013, 33(11), 3249-3257, 中科院生态环境研究中心主办刊物.Xu Hanqiu. Dynamic of soil exposureintensity and its effect on thermal environment change.International Journalof Climatology, 2014SCI.XU Hanqiu. Rule-based impervious surface mapping using high spatial resolution imagery.International Journal of Remote Sensing, 2013SCI.XU Hanqiu. Assessment of consistency in forest-dominated vegetation observations between ASTER and Landsat ETM+ images in subtropical coastal areas of southeastern China,Agricultural and Forest Meteorology, 2013SCI.XU Hanqiu. Analysis of impervious surface and its impact on urban heat environment using the Normalized Difference Impervious Surface Index (NDISI).Photogrammetric Engineering and Remote Sensing, 2010, 76(5), 557-565,SCI、EI.XU Hanqiu, DING Feng and WEN Xiaole. Urban expansion and heat island dynamics in the Quanzhou region, China.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(2), 74-79,SCI、EI.XU Hanqiu, LIN Dongfeng, Tang Fei. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China.International Journal of Climatology, 2013SCI.XU Hanqiu. A new index for delineating built-up land features in satellite imagery.International Journal of Remote Sensing, 2008, 29(14), 4269-4276,SCI、EI.XU Hanqiu. Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique.Photogrammetric Engineering and Remote Sensing, 2007, 73(12), 1381-1392,SCI、EI.XU Hanqiu. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery.International Journal of Remote Sensing. 2006, 27(14), 3025–3033,SCI、EI (ESI 前1%高引论文,列大陆学者3S领域引用最高的100篇论文之一).XU Hanqiu. Evaluation of two absolute radiometric normalization algorithms for pre-processing of Landsat imagery.Journal of China University of Geosciences, 2006, 17(2), 146-150,SCI.XU Hanqiu and CHEN Benqing. Remote sensing of the urban heat island and its changes in Xiamen City of SE China.Journal of Environmental Sciences, 2004, 16(2), 276-281,SCI, EI.XU Hanqiu. Assessment of the SFIM Algorithm.Chinese Geographical Science, 2004, 14(1), 48-56,SCI.XU Hanqiu. An assessment of land use changes in Fuqing County of China using remote sensing technology.Chinese Geographical Science, 2002, 12(2), 126-135,SCI.XU Hanqiu, WANG Xiaoqin and XIAO Guirong. A remote sensing and GIS integrated study on urbanization with its impact on arable lands: Fuqing City, Fujian Province, China.Land Degradation & Development, 2000, 11(4), 301-315,SCI、EI, 并被CSA (剑桥科学文摘) 推荐为遥感应用热点研究的25篇文献之一.XU Hanqiu, MacCarthy I. Markov chain analysis of vertical facies sequences using a computer software package (SAVFS): Courtmacsherry Formation (Tournaisian), southern Ireland.Computers & Geosciences, 1998, 24(2), 131-139, 国际IAMG主办刊物,SCI、EI(SAVFS软件被IAMG收入其官方网站).徐涵秋, 张铁军. ASTER与Landsat ETM+植被指数的交互比较. 光谱学与光谱分析, 2011, 31(7), 1902-1907, 中国光学学会主办刊物,SCI.(2014年“领跑者5000——中国精品期刊顶尖论文”) 徐涵秋. 区域生态环境变化的遥感评价指数. 中国环境科学, 2013, 33(5), 655-662, 中国环境科学学会主办刊物,EI.徐涵秋. 遥感监测地表裸露度动态变化及其热环境效应. 农业工程学报,2012, 28(23): 98-106. 中国农业工程学会主办刊物,EI.徐涵秋. 基于城市地表参数变化的城市热岛效应分析. 生态学报,2011, 30(14), 3890-3901, 中科院生态环境研究中心主办刊物.徐涵秋. 福建省长汀县河田盆地区近35年来地表裸土变化的遥感时空分析. 生态学报, 2013, 33(10), 2946-2953. 中国生态学会主办刊物徐涵秋, 何慧, 黄绍霖. 福建省长汀县河田水土流失区植被覆盖度变化及其热环境效应. 生态学报, 2013,33(10), 2954-2963. 中国生态学会主办刊物徐涵秋. 近30年来福州盆地中心的城市扩展进程. 地理科学, 2011, 31(3), 351-357, 中国科学院东北地理与农业生态研究所主办.徐涵秋, 张铁军, 李春华. ASTER与Landsat ETM+热红外传感器数据的比较研究. 武汉大学学报(信息科学版), 2011, 36(8), 936-940+1007, 武汉大学主办,EI.徐涵秋. 城市不透水面与相关城市生态要素关系的定量分析. 生态学报, 2009, 29(5), 2456-2462, 中科院生态环境研究中心主办刊物.徐涵秋.一种快速提取不透水面的新型遥感指数. 武汉大学学报(信息科学版), 2008, 33(11), 1150-1153, 武汉大学主办,EI.徐涵秋. 基于影像的Landsat TM/ETM+数据正规化技术. 武汉大学学报(信息科学版), 2007, 32(1), 62-66, 武汉大学主办刊物,EI.徐涵秋. 福州市城市热岛三维分布图, 载: 遥感见证——中国遥感卫星地面站建立20年卫星遥感图集, p. 298, 北京:科学出版社, 2006.徐涵秋. 环厦门海域水色变化的多光谱多时相遥感分析. 环境科学学报, 2006, 26(7), 1209-1218, 中科院生态环境研究中心主办刊物.徐涵秋. 利用改进的归一化差异水体指数(MNDWI) 提取水体信息的研究. 遥感学报, 2005, 9(5), 589-595, 中科院遥感应用研究所主办刊物 (中国百篇最具影响国内学术论文、《遥感学报》年均引用次数第1名).徐涵秋. 基于压缩数据维的城市建筑用地遥感信息提取. 中国图象图形学报, 2005, 10(2), 223-229, 中国图象图形学会、中科院遥感应用研究所主办刊物.徐涵秋. Landsat 7 ETM+影像的融合和自动分类研究. 遥感学报, 2005, 9(2), 186-194, 中国科学院遥感应用研究所主办刊物.徐涵秋. 基于谱间特征和归一化指数分析的城市建筑用地信息提取. 地理研究, 2005, 24(2), 311-320, 中科院地理科学与资源研究所主办刊物.徐涵秋. 基于SFIM算法的融合影像分类研究. 武汉大学学报 (信息科学版), 2004, 29(10), 920-923, 武汉大学主办刊物.徐涵秋, 陈本清. 不同时相的遥感热红外图象在研究城市热岛变化中的处理方法. 遥感技术与应用, 2003, 18(3), 129-133, 中科院遥感联合中心等主办刊物.(年均引用次数列该刊第3位)徐涵秋. 爱尔兰的高等教育, 载: 理论与实践, 北京:光明日报出版社, 1999.唐菲, 徐涵秋. 旧城改造与城市热岛效应关系的遥感研究. 地理科学, 2011, 31(10), 1228-1234, 中国科学院东北地理与农业生态研究所主办.吴学文, 徐涵秋. 一种基于水平集方法提取高分辨率遥感影像中主要道路信息的算法. 宇航学报, 2010, 31(5), 1495-1502, 中国宇航学会主办刊物,EI.张铁军, 徐涵秋. 基于MNDWI水体指数的ASTER与ETM+影像交互比较研究. 宇航学报, 2010, 31(4), 中国宇航学会主办刊物,EI.李春华, 徐涵秋, 陈荔聪. ASTER和Landsat-7ETM+两种多光谱传感器影像的交互对比. 光谱学与光谱分析, 2010, 30(9), 中国光学学会主办刊物,SCI、EI.李婉晖, 徐涵秋. 基于生物光学模型的二类水体光学活性物质估算: 以晋江下游河段为例. 环境科学, 2009, 30(4), 中科院生态环境研究中心主办刊物.孙小丹, 徐涵秋. 一种利用多光谱双向检测和多尺度角特征验证的角提取方法. 武汉大学学报(信息科学版), 2009, 34(10), 1231-1235, 武汉大学主办,EI.孙小丹, 徐涵秋. 农用地遥感影像信息的角提取方法. 农业工程学报, 2009, 25(10), 135-141, 中国农业工程学会主办,EI.温小乐, 徐涵秋. 基于多源同步数据的闽江下游悬浮物定量遥感. 环境科学, 2008, 29(9), 2441-2447, 中科院生态环境研究中心主办刊物,EI.
9.1 电弧粉末原子发射光谱法半定量分析
光谱半定量分析是从事岩矿分析的实验室的一项经常性的分析任务。20世纪中期,光谱半定量分析为地球化学找矿及区域地质普查分析提供数据,曾为地质矿产资源的勘查和矿产综合利用做出很大贡献。
目前,随着电感耦合等离子体光谱仪、电感耦合等离子体质谱仪、X射线荧光光谱仪等新仪器新技术的发展,光谱半定量分析虽然已不再是地质样品的主要分析技术;但作为一种简单、快速、信息量很大的分析方法,它仍是地质分析的重要手段之一。光谱半定量分析可以用来全面了解各种岩石、土壤、矿石、矿物成分的大致含量,为剔除低品位的矿石样品、选择合理的分析方法、查明化学分析的干扰成分、制定各种合理的分析方案等提供依据。对从事岩石矿物分析的光谱分析者来说,半定量分析是一项基本实验技能。
9.1.1 标准试样的配制
光谱半定量分析,是尽可能多地提供试样中元素是否存在及其存在的大致含量的信息。因此,标准试样的配制,也要尽可能多地配入各种元素,这就极大地增加了配制标准的困难。首先是基体成分的选择,很难找到适合的天然“空矿”作基体,只能采用人工合成基体来配制。
近年来,随着分析技术和仪器分析的发展,我国已有了一批硅酸盐岩石、碳酸盐岩石、土壤、矿石、矿物及光谱分析用人工合成成分分析标准物质,定值元素从主量、微量到痕量元素等有几十个,给光谱半定量分析提供了很好的标准物质。根据分析对象,选用相应类型的天然标准物质,这是最理想的方案,可以消除组分、晶体结构不同的影响,也节省了配制标准的时间。除此之外,也可以用人工合成基体来配制(见第11章),分组加入各种元素。
(1)造岩元素标准系列
在纯石英粉的基体中加入8个造岩元素的化合物(Fe2O3、Al2O3、CaO、MgO、TiO2、MnO2、Na2CO3、K2CO3)配制成含量系列(表9.1)。上述8个元素分成两组(含量加大一倍配制),一组元素含量由高到低,另一组含量由低到高,然后两组互相交叉等量混合而成。
表9.1 造岩元素标准系列 (wB:%)
续表
(2)易挥发元素为主的标准系列
考虑到各元素的检出限及其地壳中的丰度不同、谱线之间的相互干扰,可采用交错方式来配制标准系列。基体组成为:m(Fe2O3)∶m(Al2O3)∶m(CaO)∶m(MgO)∶m(Na2CO3)∶m(K2CO3)∶mSiO2=5∶15∶1∶2∶2∶2∶73,经混匀后的基体,在高温炉内950℃灼烧2h,研磨均匀后备用。先按表9.2、表9.3分别配制甲、乙两组标准,然后将甲、乙两组相对应的编号等量混合均匀,得到易挥发元素为主的标准系列(表9.4)。
表9.2 甲组标准系列
表 9.3 乙组标准系列
表 9.4 易挥发元素为主的标准系列
( 3) 难挥发的稀有、稀土元素标准系列
配制方法与上述 ( 2) 易挥发元素为主的标准系列相同。用相同的基体,先按表 9.5和表 9.6 分别配制丙、丁两组标准,再以丙、丁两组相对应编号等量混匀,得到难挥发的稀有、稀土元素标准系列 ( 表 9.7) 。
表 9.5 丙组标准系列
表 9.6 丁组标准系列
表 9.7 难挥发的稀有、稀土元素标准系列
9.1.2 摄谱
目前,光谱半定量分析一般是采用垂直电极法,即将粉末试样装入下电极小孔中,用交流电弧激发; 或是采用水平电极撒样法。不管是采用哪种方法,都要首先根据实验选择各种类型试样的分析条件,如仪器狭缝,照明系统,电极孔穴大小、壁厚,分几段摄谱,每段曝光时间,电流大小,相板类型,显影条件; 另外,如何防止试样喷溅,是否加入缓冲物质,都必须通过实验积累经验。然后,先摄取标准系列的谱带,观察标准系列各元素含量谱线黑度变化的梯度,作为今后的参比标准; 因为工作条件选定之后,每一次就不需要全部摄取整套标准系列,只摄取 2 ~ 3 个作为参考和校准,这样可以节省相板和时间。
9.1.3 释谱
释谱是半定量分析的主要环节。地质试样的组分复杂,谱线的相互干扰及组分的影响非常严重。要正确地鉴定试样中元素的存在与否并比较准确地估计其含量,必须掌握正确的释谱技术和方法。最常用的有以下两种释谱方法。
( 1) 谱线黑度比较法
谱线黑度比较法是基于目测元素分析线的黑度,与标准中相对应的元素谱线黑度进行比较,从而给出元素的近似含量。这种方法比较直观、简便、快速,存在着很大的人为主观偏差,主要依赖释谱者的经验; 表现在释谱者在脑海中要熟记标准板中各元素谱线含量范围的黑度概念,在实际分析中,就能很快地从思维中比较出来。
( 2) 谱线显线法
在鲁沙诺夫与加里宁等学者编制的谱图中,在规定的条件下,根据各元素谱线的检出限不同,将谱线强度分为 10 个等级,在每条谱线元素符号的右上角标注的数字,就代表这条谱线的检出限范围 ( 表 9.8) 。此法称为谱线显线法。
表 9.8 谱线等级
光谱分析工作者根据此经验,对每个元素都选择出几条强度不同、受干扰少的谱线,在规定的分析条件下摄取标准试样,观察每条谱线显线时的最小浓度 ( 含量) 及谱线黑度的状况,以此作为标准在分析中应用。在实际分析中,往往是两种方法结合进行。
( 3) 释谱的基本技能
释谱的基本技能,需要在实践中积累经验,掌握多方面的知识,才能成为熟练的分析工作者。下面将日常释谱中应熟知的几个问题作一简述。
a.要了解所用仪器的色散率和分辨率。最简便的方法是看分析线与干扰线的波长差,按公式 R = λ/Δλ 计算出两条谱线的分辨率 ( 实际分辨率是理论分辨率的 70% ~ 80%) ,与仪器的分辨率相比较 ( 国产北二光一米光栅光谱仪,光栅刻划面积 60mm × 60mm,刻线 1200 条/mm) 。如果计算的分辨率比仪器分辨率大,表明此谱线有干扰。
b.熟悉铁谱线各个波段的特征,能凭借铁谱线迅速找到所要找的分析元素的谱线波长位置。
c.在释谱时,先大致了解整条谱带中各元素存在的情况,确定属于哪种类型的岩石、矿石、矿物,哪些元素含量大于 10%,从而了解摄谱时试样是否喷溅,主体元素对哪些元素谱线有干扰,哪些伴生元素可能存在。
d.根据所选择的各元素谱线组,按照前述两种方法,逐一估算各元素的含量。此时还应具有这种经验,哪种主量元素存在能增强哪些低量元素谱线,能抑制减弱哪些元素谱线; 计量时,要凭经验作适当的校正,才能取得好的分析结果。
e.必须了解分析线的干扰情况。如果分析元素与干扰元素的蒸发行为不同,可根据不同电流摄取的两条谱带中,分析线出现的情况来判断是否干扰。
f.对各元素的地球化学知识,矿石、矿物化学组分的特性和常见的伴生元素,应有一定的了解,以便释谱时正确判断元素存在的可能性。
9.1.4 特殊试样的检验
在分析任务中,有时会遇到一些微细粒矿石、矿物和厂矿或商检部门送来一些特殊物质要求检验。对这些任务,很难以半定量报出结果,其一是没有相应的标准; 其二试样量少,不允许重复分析。以往的做法是: 采用小孔径电极,先在电极孔穴中垫入一层炭粉,再将试样填入,然后再盖上一层炭粉,压紧,用 8A 电流全曝光,摄取一条谱带。如果小电流不能全部蒸发试样,在电极头上出现明亮的金属物时,再用大电流 ( 14A) 烧完。如送来的是少量液样,可将液样置于小坩埚中,加入少量炭粉,用小玻璃棒混合,烘干,装入电极,用 8A 电流曝光。
由于给不出半定量数据,只能报出试样中元素存在的大、中、小含量概念,然后与送样者共同讨论,来判定是属于哪种类型矿物或何种物质,并提出进一步工作的建议。
9.1.5 半定量分析线及检出限
表 9.9 中所列检出限,初试的工作条件如下。
1) 仪器: 中型水晶摄谱仪与玻璃棱镜摄谱仪,狭缝宽 7μm,三透镜照明系统,中间光圈 3.2mm。
2) 激发源: 交流电弧发生器,分两段摄谱,第一段 9A 曝光 90s,第二段 14A 烧完。
3) 电极: 上电极为圆锥形,下电极孔穴为 2.5mm × 3mm × 0.6mm,所用标准为模仿硅酸盐岩石类型基体配制。
4) 光谱紫外Ⅱ相板,A、B 型混合显影液,20℃ 显影 3min。
表 9.9 中提供的半定量分析检出限是参考值。由于各实验室用的仪器不同,电极规格、电流、相板类型不同,都会影响检出限。因此要根据实际情况,摄取参比标准,给出本实验室工作条件下的检出限。表 9.9 的谱线表及检出限,最初是加里宁等学者于 1957年提出来的,后经我国光谱分析工作者不断进行修订、补充; 仪器及工作条件也都不同,因而表中的数据仅为参考值。
表 9.9 半定量分析检出限
续表
续表
续表
续表
续表
续表
续表
续表
续表
续表
9.2 能量色散-X射线荧光光谱法半定量分析
自20世纪80年代,国际上就已有开始采用能量色散-X射线荧光光谱法(EDXRF)分析地质试样品的报道。因EDXRF的能量分辨率有限,采用普通X射线管激发的常规EDXRF的背景信号相对较高,检出限较差,因此EDXRF在地球化学实验室中的应用不如波长色散XRF(WDXRF)普遍。近期国际上推出了一种采用偏振X射线激发试样的EDXRF商品光谱仪,可以大幅度降低散射X射线造成的背景,提高信背比,改善检出限。采用偏振X射线激发-EDXRF分析地质试样的研究早见于1991年,商品仪器问世则是在1998年。该类型的光谱仪与普通的能量色散X射线光谱仪相比,其突出优点是元素检出限低;测量元素范围得到扩展,Na~Nd范围内的元素均可用灵敏度高、干扰少的K系线进行分析,其他更重的元素则可用L线分析。
对于大多数金属元素,偏振X射线激发-EDXRF光谱法与波长色散XRF光谱法的检出限相当。由于是全谱测量,当常规不能分析的元素存在含量异常时,也可及时被发现并同时分析。偏振X射线激发-EDXRF的缺点是:Na、Mg等轻元素的分析灵敏度低、检出限差,分析粉末试样中这些元素时的精度不如WDXRF;能量分辨率低,存在比较多的谱线重叠干扰,例如元素谱线间的重叠干扰、逃逸峰重叠干扰、合峰重叠干扰等。因此,在采用该技术进行多元素定性和定量分析时,一般需要配备解谱软件对本底和重叠干扰进行剥离。
EDXRF法分析固体试样时,可以根据分析目的采用熔融玻璃片法、粉末压片法、直接粉末法等不同的试样制备方法。对于均匀试样或者仅做定性分析时,甚至可以不对试样进行制备而直接分析。对于岩矿试样的半定量分析,可采用粉末压片或直接粉末法进行制样和分析。对于试样量比较多而又易于压制成型的试样,采用低压聚乙烯(或硼酸)镶边衬底或塑料环镶边的方式压制比较便利,速度快,成本低。对于试样量少或比较珍贵的试样,采用直接粉末法制样比较理想,分析过的试样仍可用于其他方法,因为该种制样方法基本不损耗试样。
本节介绍直接粉末法制样,偏振X射线激发-EDXRF光谱法半定量分析岩矿试样的方法。
9.2.1 仪器设备和试剂
仪器:XEPOS+型台式偏振激发能量色散-X射线荧光光谱仪(德国SPECTRO公司),配备Pd靶X射线管,最高电压50kV,最大电流2mA,最大功率50W;硅漂移探测器,铍窗厚度15μm,分辨率148eV(5.9keV处),电制冷型,无需液氮冷却;配备Zr、Pd、Co、Zn、CsI、Mo、Al2O3和HOPG等8个二级靶(偏振靶),可根据分析元素选定;带X射线快门的12位置试样自动交换系统,可在氦气和空气两种介质下进行测定。
试样盒:由内环、外环和盖子3套件组成,内环内径28mm;使用时配以聚丙烯膜制作盒底。
试样盒底膜:TF-240型聚丙烯薄膜(FLUXANA公司),厚度4μm。
9.2.2 试样制备
试样要求:按规定对试样粗碎、细碎、缩分,研磨并过200目筛。
试样盒的准备:将内环放置在平滑、干净的平面上(铺上硫酸纸),顶端放置一块宽约4.0cm的聚丙烯薄膜,再用外环将内环连同薄膜一起扣好,然后上下颠倒内外环组件,双手均匀向下平压内环边缘,直至内环和外环的下沿均与衬底面平行,薄膜被拉平,形成光滑的杯底。
试样制备:在制备好的试样杯中,加入4.0g风干后的试样(或校准试样),用平底玻璃棒压实,盖上盖子后,即可放入仪器进行测量。
9.2.3 测量条件
采用4种不同的激发条件,对各不同元素进行激发和检测(表9.10)。测量气氛为空气。
表9.10 偏振激发能量色散-X射线荧光光谱法分析地质样品的测量条件
注:除Pr、Hf、Ta、W、Bi、Tl、Th、U等元素采用Lα线,Pb采用Lβ1线分析外,其他各元素均采用Kα线进行分析。
9.2.4 方法校准
校准试样以GBW07401~GBW07416(其中GBW07411未参加校准)、GBW07301~GBW07313和GBW07103~GBW071014三个系列的地球化学标准物质为主,可根据需要附加矿石标准物质,使感兴趣的元素均具有合理的含量范围。校准试样的制备方法与“9.2.2试样制备”相同。校准步骤如下。
1)先按表9.10的条件对各校准试样进行测量,根据所给定的各标准物质的组成计算其平均原子序数;以测量得到的Mo靶靶线的康普顿散射强度与瑞利散射线强度的比值为纵坐标,以平均原子序数为横坐标,按对数函数进行拟合,进行平均原子序数校准,作为未知试样基本参数计算的前提。
2)对用Mo、Al2O3和Co靶测量得到的数据,以Mo靶线的康普顿散射为内标进行基体校正和方法校准;对用HOPG靶测量得到的数据,用基本参数法进行基体校正和方法校准。这些校正和校准过程均采用仪器配备的软件进行,无需脱机计算。
9.2.5 方法的检出限
EDXRF分析中,检出限的大小不仅受背景计数值的影响,而且受重叠干扰元素的影响;同时,当试样基体不同时,分析元素的灵敏度会发生变化,从而影响检出限值。因此,难以给出合适的检出限值。表9.11是分析纯硅酸盐基体试样时的仪器检出限参考值。实际分析中,仪器会根据所分析试样的实际组成给出分析值或实际检出限值。
表9.11 偏振激发-EDXRF分析纯硅酸盐基体、无谱线重叠试样时的仪器检出限 (单位:10-6)
9.2.6 特殊试样的分析
有些特殊试样,可供分析使用的试样量很小,或者仅有几个甚至一个颗粒,可以放在试样盒中进行测量,此时仪器不能给出合理的含量估计值。分析者可以通过试样能谱的解读,判断试样的主、次、痕量成分,从而给出定性的结论。由于不损耗试样,该方法对于这类试样很实用。
参考文献和参考资料
光谱学与光谱分析编辑部.1985.光谱分析常用谱线表[M].北京:光谱学与光谱分析编辑部
C·K·加里宁.蒋铁珊译.1959.矿物原料分析光谱线表[M].北京:地质出版社
本章编写人:吴景钵(国家地质实验测试中心)。
詹秀春(国家地质实验测试中心)。
你好,看你的问题是去年的,但是我还是说一下我的情况吧,我的清样稿日期是18年6期次,清样稿有关资料也全部按时提交,但是6期次刊出的没有我的文章,然后咨询了编辑部,说是可能在7期次,我觉得编辑部还是很负责的,上述问题应该也是为了更好地刊出文章,给出充足的准备吧,你情况如何?几个月后刊出的?
O4 物理学类核心期刊表 纯粹物理 序号 刊 名 出版周期 出版地 主 办 单 位 ISSN 联系方式 1 物理学报 月刊 北京 中国物理学会 1000-3290 北京 603 信箱( 100080 )编辑部电话: 2 光学学报 月刊 上海 中国光学学会 0253-2239 上海 800-211 信箱( 201800 )编辑部电话: 3 高能物理与核物理 月刊 北京 中国科学院高能物理研究所 0254-3052 北京市 918 信箱( 100039 )编辑部电话: -2664 4 物理 月刊 北京 中国物理学会 0379-4148 北京海淀区中关村中国科学院物理研究所( 100080 )编辑部电话: 5 原子与分子物理学报 季刊 成都 中国物理学会原子与分子物理专业委员会 1000-0364 四川大学(西)原子与分子物理研究所 ( 610065 )编辑部电话: -45234 6 低温物理学报 双月刊 合肥 中国物理学会 1000-3258 合肥市中国科学技术大学( 230026 )编辑部电话: 7 半导体学报 月刊 北京 中国电子学会等 0253-4177 北京 912 信箱( 100083 )编辑部电话: -277 8 声学学报 双月刊 北京 中国声学学会 0371-0025 北京海淀区中关村路 17 号( 100080 )编辑部电话: isx@ 9 波谱学杂志 双月刊 武汉 中国科学院武汉物理研究所等 1000-4556 武汉市 71010 信箱( 430071 )编辑部电话: 10 物理学进展 季刊 南京 中国物理学会 1000-0542 南京市南京大学( 210008 ))编辑部电话: 11 高压物理学报 季刊 成都 四川省物理学会 1000-5773 成都市 523 信箱 60 分箱( 610003 )编辑部电话: 12 低温与超导 季刊 合肥 信息产业部合肥低温电子研究所 1001-7100 合肥市 1019 信箱( 230043 ) 13 大学物理 月刊 北京 中国物理学会 1000-0712 北京师范大学物理系( 100875 )编辑部电话: 应用物理 1 人工晶体学报 双月刊 北京 人工晶体研究所等 1000-985X 北京市 733 信箱, 100018 ,电话: 6549332 2 光子学报 月刊 西安 中国光学学会 1004-4213 西安 80 号信箱 47 分箱《光子学报》编辑部, 710068 3 量子电子学报 双月刊 合肥 中国光学学会基础光学专业委员会 1007-5461 合肥 1125 号信箱 ,230031, 电话: 0551-559156 4 发光学报 季刊 长春 中国物理学会发光 分科学 会等 1000-7032 吉林省长春市东南湖大路 16 号 130033 电话: 5 红外与毫米波学报 双月刊 上海 中国光学学会等 1001-9014 上海市中山北一路 420 号 200083 电话: -24502 6 计算物理 双月刊 北京 计算物理学会等 1001-246X 北京市 8009 信箱 100088 电话: -2292 , 62014411-2647 7 核技术 月刊 上海 中国核学会等 0253-3219 上海市 800-204 信箱 201800 电话: 8 金属学报 月刊 沈阳 中国金属学会等 0412-1961 辽宁省沈阳市文化路 72 号 110016 电话: 9 核聚变与等离子体物理 季刊 成都 核工业西南物理研究所 0254-6086 四川省成都市 432 信箱 610041 电话: 10 无机材料学报 双月刊 上海 中国科学院上海硅酸盐研究所 1000-324X 上海市定西路 1295 号, 200050 , TEL : 52411301 5241130 11 材料研究学报 双月刊 沈阳 中国材料研究学会等 1005-3093 辽宁省沈阳市沈河区文化路 72 号 110016 电话: 12 光谱学与光谱分析 双月刊 北京 中国光学学会光谱委员会等 1000-0593 北京市海淀区学院南路 76 号( 100081 ) 13 强激光与粒子束 双月刊 绵阳 中国工程物理研究所,四川省核学会 1001-4322 四川省绵阳市 919-805 信箱 621900 电话: 14 真空 双月刊 沈阳 机械电子工业部沈阳真空技术研究所 1002-0322 辽宁省沈阳市沈河区万柳塘路 2 号 110042 电话: 15 原子能科学技术 双月刊 北京 中国原子能科学研究院 1000-6931 北京市 275 信箱 65 分箱 102413 电话: 16 中国激光 月刊 上海 中国光学学会,中国科学院上海光学精密机械研究所 0258-7025 上海市 800-211 信箱 201800