大数据论文【1】大数据管理会计信息化解析
摘要:
在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
同时也面临着一些问题。
本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。
关键词:
大数据;管理会计信息化;优势;应用现状;问题
在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。
而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。
一、大数据时代下管理会计信息化的优势及应用现状
在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。
而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,
不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,
以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。
需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对
供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。
(一)预算管理信息化
在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。
正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。
这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。
虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。
企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,
从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。
然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,
大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。
所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。
(二)成本管理信息化
企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。
而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。
而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。
企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,
使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。
以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。
同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的
每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。
虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。
然而信息化在成本控制方面的实施效果并不是很理想。
(三)业绩评价信息化
业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,
也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。
而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。
企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。
对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。
然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。
其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。
所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。
二、大数据时代下管理会计信息化存在的主要问题
(一)企业管理层对管理会计信息化不重视
我国企业管理层对企业管理会计信息化建设存在着不重视的问题。
首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。
再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。
(二)管理会计信息化程度较低
大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。
(三)管理会计信息化理论与企业经管机制不协调
虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。
很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。
三、管理会计信息化建设的措施
(一)适应企业管理会计信息化发展的外部环境
企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。
在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。
管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。
(二)管造合适的管理会计信息化发展内部环境
企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。
树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,
有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。
再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。
同时,为企业管理会计信息化建设提供强大的资金保障。
最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。
(三)开发统一的企业信息化管理平台
在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。
四、结束语
管理会计信息化已经成为企业发展的重要趋势。
同时也面对着一些问题。
因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。
作者:李瑞君 单位:河南大学
参考文献:
[1]冯巧根.
管理会计的理论基础与研究范式[J].
会计之友,2014(32).
[2]张继德,刘向芸.
我国管理会计信息化发展存在的问题与对策[J].
会计之友,2014(21).
[3]韩向东.
管理会计信息化的应用现状和成功实践[J].
会计之友,2014(32).
大数据论文【2】大数据会计信息化风险及防范
摘要:
随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。
但大数据时代下会计信息化的发展也存在一定的风险。
本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计
信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。
关键词:
大数据时代;会计信息化;风险;防范
前言
近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。
大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、
交叉重复使用而形成的智力能力资源和信息知识服务能力。
大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数
据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。
但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。
一、大数据时代对会计信息化发展的影响
(一)提供了会计信息化的资源共享平台
进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。
而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,
提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。
但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。
大数据下企业会计信息质量研讨论文
摘要: 大数据时代,对企业会计信息质量也带来了深远的影响。本文针对大数据时代企业会计信息质量,首先简要概述了大数据时代对会计信息质量的影响,并就大数据时代提升企业会计信息质量进行了详细的论述分析。
关键词: 大数据时代;企业会计信息质量;影响分析
会计信息作为企业经济活动中的重要信息数据,也是企业进行经济决策的重要数据基础,对于经济运行也有着非常重要的影响。随着当前经济社会发展信息化智能化的迈进,大数据时代来临,大数据由于具有信息来源纷繁多样、信息规模海量化等一系列的特点,信息数据质量出现了参差不齐的问题。同样,在大数据时代,会计信息质量也深受影响,会计信息质量控制方面出现了不少的问题。因此,做好大数据时代企业会计信息质量控制,增强大数据时代财务数据分析能力,不论是对于企业长远发展,还是对于经济社会有序运行,都具有重要意义。
一、大数据对企业会计信息质量影响分析
在会计信息数据的可靠性方面,以往会计信息披露主要为纸质方式,会计信息需要经过层层审批,一定程度上来说有利于提高会计信息质量。在大数据背景下,会计信息获取更加容易,会计信息的发布更加便捷,再加上会计信息容易受到网络安全影响,导致了会计信息的可靠性也会受到相应的影响。在会计信息数据的及时性方面,由于大数据时代在智能化网络化的迅速发展下,会计信息数据披露的时效性也得到了大幅改善提升。然而越是会计信息披露的及时性得到了大幅改善提高,越是对会计信息数据质量提出了较高的要求,如果会计信息数据出现失真问题,其大范围快速传播对经济活动造成的损失也将是非常严重的。在会计信息数据的相关性方面,大数据时代下会计信息数据统计范围大幅增加,与传统的会计信息数据有重点有侧重的抽样统计相比,会计信息数据的相关性降低。同时会计信息数据统计范围的扩大,造成了会计信息数据筛选难度大幅增加,会计信息数据归集分析的工作量和工作难度也大幅增加。在会计信息数据的完整性方面,大数据时代下会计信息数据出现了碎片倾向,海量的信息数据下,财务会计信息数据通常会独立披露,由于会计信息数据发布的系统性统一性受到影响,造成了数据分析容易出现片面性的问题。
二、大数据时代提高企业会计信息数据质量的措施分析
大数据时代,从企业外部环境来分析,应该重视良好网络环境建设、强化会计信息质量外部监督。从企业内部分析,更主要的是应该适应大数据时代,积极地完善内部管理,可以从以下几方面采取措施:
(一)利用大数据优势丰富会计信息数据内容
传统会计信息数据归集分析方面,通常主要是集中在结构化和货币化度量数据方面,对有形资产反映准确,而对无形资产缺少必要的.记录、反应和监督。在大数据时代,应该充分利用大数据优势解决这些问题,按照结构化和非结构化、静态和动态数据进行会计信息归集分析。静态结构化数据,主要是企业的会计信息系统和管理信息系统形成的一系列非实时项目数据,比如期末的计提、结转、税费结算等数据。静态非结构数据主要是源于互联网和移动互联网等设备,难以用结构化数据表示的。动态数据主要是实时性数据,动态结构数据主要是企业的会计系统中各类日常业务数据,动态非结构数据则主要是企业技术研发、产品市场信息、企业社会关系以及企业管理能力等数据。
(二)强化对企业会计信息数据发布及分析的监管
在大数据背景下,由于企业的会计信息数据归集分析的工作量大幅度增加,因此为了保证企业会计信息数据披露水平以及各类财务信息数据的分析水平,企业应该设立相应的会计信息披露和企业的财务数据分析中心,专门负责对企业内部各项财务会计信息和数据的归集、分析、披露。需要注意的是,在企业会计信息数据的披露和财务数据分析方面,既应该对企业内部财务数据进行全方面和深入地分析,形成标准化高质量的财务会计信息报告,同时也应该注意对企业相关行业的会计信息进行全面的收集分析,为企业经济活动决策提供数据基础。
(三)积极推进管理会计与财务会计融合
促进提升会计信息数据质量大数据时代下提高企业会计信息质量,必须注重推进管理会计与财务会计的深度融合。以往情况下,财务会计主要对外披露数据,管理会计主要对内决策服务,一定程度上存在着企业会计信息处理效率低下和会计信息资源浪费的问题。充分运用大数据技术,实现财务会计和管理会计的融合,可以将企业内部的各类会计活动以及非会计活动进行分类整理后,构成财务会计信息数据库,依托数据库既可以提升财务会计数据质量提高财务报告水平,也可以为管理会计提供全面的各项基础数据,进一步改进会计信息数据的不对称性,为企业决策提供科学系统的信息数据支持。
三、结语
大数据时代,影响企业会计信息质量的因素多种多样,既有外部环境因素,也有企业自身原因。从企业角度出发,应该更加注重强化企业内部会计信息化建设,提升数据资源水平,提高会计信息发布以及财务数据分析专业化水平,进而确保大数据背景下企业会计信息质量得到提升。
参考文献:
[1]温航,沈英.大数据时代对企业会计信息质量的影响[J].科技展望,2015,(22):1+3.
[2]俞常娥.独立董事特征对会计信息披露质量的影响研究[D].江西财经大学,2015.
[3]孙玥璠,杨超,张梦实.大数据时代中小企业信用评价指标体系重构[J].财务与会计,2015,(06):47
大数据下企业会计信息质量研讨论文
摘要: 大数据时代,对企业会计信息质量也带来了深远的影响。本文针对大数据时代企业会计信息质量,首先简要概述了大数据时代对会计信息质量的影响,并就大数据时代提升企业会计信息质量进行了详细的论述分析。
关键词: 大数据时代;企业会计信息质量;影响分析
会计信息作为企业经济活动中的重要信息数据,也是企业进行经济决策的重要数据基础,对于经济运行也有着非常重要的影响。随着当前经济社会发展信息化智能化的迈进,大数据时代来临,大数据由于具有信息来源纷繁多样、信息规模海量化等一系列的特点,信息数据质量出现了参差不齐的问题。同样,在大数据时代,会计信息质量也深受影响,会计信息质量控制方面出现了不少的问题。因此,做好大数据时代企业会计信息质量控制,增强大数据时代财务数据分析能力,不论是对于企业长远发展,还是对于经济社会有序运行,都具有重要意义。
一、大数据对企业会计信息质量影响分析
在会计信息数据的可靠性方面,以往会计信息披露主要为纸质方式,会计信息需要经过层层审批,一定程度上来说有利于提高会计信息质量。在大数据背景下,会计信息获取更加容易,会计信息的发布更加便捷,再加上会计信息容易受到网络安全影响,导致了会计信息的可靠性也会受到相应的影响。在会计信息数据的及时性方面,由于大数据时代在智能化网络化的迅速发展下,会计信息数据披露的时效性也得到了大幅改善提升。然而越是会计信息披露的及时性得到了大幅改善提高,越是对会计信息数据质量提出了较高的要求,如果会计信息数据出现失真问题,其大范围快速传播对经济活动造成的损失也将是非常严重的。在会计信息数据的相关性方面,大数据时代下会计信息数据统计范围大幅增加,与传统的会计信息数据有重点有侧重的抽样统计相比,会计信息数据的相关性降低。同时会计信息数据统计范围的扩大,造成了会计信息数据筛选难度大幅增加,会计信息数据归集分析的工作量和工作难度也大幅增加。在会计信息数据的完整性方面,大数据时代下会计信息数据出现了碎片倾向,海量的信息数据下,财务会计信息数据通常会独立披露,由于会计信息数据发布的系统性统一性受到影响,造成了数据分析容易出现片面性的问题。
二、大数据时代提高企业会计信息数据质量的措施分析
大数据时代,从企业外部环境来分析,应该重视良好网络环境建设、强化会计信息质量外部监督。从企业内部分析,更主要的是应该适应大数据时代,积极地完善内部管理,可以从以下几方面采取措施:
(一)利用大数据优势丰富会计信息数据内容
传统会计信息数据归集分析方面,通常主要是集中在结构化和货币化度量数据方面,对有形资产反映准确,而对无形资产缺少必要的.记录、反应和监督。在大数据时代,应该充分利用大数据优势解决这些问题,按照结构化和非结构化、静态和动态数据进行会计信息归集分析。静态结构化数据,主要是企业的会计信息系统和管理信息系统形成的一系列非实时项目数据,比如期末的计提、结转、税费结算等数据。静态非结构数据主要是源于互联网和移动互联网等设备,难以用结构化数据表示的。动态数据主要是实时性数据,动态结构数据主要是企业的会计系统中各类日常业务数据,动态非结构数据则主要是企业技术研发、产品市场信息、企业社会关系以及企业管理能力等数据。
(二)强化对企业会计信息数据发布及分析的监管
在大数据背景下,由于企业的会计信息数据归集分析的工作量大幅度增加,因此为了保证企业会计信息数据披露水平以及各类财务信息数据的分析水平,企业应该设立相应的会计信息披露和企业的财务数据分析中心,专门负责对企业内部各项财务会计信息和数据的归集、分析、披露。需要注意的是,在企业会计信息数据的披露和财务数据分析方面,既应该对企业内部财务数据进行全方面和深入地分析,形成标准化高质量的财务会计信息报告,同时也应该注意对企业相关行业的会计信息进行全面的收集分析,为企业经济活动决策提供数据基础。
(三)积极推进管理会计与财务会计融合
促进提升会计信息数据质量大数据时代下提高企业会计信息质量,必须注重推进管理会计与财务会计的深度融合。以往情况下,财务会计主要对外披露数据,管理会计主要对内决策服务,一定程度上存在着企业会计信息处理效率低下和会计信息资源浪费的问题。充分运用大数据技术,实现财务会计和管理会计的融合,可以将企业内部的各类会计活动以及非会计活动进行分类整理后,构成财务会计信息数据库,依托数据库既可以提升财务会计数据质量提高财务报告水平,也可以为管理会计提供全面的各项基础数据,进一步改进会计信息数据的不对称性,为企业决策提供科学系统的信息数据支持。
三、结语
大数据时代,影响企业会计信息质量的因素多种多样,既有外部环境因素,也有企业自身原因。从企业角度出发,应该更加注重强化企业内部会计信息化建设,提升数据资源水平,提高会计信息发布以及财务数据分析专业化水平,进而确保大数据背景下企业会计信息质量得到提升。
参考文献:
[1]温航,沈英.大数据时代对企业会计信息质量的影响[J].科技展望,2015,(22):1+3.
[2]俞常娥.独立董事特征对会计信息披露质量的影响研究[D].江西财经大学,2015.
[3]孙玥璠,杨超,张梦实.大数据时代中小企业信用评价指标体系重构[J].财务与会计,2015,(06):47
大数据论文【1】大数据管理会计信息化解析
摘要:
在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
同时也面临着一些问题。
本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。
关键词:
大数据;管理会计信息化;优势;应用现状;问题
在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。
而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。
一、大数据时代下管理会计信息化的优势及应用现状
在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。
而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,
不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,
以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。
需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对
供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。
(一)预算管理信息化
在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。
正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。
这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。
虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。
企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,
从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。
然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,
大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。
所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。
(二)成本管理信息化
企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。
而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。
而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。
企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,
使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。
以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。
同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的
每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。
虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。
然而信息化在成本控制方面的实施效果并不是很理想。
(三)业绩评价信息化
业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,
也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。
而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。
企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。
对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。
然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。
其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。
所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。
二、大数据时代下管理会计信息化存在的主要问题
(一)企业管理层对管理会计信息化不重视
我国企业管理层对企业管理会计信息化建设存在着不重视的问题。
首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。
再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。
(二)管理会计信息化程度较低
大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。
(三)管理会计信息化理论与企业经管机制不协调
虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。
很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。
三、管理会计信息化建设的措施
(一)适应企业管理会计信息化发展的外部环境
企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。
在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。
管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。
(二)管造合适的管理会计信息化发展内部环境
企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。
树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,
有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。
再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。
同时,为企业管理会计信息化建设提供强大的资金保障。
最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。
(三)开发统一的企业信息化管理平台
在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。
四、结束语
管理会计信息化已经成为企业发展的重要趋势。
同时也面对着一些问题。
因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。
作者:李瑞君 单位:河南大学
参考文献:
[1]冯巧根.
管理会计的理论基础与研究范式[J].
会计之友,2014(32).
[2]张继德,刘向芸.
我国管理会计信息化发展存在的问题与对策[J].
会计之友,2014(21).
[3]韩向东.
管理会计信息化的应用现状和成功实践[J].
会计之友,2014(32).
大数据论文【2】大数据会计信息化风险及防范
摘要:
随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。
但大数据时代下会计信息化的发展也存在一定的风险。
本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计
信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。
关键词:
大数据时代;会计信息化;风险;防范
前言
近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。
大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、
交叉重复使用而形成的智力能力资源和信息知识服务能力。
大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数
据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。
但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。
一、大数据时代对会计信息化发展的影响
(一)提供了会计信息化的资源共享平台
进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。
而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,
提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。
但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。
近年来,为了更好的发挥审计在脱贫攻坚战中的重要作用,各地审计机关围绕精准扶贫实施强化落实各种政策,对专项资金使用和项目建设情况进行了跟踪审计。扶贫资金的审计涉及到的部门数量多,海量数据,业务量大,以及耗用的时间长,不借助计算机审计是无法完成这项工作。因此,积极探索利用大数据审计扶贫资金就有着重要意义。精准扶贫项目审计存在的问题只有对精准扶贫做出科学的指导战略方针,全面落实相关政策,才能真正地帮助贫困地区脱贫发展,而现在对于精准扶贫的审计工作中,仍存在着一些问题。(一)审计范围未实现全覆盖。扶贫资金涉及政府的各个部门,扶贫内容包括教育、医疗、旅游、交通等多个方面,由于扶贫项目多,资金的来源用途广泛,扶贫审计范围有限,很难做到审计范围全覆盖,全方面无死角。且扶贫资金使用的大部分范围在偏远地区,下放环节多,手续复杂,存在分散使用和交叉投入的现象,使之审计人员没有办法层层检查相关步骤,审计难度加大。(二)绩效审计未成为扶贫资金审计的重点。从近年来我国开展的财政扶贫资金审计来看,更多的仍是关注财务收支审计,判断扶贫资金的使用是否国家规定,而真正起作用的绩效审计工作还没有成为扶贫审计工作的重点。当前,大多数审计部门没有从根本上认识了解绩效审计工作的内容和意义,对于扶贫资金的使用,是否达到了预期的使用效果,审计部门虽会对其进行评价,但是不同的审计人员对于标准是不同的,没有一个相应的制度体系去加强绩效审计工作。(三)审计工作中现代信息技术利用不够。近几年,我国经济改革发展和信息技术日益普及,审计署十分重视审计信息化工程建设,不断推动发展“金审工程”,实施“预算跟踪+联网核查”审计模式,增强审计机关在信息网络环境下的工作能力,维护经济秩序,更好地履行审计法定监督职责。但是,尽管审计署和地方审计部门在实际的精准扶贫审计工作应用中有了很大的成效,但对于仍未建立起相应的信息统计系统的地区而言,没有办法充分利用信息的统计数据,给高效审计带来了一定的困难;对于可以使用信息系统的地区,要确保建档立卡信息系统贫困人口信息真实、数据更新及时,避免将不符合条件的人员纳入系统。(四)审计指标体系不够完善。近年来,由于各地区贫困程度、贫困原因各不相同,各地政府分别制定了各种扶贫政策,例如:旅游扶贫、教育扶贫、易地扶贫搬迁等,因地制宜,对症下药。我国目前还没有形成较完整的扶贫审计体系和指标,绩效审计还没有成为扶贫审计工作的重点,导致其没有充分发挥作用,审计力度相对较弱。审计结果利用率较低,群众监督机制不完善,没有严格的问责机制,审计处罚办法没有明确的定义,导致相关人员会借助这些法律漏洞逃避自己的责任。(五)扶贫资金审计专业力量不足。各地区贫困人口数量多,分布广,扶贫内容包含多个方面,导致在扶贫审计工作中涉及范围广、工作时间长、审计项目多,与扶贫资金专业审计力量的关系紧密相连。在大数据时代,扶贫审计不应局限于资金的流向与使用过程,而应在其他过程有所涉及,大数据技术下的审计程序不再表现为单纯的进行抽样和函证,更多的是对数据进行分析处理,这就要求审计人员涉及到的专业领域广。但目前国家审计人员的数量有限,某些领域的专业人才匮乏,面对大数据时代下的审计工作,部分审计人员不会或不能熟练运用电子数据系统,不能更好的利用数据,这也导致了当前的审计力量薄弱。加强大数据背景下精准扶贫审计的建议扶贫资金审计涉及到的部门多、对象广,且时间紧、任务重。如果采取传统的手工查帐模式,短时间内是难以完成工作任务的,运用大数据和计算机审计技术对扶贫政策落实和扶贫资金管理使用情况进行监督检查,提高了审计工作效率,结合扶贫项目实际实施情况进行数据比对、筛选分析,重点核实,为打赢脱贫攻坚战提供了重要保障。(一)加强大数据审计平台建设,精准定位扶贫对象。如今是大数据时代,应该对所有的贫困人口的信息进行电子归档并进行分类,通过大数据审计平台的建设、建立相应的审计对象数据库,及时更新扶贫数据信息,实现对扶贫工作成效的精确评估,逐步完善的评估体系。通过对信息进行共享分析,及时发现潜在的风险,从而实现扶贫资源的精准利用。一方面,在审计人员获取审计证据时,利用大数据可以实现对审计范围的全方面覆盖;另一方面,通过大数据平台可以及时对数据进行传递并处理数据,审计人员可以通过线上数据对线下扶贫政策的落实以及扶贫工作内容进行实施跟踪审计,将扶贫过程透明化,实现全民监督,在一定程度上降低贪污腐败扶贫基金的行为的发生。对于各地区的贫困信息库数据尚不完善的问题,政府同样可以利用云数据资源,导入整合贫困地区人员信息资料,对贫困人员的数据进行全面分析,明确筛选相关内容,构建起一套完整的扶贫信息数据系统,实现不同省份之间的信息互联共享,这样也将有利于各地政府在开展扶贫过程中及时更新贫困数据。(二)开展绩效审计工作。财政资金扶贫是以政府财政拨款为主的扶贫,首先审计工作人员要充分认识绩效审计的重要意义,强化绩效审计意识,通过开展绩效评测,使精准扶贫工作进入良性循环。在使用扶贫基金上,加强相关部门的监督情况,提高扶贫资金的使用效率以及管理模式。其次,对扶贫项目进行量化考核,关注绩效,对扶贫资金使用后产生效果的进行检查评估,帮助政府合理判断项目落实情况以及实施情况,提高政府行政效率,预防贪污腐败行为的产生。最后,对审计报告进行公开透明化披露,加强群众对审计过程的监督,通过审计结果侧面对审计人员起到激励作用,提高绩效审计成果的利用手段。(三)提高审计风险防范能力。在大数据时代下的,扶贫审计产生风险的原因主要是由于在数据采集、处理、分析等过程中,因为数据量大、所需专业知识强等特点,以至于采集数据不准确、分析数据困难等问题的产生。审计风险模型为:审计风险=重大错报风险×检查风险重大错报风险是由于大数据自身特征而引起的错报风险;检查风险产生是由于审计人员在处理数据时,未能正确的使用相关技术而导致错误的可能性。对于检查风险可以通过扩大审计范围来降低,而大数据背景下,可以让审计范围进行全面覆盖,扩大审计范围,获取更多的数据进行分析;审计人员需要对于不同的扶贫工作执行不同的方案,保持职业怀疑态度以及监督、指导和复核执行的审计工作内容,提高审计人员的风险防范能力,可以相应的减少审计风险的程度。(四)完善财政资金扶贫审计监督机制。当前我国审计正面临着从传统审计模式向现代审计模式的转变,审计开展现代化大数据是时代要求。国家审计署在2014年成立了电子数据审计司,建立了国家审计数据中心,为大数据审计指明了发展方向。精准扶贫工作国家高度重视,全国各地都开展了相应的财政扶贫工作,但是扶贫审计工作仍面临着复杂局势,因此要建立一套规范有序、动态发展的运行机制,协调各部门的工作内容。第一,要从整个扶贫过程出发,在扶贫前、扶贫中、扶贫后都需要进行审计工作,从根源上杜绝问题的发生。第二,设立专门的监督机构,对审计过程进行全方面的监督,对于发生的问题及时整改,促使问题得以解决。(五)提高审计人员的综合能力。大数据背景下的扶贫审计工作不仅要求审计人员需要精通掌握审计相关知识,还需要掌握计算机技术,有效利用大数据平台下的审计资源,加强对审计人员的培训技能以及分析能力。第一,加大对审计人员的技术培训,各省市可以邀请研究大数据审计的专家在各个市、县区进行专业讲座,学习大数据审计的原理以及利用方法,作为日后实际操作的基础,大数据时代信息技术更新速度快,开展专题培训的速度需要紧跟信息技术变化。第二,加强对审计人员的思想教育,减少可能出现的违规违纪现象,使得审计人员不仅可以胜任审计工作能力,思想教育水平也有所提高,不断适应发展的工作需要。
针对大数据在企业内部审计的作用的研究论文,要选择目标企业,要满足以下几个条件,企业审计数据量足够大,企业规模大和信息化程度高。举例说,现在的电信运营商或者阿里、腾讯,这样的公司都可以是研究目标企业。千万级以上的数据需要进行企业内部审计,企业规模足够大的上市公司需要根据法律责任每年内部审计,最后就是企业信息化程度高,可以实现基于大数据的审计工作。
[摘要] 社会 经济的进步,带动了 社会 各个方面的发展,当今 社会 已经处于大数据时代,大数据和云计算密不可分,大数据的关键不在于数据的收集,而是在于对数据的处理、应用,受大数据的影响,很多职业和岗位职责等都受到了影响,会计、审计工作就是如此,管理机制发生了很大的改变,所以,为了保证各行各业的会计、审计工作顺应 社会 发展需求,必须要了解其在大数据下的发展趋势。因此,本文主要对大数据时代下的会计、审计发展趋势进行了研究分析,希望能够促进会计、审计工作顺利进行。
[关键词] 大数据;会计;审计;发展趋势
1前言
目前很多人对于大数据时代已经不陌生,因为它已经渗透到各个行业的领域当中,经过互联网和信息技术的发展,大数据的收集和应用也越来越受到人们的关注,它不仅蕴藏着各种商机以及生产率的增长,还代表着消费者的盈余[1]。会计、审计工作,作为每一个企业不可缺少的岗位和职能,它也受到了大数据发展的影响,不仅使会计审核和审计方式发生了改变,还给会计、审计业带来了变革、创新,所以了解大数据时代下会计、审计的发展趋势很有必要。
2大数据的定义及特点
2.1大数据的概念
大数据是IT行业的术语,它主要是指使用常规软件没有办法在一定时间范围内对数据进行处理汇总,需要新的方式来对数据集合进行收集、存储、分析处理[2],从而能够为之后的决策提供依据,发现数据中的多样化信息,使数据能够得到高效的应用。
2.2大数据特点
2.2.1数字或是数据量飞速增长的互联网的发展、云计算等促进了大数据的实现和发展,目前全球网络系统的存储数据每年的增长速度在50%左右,有相关人士预测,预计在2020年,全球的数据存储量将要达到35ZB,约358750亿GB,这是一个天文数字,可见我们目前收集的数据量之大,传统的数据通常都是通过书籍、文件资料、杂志、报纸等进行存储,现在少量数据仍然以这样的存储方式存在着,大量的数据资料其实都是通过网络系统存储的数字数据,通过备份等手段,也使珍贵的资料更加能够妥善的保存[3]。
2.2.2工作、思维方式发生转变现在先进的计算机、云计算技术比较发达,处理数据的维度更加多样,计算的速度也更加迅速,但是在之前技术水平还比较低时,则只能通过有限的筛选条件通过较少的数据,进行深入的分析研究,以获得更多有价值的信息,这样的方式限制比较多,而且结果准确度也比较低,有些需要更深层次进行研究,进行说明的内容无法验证出来,即使进行随机抽样,但是由于网络数据较少,样本难以具有普遍性特质,可能得出的结果只代表了一部分现象,这使得研究的意义大打折扣。
3基于大数据时代的会计、审计发展趋势分析
3.1由会计反映过去朝着预测未来方向发展
基本所有的企业都有会计这个职位,因为企业性质的不同,会计岗位的职责也略有不同,但是主要职能还是一样的。大多数企业通常需要会计处理、反馈的是已经发生的财务方面的信息等,不会对企业未来的发展方向、方针政策等进行干预。在大数据影响下,会计人员的职能也发生了改变,对于已产生的财务损失总结分析已经不足以满足企业发展的需求,会计人员需要整合大数据,来对企业的未来发展做出合理的财务方面的预测分析,以发现更多的业绩增长空间[4],提升企业的利润率,以及促进资金的正常流转和最大化进行投资的需求。会计人员通过对企业自身以及企业业务内容、市场发展等相关数据进行收集、存储、处理等,为企业的发展提供切实可靠的依据,帮助企业的领导者做出更有利于企业发展的决定。可以进行实施的预测措施主要有,第一,企业的会计、审计工作人员要按照工作职责和目标等,制定好相关的预测方法和流程,把将要用到用于评估的数据做好收集和存储,在需要的时候进行分析处理,做好预测工作,尤其是有关于企业自身业务方面的数据,比如生产资料、固定资产、机械设备等等,以免因为数据收集不完整,影响后期预测工作的开展;第二,由于大数据具有更新速度快的特性,所以,需要会计、审计工作人员一旦发现预警现象,要及时告知上级,然后由上级以及领导层决定是否需要对现有政策进行调整等,以免发生不必要的损失;第三,企业要充分利用大数据的优势,提升会计人员预估风险的能力[5],消除更多发展中的隐患,促进企业平稳发展。
3.2由单一财务管理朝着综合财务管理方向发展
社会 是不断向前发展的, 社会 经济也是如此,随着 社会 经济形势不断变化,企业也会随之进行调整和变革,财务管理作为企业的重要管理部分,也会跟着进行变动,无论是管理模式还是管理思路都会有所变化,财务管理的范畴在不断加大,由生产逐渐向计划、销售、战略方针的制定等进行多方面的干预,收集相关方面的数据信息,会计、审计工作人员通过这些收集到的信息,进行专业的处理分析,了解企业的发展情况,得到有价值的信息,不仅可以为企业的发展做出预测,还可以消除企业发展中的隐患,规避风险。同时,会计、审计人员通过对数据的梳理,发现了一些问题之后,对于制定之后的财务政策也有了一定的依据,使财务政策更加合理,降低了工作的失误率,为企业的可持续发展贡献了力量。
3.3由事后财务报告形式向实时财务报告形式发展
目前很多企业的会计人员在做财务报表时,通常都是当月在做上个月的报表,甚至是上个月的财务总结,都是对于已经进行完毕的生产工作进行陈述总结,年度报表,甚至需要3个月左右才可以做出,花费的时间较长[6],这降低了会计信息的利用率和及时性,不利于企业对于出现的问题以及埋藏的经营隐患的及时处理和规避,尤其是一些业务内容比较复杂且影响比较广泛的企业,滞后的财务报表,对于实时的生产经营活动难以做到及时调整。这侧面反映了实时财务报表的重要性,许多企业以及会计、审计人员也开始关注这一方面。实时财务报表需要依赖于大数据技术,尤其是针对一些金融、理财等行业,实时的财务报表非常有必要。在大数据时代的影响下,各个企业可以按照如下方式,进行实时财务报表的实现:第一,采购或者研发相应的大数据中心存储、处理系统,可以在单位局域网的基础上进行搭建,通过此系统对企业生产经营活动中各类信息的收集、存储、处理等;第二,建立财务报表系统,通过互联网技术,将企业内外信息互通有无,快速完成数据的更新,保证相关人员可以共享[7];第三,相关人员要做好数据的收集和保密工作,尤其是一些比较重要的数据,一定不可以外传,数据系统主要涉及会计、审计、技术人员,各个工作人员要做好自己的本职工作,对信息进行合理的加工处理,并将做好的财务报表上传到系统的指定报表位置,从而方面管理层查询和阅读,同时此系统也方便了财务人员后续对一些 历史 数据的查询等,数据库的建立十分有价值和意义。
3.4由抽样审计形式向总体审计形式转变
之前由于受到数据少的局限,审计工作人员往往采用抽样审计的方式,完成相应的工作。抽样审计有着一定的弊端,根据样本分析的结果具有偏差的概率性比较大,一些其他的生产经营方面的内容可能会被忽略,而且比较容易存在一些徇私舞弊行为,一些风险性的内容也难以被发现、预警。时代在不断地发展,互联网信息技术日新月异,大数据的应用越来越广泛,这使得很多岗位的工作职责和内容发生着颠覆性的改变,传统的审计模式已经不再适应当下企业的发展需求。在大数据时代下,可以将业内外相关的数据进行收集、汇总、处理、分析,数据具有权威性、全面性、实时性,可以利用这些数据进行审计工作的开展,这就是总体审计模式。总体审计模式可以将与审计对象有关的全部信息进行审查,审计人员可以根据这种模式建立一个新的审计流程,这样不仅使工作规范化,还可以充分利用大数据的优势,为企业规避生产经营中存在的审计风险。
4结语
社会 经济发展较快,科学技术也在迅速发展,各行各业都会受到影响,在互联网信息技术和云计算的双重影响下,大数据的应用越来越广泛,已经渗透到各行各业。会计、审计工作也需要根据大数据的影响,进行工作职能的改变。会计、审计的发展趋势,主要有由事后财务报告朝实时财务报告等方向发展、由单一财务管理朝着综合财务管理、由事后财务报告形式向实时财务报告形式发展、由抽样审计的形式向总体审计形式进行转变[8]。大数据的应用改变了会计、审计的管理模式,但是它可以为企业领导层的决策提供更确切的依据,可以更好地规避生产经营中的风险,使企业的经营更加灵活,有利于企业的可持续 健康 发展。
参考文献
[1]程平,崔纳牟倩.大数据时代基于财务共享服务模式的内部审计[J].会计之友,2016,24(16):122-125.
[2]程平,白沂.基于财务共享服务模式的大数据审计研究[J].中国注册会计师,2016,12(5):84-87.
[3]职慧,张圣利.企业集团会计信息系统数据完整一致性审计研究———基于网络环境[J].当代经济,2015,36(22):138-139.
[4]周飞.浅析财会行业如何在大数据时代进行创新发展[J].长春金融高等专科学校学报,2016,10(3):81-84.
[5]王共科.大数据时代下的会计、审计的发展趋势[J].中国战略新兴产业,2018(8):108.
[6]张珺.大数据时代对会计和审计的影响分析[J].财会学习,2016(3):92.
[7]黄丹.大数据时代的会计、审计发展走向初探[J].中国乡镇企业会计,2015,12(13):196-197.
[8]马丰华.基于会计信息化环境下注册会计师审计研究[J].商业故事,2015,16(17):44-45.
作者:曾静 单位:西安石油大学
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。
世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
3、大数据应用,是 指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类型多样数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化 数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。3、是处理速度快在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。4、是价值真实性高和密度低数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
四:大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。2、大数据是信息产业持续高速增长的新引擎面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。3、大数据利用将成为提高核心竞争力的关键因素各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
五:大数据的商业价值
1、对顾客群体细分“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。2、模拟实境运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。3、提高投入回报率提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。4、数据存储空间出租企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。5、管理客户关系客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。6、个性化精准推荐在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。7、数据搜索数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典
六:大数据对经济社会的重要影响
1、能够推动实现巨大经济效益比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。2、能够推动增强社会管理水平大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。3、如果没有高性能的分析工具,大数据的价值就得不到释放对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。
七:最后北京开运联合给您总结一下
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。1、从大数据的价值链条来分析,存在三种模式:1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,开运联合等。3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。2、未来在大数据领域最具有价值的是两种事物:
获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。
努力加强和创新社会治理一、明确加强和创新社会治理的原则和思路 社会治理,是指以维系社会秩序为核心,通过政府主导、多方参与,规范社会行为、协调社会关系、促进社会认同、秉持社会公正、解决社会题目、化解社会矛盾、维护社会治安、应对社会风险,为人类社会生存和发展创造既有秩序又有活力的基础运行条件和社会环境、促进社会***的活动。正确把握社会治理的基本原则,明确改革社会治理体制的基本取向,是加强和创新社会治理的基本条件。 一要坚持以人为本、服务优先。始终把实现好、维护好、发展好最广大人民的根本利益作为出发点和落脚点,寓治理于服务之中,实现依法治理、科学治理、人性化治理,使人民群众在社会生活中切实感受到权益得到保障、秩序安全有序、心情更加愉快。 二要坚持多方参与、共同治理。充分发挥政府在社会治理中的主导作用,同时充分发挥多元主体在社会治理中的协同、自治、自律、互律作用,使各种社会气力形成推动社会***发展、保障社会安定有序的协力。 三要坚持统筹兼顾、动态协调。正确反映和协调各个方面、各个层次、各个阶段的利益诉求和社会矛盾,既要“左顾右盼”,又要“瞻前顾后”,使社会治理能够体现维护公平正义的“刚性”、协调各方利益的“柔性”、应对新情况新题目的“弹性”,促进社会动态平衡,保障国家长治久安。 四要坚持既有秩序、又有活力。把维系社会秩序和激发社会活力有机结合起来,既要保证社会的安定有序、规范运行、调控有力,又要有利于激发全社会的创造活力,降低社会运行本钱,进步社会运行效率,从而最广泛、最充分地调动一切积极因素,促进社会进步和人的全面发展。 五要坚持立足国情、改革创新。从我国实际出发,充分发挥社会主义制度的优越性和政治上风,充分发挥优秀传统文化的作用。同时,树立世界眼光,积极鉴戒国外先进经验和做法,勇于变革、勇于创新,把改革贯串在整个社会治理过程之中,为推进***社会建设提供不竭动力。 根据上述原则,加强和创新社会治理,完善中国特色社会治理体制,要实现以下几个方面的转变。 在思想观念上,要从重经济建设、轻社会治理向更加重视社会治理和经济社会协调发展转变。努力解决经济建设“一手硬”、社会治理“一手软”的题目,切实把加强社会建设、创新社会治理作为重要而紧迫的战略任务,下大气力统筹推进,不断进步政府社会治理的能力和水平,努力取得加强和创新社会治理的新突破,促进经济社会协调发展。 在治理主体上,要从重政府作用、轻多方参与向政府主导型的社会共同治理转变。改变政府在社会治理中包揽一切的做法,解决好越位、错位和缺位题目。既要发挥政府主导作用,又要鼓励和支持社会各方更加积极、有效地参与社会治理,发挥多元主体的作用,尽快从传统治理转向时代发展要求的“治理”。 在治理方式上,要从重管制控制、轻协商协调向更加重视协商协调转变。要改变主要靠行政手段通过管、控、压、罚实施社会治理的方式,更加善于运用群众路线的方式、***的方式、服务的方式,尽可能通过同等的对话、沟通、协商、协调等办法来解决社会题目,化解社会矛盾。 在治理环节上,要从重事后处置、轻源头治理向更加重视源头治理转变。努力摆脱总是事后应对的被动局面,更多地把工作重心从治标转向治本、从事后救急转向源头治理,更加重视民生和制度建设,使社会治理关口前移,尽可能使社会矛盾和社会冲突少产生、少转化、少激化。 在治理手段上,要从重行政手段、轻法律道德等手段向多种手段综合运用转变。努力改变社会治理手段单一的题目,在运用行政手段进行社会治理的同时,更多地运用法律规范、经济调节、道德约束、心理疏导、***引导等手段,充分发挥党的政治上风,规范社会行为,调节利益关系,减少社会题目,化解社会矛盾。
《大数据技术对财务管理的影响》
摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
关键词:大数据;财务管理;科学技术;知识进步
数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
一、大数据技术加大了财务数据收集的难度
财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。
二、大数据技术影响了财务数据分析的准确性
对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。
三、大数据技术给财务人事管理带来了挑战
一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。
四、大数据技术加大了单位信息保密的难度
IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。
2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。
作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院
大数据技术在网络营销中的策略研究论文
从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。
摘要:
当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。
关键词:
大数据;网络营销;应用策略;营销效果;
一、前言
现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。
二、基于大数据的网络营销概述
网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。
应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。
三、传统网络营销存在的一些问题
(一)传统网络营销计划主要由策划人主观决定,科学性不足
信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。
(二)传统网络营销的互动性不足,无法进行准确的产品营销
传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。
(三)无法有效分析客户需求,导致客户服务质量差
当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。
四、将基于大数据的网络营销如何促进传统的网络营销
(一)使网络营销决策更科学,更明智
在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。
(二)大大提高了网络营销的准确性
如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。
(三)显着提高对客户网络营销服务水平
通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。
五、基于大数据的网络营销优势
(一)提高网络营销广告的准确性
在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。
(二)提高网络营销市场的定位精度
在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:
1、分析客户数据并确定产品在市场上的定位:
首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。
2、通过市场调查对产品市场定位进行验证:
在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。
3、建立客户反馈机制:
客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。
(三)增强网络营销服务的个性化
为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。
六、基于大数据网络营销策略
使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。
(一)客户档案策略
客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。
(二)满足需求策略
为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。
(三)客户服务策略
随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。
(四)多平台组合策略
在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。
七、结语
总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。
参考文献
[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.
[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.
[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.
[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.
[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.
[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.
[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.
[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.
[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.
[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.
[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.
[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.
[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.