首页 > 期刊投稿知识库 > 西瓜细菌性叶斑病研究现状论文

西瓜细菌性叶斑病研究现状论文

发布时间:

西瓜细菌性叶斑病研究现状论文

在生活中你知道西瓜的细菌性角斑病是怎么回事?如何进行治疗呢?这种病常常容易发生在叶子以及茎蔓上面,卷须和果实以后出现。它的职业出现病症的时候,是会生出圆形或者是不规则形状的黄褐色的病斑。叶片上面的病变刚开始的时候是水渍的形状,慢慢会扩展形成黄褐色或者是多边形的一些病斑,有时叶子的背面会出现一些白色的物质,到了生长的后期,病斑慢慢会干枯,而且特别容易得开裂。这种病爱出现的时候一定要提前进行预防使用一些抗病害的品种,而且一定要对种子进行消毒杀菌的处理。在播种前,种子一定要用甲醛150倍的液体进行浸泡种子。也可以使用带分按500倍的叶坪进行浸泡,种子一个小时,然后用55度的温开水进行浸泡种子15分钟左右。对种植的土地也一定要进行及时的杀菌的处理。

症状

全生育期均可发生。叶片、茎蔓和瓜果都受害。苗期染病,子叶和真叶沿叶缘呈黄褐至黑褐色坏死干枯,最后瓜苗呈褐色枯死。成株染病,叶片上初生水渍状半透明小点,以后扩大成浅黄色斑,边缘有黄绿色晕环,最后病斑中央变褐或呈灰白色破裂穿孔,湿度大时叶背溢出乳白色菌液。茎蔓染病呈油渍状黄绿色小点,逐渐变成近圆形、红褐至暗褐色坏死斑,边缘黄绿色油渍状,随病害发展病部凹陷龟裂,呈灰褐色,空气潮湿时病部可溢出白色菌脓。

病原

Pseudomonas syringae pv.lachrymans(Smith & Bryan.)Young et al.属假单胞杆菌丁香假单胞菌黄瓜致病变种细菌。详见苦瓜或甜瓜细菌性叶斑病。

发病特点及防治方法

见苦瓜和甜瓜细菌性叶斑病。

1、西瓜细菌性叶斑病又称西瓜细菌性角斑病。此病全生育期均可发生,叶片、茎蔓和瓜果都可受害。主要在开花座果期至采收盛期发病最重。苗期染病,子叶上产生褐色圆形至多角形病斑,真叶沿叶缘呈黄褐至黑褐色坏死干枯,最后瓜苗呈褐色枯死。成株染病,叶片上初生水浸状半透明小点,以后扩大成浅黄色斑,边缘具有黄绿色晕环,最后病斑中央变褐或呈灰白色破裂穿孔,湿度高时叶背溢出乳白色菌液。茎蔓染病呈油渍状暗绿色,以后龟裂,溢出白色菌脓。瓜果染病,初出现油渍状黄绿色小点,逐渐变成近圆形红褐至暗褐色坏死斑,边缘黄绿色油渍状,随病害发展病部凹陷龟裂呈灰褐色,空气潮湿时病部可溢出锈色菌脓。2、西瓜叶枯病。主要危害叶片,亦可危害茎蔓和果实,幼苗子叶受害;多在叶缘发生,初为水渍状小点,后扩大成褐色水渍状,圆形或半圆形斑,在高湿条件下,可危害整个子叶,使之枯萎。真叶受害,多发生在叶缘或叶脉间,初为水渍状小点,在高湿下迅速合并,渗透,使叶片失水青枯。高温干燥天气,则形成直径2-3毫米的圆形褐斑,天气潮湿时,可合并成大褐斑,病斑变薄,严重时引起叶枯。茎蔓受害,产生椭圆形或梭形、微凹陷的浅褐色斑,果实受害时,产生周围略隆起的圆形凹陷暗褐色斑,严重时,引起果实腐烂。潮湿时各受害部位均可长出黑色霉状物。3、西瓜病毒病。西瓜病毒病,俗称小叶病、花叶病,全国各地区均有发生,北方瓜区以花叶型病毒病为主,南方瓜区蕨叶型病毒病发生较普遍,尤以秋西瓜受害最重。危害程度的轻重与种子带菌率和蚜虫发生数量密切相关。西瓜受害后,叶片变小,生长缓慢,植株矮化,花器发育不良,严重的不能座果,或座果后发育不良,畸形,果小,产量低,品质差,失去商品价值。

老年性黄斑变性研究现状论文

老年性黄斑变性(sneile macular degeneration,SMD或aging macular degeneration,AMD ),也称为年龄相关性黄斑变性(age--related macular degeneration,ARMD ),是欧美地区老年人主要致盲眼病之一。发生本病的年龄大约在50岁,发病率与年龄成正比,根据患者的主要症状及体征,临床上分为干性AMD和湿性AMD两种类型。刘家琦,李凤鸣.实用眼科学[M].第2版.北京:人民卫生出版社,2000,445-448.具体发病的原因尚不能确定,可能与年龄、饮食、吸烟、遗传、视网膜慢性光损伤、基础疾病等有关。梁凤鸣等.基于肝肾亏虚理论的年龄相关性黄斑变性的中医药研究现状[J],陕西中医药大学学报,2016,(39):142-146.现代中医研究认为,黄斑归属于脾脏,黑睛归属于肝脏,瞳神归属于肾脏,故湿性AMD与肝脏、脾脏、肾脏的脏腑功能失调密切相关.3邵雁,徐新荣.中药治疗年龄相关性黄斑变性研究进展[J].山东大学耳鼻喉眼学报,2013,(27):91-94.。根据其临床症状,可分别属于“视瞻有色”、“视瞻昏渺”、“暴盲”等疾病范畴。 4王莉,梁凤鸣等.年龄相关性黄斑变性的辨证论治探讨[J].新中医,2011,(43):9-10.1.发病机制: 对于湿性AMD的发病机制,许多专家争议较多,并未形成统一共识,但多数学者认为湿性AMD与bruch膜增厚、视网膜色素上皮的消耗、视网膜色素上皮沉着有关5姚慧敏。年龄相关性黄斑变性的发病机制及药物治疗进展[J].中国实验方剂杂志学,2013,(19):370-375.。还与氧化应激、炎症免疫,以及新生血管的形成有重要关系。6杨萱,魏文斌。年龄相关性黄斑变性发病机制的研究进展[J].中国医学前沿杂志,2014,(6):5-9. 2.诊断标准:参照中西医结合眼科学7段俊国.中西医结合眼科学[M].第9版.北京:中国中医药出版社,2013,278-281.:一眼视力突发骤降,数年后可能会累及另一眼,黄斑区后极部视网膜会见到玻璃膜疣和新生血管或者神经上皮层的脱离。眼底荧光素血管造影,可见视网膜下新生血管、出血区遮蔽荧光、荧光区渗漏。 3治疗 3.1中医治疗:中医药作为祖国传统医学的治疗方法,价格便宜、服用相对安全、取材较为广泛等一系列特点。8周尚昆等.明睛颗粒治疗湿性老年性黄斑变性的研究进展[J].眼科新进展,2014,(34):155-157.高志强10高志强.凉血化瘀法治疗湿性老年黄斑变性疗效观察[J].中国卫生标准管理CHSM14,2014,(4):58-59.对50例湿性AMD患者全部采用化瘀、凉血的方法治疗,药物组成:生地、芍药、丹皮、仙鹤草、大蓟、茜草、小蓟、生蒲黄、炒山栀、枳壳,所用各药量根据患者的症状加减。晚期患者在原来方剂的基础上酌情加半夏、昆布、浙贝母、海藻以软坚散结,加快瘢痕的吸收;伴有出血者可酌加白茅根、大蓟、侧柏叶、小蓟、藕节碳等以止血;伴有渗出者可酌加车前子、泽泻、茯苓以减少渗出。每日1剂,水煎服,早晚各服1次,连续服用3个月。用药1、3个月之后,视力改善例数明显增加。张祝强等人对34例(52眼)湿性AMD患者以健脾明目、燥湿化痰为治疗原则,方剂选用二陈汤,并根据患者症状随证加减,有出血者加大蓟、小蓟、茜草、生蒲黄等;渗出严重者加昆布等,并根据患者眼部症状随证加减。在此基础上,配合针灸治疗,主穴:太阳、承泣、风池、攒竹。配穴:肝俞、球后、肾俞、三阴交。同时以血栓通注射粉针,每次100毫克,加入注射用水3毫升,为患者做直流电治疗,每日一次。20天为一个疗程,所有患者最长治疗60天,最短治疗20天。治疗20天后视力提高1-3行及3行以上者共40眼,总有效率为76.92%。张祝强等.中西医结合治疗老年性湿性黄斑变性34例临床观察[J].辽宁医学杂志,2013,(27):126-127. 3.2西医治疗:湿性AMD中,血管内皮生长因子(VEGF)在CNV形成中起关键作用,而抗VEGF治疗成为CNV治疗的有效手段。11中华医学会眼科分会眼底病学组中国老年性黄斑变性临床指南I临床路径制定委员会.中国老年性黄斑变性临床诊断治疗路径-中华眼底病杂志.2013,29(4):343-355.。激光光凝、光动力疗法、放射治疗、黄斑部转位手术和视网膜色素上皮细胞移植手术、抗血管内皮生长因子药物玻璃体腔注射给湿性AMD带来希望,12Zhang X,Ren B C.Recent Advance of the Study on Treatment for Age-related Macular Degeneration.Int J Ophthalmol,2007,7(6):l674~1676.13李菲,陈长征.玻璃体腔注射血管内皮生长因子单克隆抗体bevac-izumab后视功能的变化.中华眼底病杂志,2011,27(1):97~99。丁晓琚等人为20例患者22患眼玻璃体腔注射康柏西普0.05毫升,每月1次,连续治疗3次后根据病情观察决定是否继续注药,治疗1个月、3个月、6个月后患眼的中心视网膜厚度均较治疗前降低。可见,康柏西普治疗湿性AMD可使患眼视力提高,抑制新生血管的渗漏,无与治疗相关的不良反应。丁晓琚,单舞强,谢桂军等.玻璃体腔注射康柏西普治疗湿性老年性黄斑变性的疗效[J].国际眼科杂志,2016,(11):2088-2090.杨默迟等人共收纳湿性AMD患者46例(72眼),玻璃体腔注射雷珠单抗注射液(每瓶装0.2毫升)0.05毫升,每月1次,连续共注射3次,治疗总时间为3个月,患者治疗后比治疗前平均最佳矫正视力逐渐增加,黄斑区视网膜厚度逐渐减小的趋势。杨默迟等.雷珠单克隆抗体治疗年龄相关性黄斑变性的临床疗效[J].宁夏医科大学学报,2015,(37),1215-1218.3.3中医药联合玻璃体腔药物注射:薛娟,路玉英为60例(60眼)湿性AMD患者其中对照组30例(30眼)玻璃体腔内注射曲安奈德(规格:40mg:1ml)0.1ml(含曲安奈德4mg),30例(30眼)为治疗组,在注射曲安奈德的基础上联合唐由之经验方--明睛颗粒,方剂药物的组成:蒲黄15克,黄芪30克,墨旱莲20克,随证加减,阴虚症状伴眼底出血者,加生地黄15克,侧柏叶10克;陈旧性眼底出血,伴见黄斑部水肿、心脏不适、舌暗红、脉弦涩者,加地肤子10克,川芎15克,每日1剂,早晚分两次温服,每次150毫升。治疗3个月后,治疗后眼底出血渗出较治疗前面积减少75%及25%-75%以上者为83.3%,对照组为43.3%。视力提高2行以上或提高1行或者保持不变者为86.7%,对照组为60%。14薛娟,路玉英。明睛颗粒联合玻璃体腔内注射曲安奈德治疗渗出性老年性黄斑变性的疗效观察【J】。中医药导报,2016,(22):86-88.吴权龙等人将77例(77眼)湿性AMD患者随机分为联合治疗组(39例,39眼):散血明目片 雷珠单抗注射液;雷珠单抗组(38例,38眼):雷珠单抗注射液。联合治疗组雷珠单抗注射液(0.2毫升)注射0.05毫升,散血明目片为院内制剂(0.3克/片)每次口服10片,每日三次。连续服用3个月。雷珠单抗组为玻璃体腔内注射雷珠单抗注射液(0.2毫升)0.05毫升,每个月注射一次,连续注射3个月.治疗3个月后,联合治疗组视力提高2行或2行以上者为76.9%,雷珠单抗组为50%.治疗前后2组中央黄斑视网膜厚度均有明显降低,其中联合治疗组中央黄斑视网膜厚度降低更为明显.16吴权龙,彭清华等.散血明目片联合雷珠单抗眼内注射液治疗湿性年龄相关性黄斑变性的临床观察[J].中南药学,2016,(14):329-332.方一惟等人收治湿性AMD患者110例,随机分为对照组(55例):雷珠单抗注射液;中西医结合组(55例):雷珠单抗注射液 中药汤剂。对照组用雷珠单抗注射液注射0.05毫升,中西医结合组在雷珠单抗注射液基础上加中药汤剂辅助治疗,中药汤剂处方:石决明20克,太子参20克,茯苓10克,昆布10克,生蒲黄10克,薏苡仁10克,郁金10克,每日1剂,每次150毫升,每天分3次温服,两组各治疗4周,对照组最佳矫正视力率41.82%,中西医结合组为63.64%,中西医结合组的最佳矫正视力显著优于对照组。脉络膜新生血管渗透消失率:对照组60%,中西医结合组94.55%。中西医结合组脉络膜新生血管渗透消失率显著由于对照组。17方一惟等.中西医结合治疗湿性老年性黄斑变性临床观察[J].中国医学工程,2016,(24):117-118.4.小结:综上所述,中医药治疗AMD具有悠久的历史和独特优势,虽然中医治疗仍难以清楚脉络膜新生血管,但在血管新生关键因子的调节方面能够起积极作用,尤其在防止黄斑反复出血和提高视觉质量方面有效。安丽娜,魏伟。年龄相关性黄斑变性的中医研究进展.中国中医眼科杂志,2009,19(6):365-367.刘红宇。中医药治疗年龄相关性黄斑变性的研究概况。亚太传统医药,2011,7(2):162-163.卢辉。年龄相关性黄斑变性中医药治疗进展。浙江中西医结合杂志,2011,(4):291-2931.抗新生血管药物出现时间短,存在复着价格昂贵、复发率、反复注射、不良反应等问题。张欣桐,梁凤鸣.眼底新生血管中西医治疗进展研究[J].天津中医药大学学报,2016,(35):279-283.关于年龄相关性黄斑变性视功能恢复问题,西医学的多数观点认为不可逆,但中医药对本病视力的提高确实临床存在。王莉,梁凤鸣等。补肾活血法治疗年龄相关性黄斑变性的临床研究[J].长春中医药大学学报,2009,(25):337-338.中医药联合玻璃体腔注药术治疗湿性AMD可有效提高最佳矫正视力,降低视网膜厚度,降低脉络膜新生血管渗漏,具有有临床意义。

眼底黄斑病变看东西变形的病因很多,一般是视网膜下的渗出积液引起黄斑水肿,出血。血管的破溢出血,血管的渗漏出血。可以用中药治疗,效果很好,黄斑水肿,黄斑出血,渗出,玻璃体混浊,液化,新生血管一般用中药两月水肿渗出消失。眼底黄斑变性,如果是干性病变的话,一般来说是用药物治疗,如果是湿性病变,有黄斑部的新生血管,一般需要玻璃体腔注射,雷珠单抗。目前激光光凝是治疗脉络膜新生血管的有效方法。在活动期,病灶位于黄斑中心1/4PD以外者,可行激光治疗。

为了为未来做好准备,了解导致老年性黄斑变性(AMD)发展的因素很重要。 毕竟,它是日本人口中第四大最常见的视力障碍原因,也是60岁及以上人群的主要失明原因。 它是日本人口中视觉障碍的第四大原因,也是60岁及以上人群的主要致盲原因。 近年来,病人的数量一直在增加。 静冈县立滨松医院(Seirei Hamamatsu Hospital)眼科主任Akira Ohana是治疗和预防老年性黄斑变性(AMD)和其他形式的玻璃体视网膜疾病的主要专家,他说,在光环境和饮食习惯发生重大变化的情况下,老龄化正在进展,我们需要有意识地关心我们的眼睛健康,以保持我们一生的视觉功能。 在他的新书中,根据他自己的临床经验和临床研究的结果,Ohana向中年人和老年黄斑变性患者解释了什么是这种疾病,以及如何治疗和预防。根据他自己的临床经验和临床研究的结果,他从他的新书《老年性黄斑变性:最新的治疗和预防手册》(CCC Media House)中摘录了三部分内容。 这是该系列的第三篇文章。 近年来,白内障、青光眼和失明在日本呈上升趋势,其原因是什么? 第二部分:男性的风险比女性高。 导致AMD的原因是什么?光环境是如何导致眼睛的寿命终结的? AMD(年龄相关性黄斑变性)没有单一的原因。 AMD是一种 "多因素疾病",意味着它是由多种因素共同造成的。 要为未来做好准备,重要的是要知道导致AMD的因素,所以让我们一个一个地看一下。 身体随着年龄的增长而变得生锈。 衰老是已达到成熟期的细胞和组织逐渐减弱并最终达到其生命终点的过程。 其中一个机制是,细胞在代谢活动中使用的一些氧气变成了活性氧(坏氧),从而损害(氧化)了细胞和组织。 这被称为 "氧化应激",有时被称为 "老化是由于活性氧引起的氧化应激导致的身体生锈"。 这种氧化压力与AMD的发展密切相关。 氧化应激损害光感受器 光感受器细胞需要大量的能量来将光刺激转换成电信号。 在清醒状态下,感光细胞不停地工作,由于其高代谢,需要大量的氧气。 这就是为什么在身体的任何部位中,视网膜的氧气浓度最高。 这意味着视网膜比身体的任何其他部位更容易产生活性氧。 吸收光线的光感受器色素也是已知的ROS来源,废物脂褐素也是如此,它在视网膜色素上皮细胞中积累,是ROS的强大来源。 ROS具有氧化事物的能力。 视网膜的感光细胞含有大量容易氧化的不饱和脂肪酸,如二十二碳六烯酸(DHA)和二十碳五烯酸(EPA),它们被ROS氧化,形成脂质自由基(脂肪氧化过程中产生的中间体)。 麻烦的是,一旦形成脂质自由基,它们会引发其他脂质的连锁反应,产生大量的脂质过氧化物。 脂质过氧化物可以损害细胞膜和组件,导致光感受器细胞和视网膜色素上皮细胞的损害和退化。 这是导致AMD的一个主要因素。 除了防止作为活性氧(ROS)来源的脂褐素的积累外,还可能通过减少光量来预防AMD,因为光是用于将氧转化为ROS的能量来源。 遗传学并非不重要 所谓的遗传病是指由于拥有特定的变异基因而引起的疾病。 在有关新冠病毒的新闻中经常听到 "变异 "一词,例如通过 "三角洲变异 "等短语。 简而言之,它是一种与大多数人原本拥有的基因不同的基因。 突变基因通常由父母传给孩子。 你可能熟悉 "显性 "和 "隐性 "两个术语。 简单地说,如果父母中只有一人携带变异基因,那么这种疾病就是显性的,如果父母都携带变异基因,就是隐性的。 眼科领域中一个著名的遗传病是 "视网膜色素变性"。 到目前为止,已经发现了引起这种疾病的约100种基因变异,日本人中每3400人到8000人中就有一名患者。 遗传的方式因变异基因的种类而异,大多是隐性遗传,但也有罕见的孤发病例,家系内没有疾病的情况。 AMD不是一种遗传性疾病,因为没有变异的基因与该疾病直接相关。 然而,它与遗传学并非完全无关,有容易得AMD的人,也有不容易得AMD的人。 事实上,有几个易感基因已被确认与AMD有关,而你所拥有的易感基因类型决定了你是否对该疾病易感。 典型的易感基因包括CFH(补体因子H)和ARMS2/HTRA1(年龄相关性黄斑病易感性2/高温要求A-1)。 吸烟者患这种疾病的可能性是其两倍以上。 使人们更易受影响的基因是什么? 你可能听说过经常使用 "炎症 "这个词。 例如,当你割伤手指时,伤口会变得红、肿、热和痛。 这是因为白细胞来到伤口,产生抗体并吞噬病菌本身,杀死它们并清理受损组织以促进组织修复。 这被称为 "炎症反应"。 被称为 "补体 "的蛋白质协助这种反应,并帮助调节免疫系统。 当补体正常工作时,炎症得到良好控制,组织得到修复。 有许多类型的补体(蛋白质)和许多调节它们的因素,包括前面提到的易感基因CFH。 CFH蛋白的类型和表达是由基因决定的。 大多数人有相同的基因,但有些人有不同的基因。 这些个体差异被称为 "遗传多态性",对于每个基因,我们大约知道有不同基因的人口比例。 CFH多态性之一是CFH Y402H,2005年有报道称有这种多态性的人更有可能患AMD。 在有CFH Y402H多态性的人中,CFH蛋白中的第402个氨基酸从酪氨酸(Tyr)变为组氨酸(His),导致CFH蛋白的功能降低。 这意味着CFH蛋白不能减少炎症,从而导致慢性症状。 换句话说,拥有CFH的多态性会增加炎症的风险并加速AMD的发展,否则这将由其他因素引起。 另一方面,ARMS2蛋白存在于光感受器内段的线粒体中,但具有ARMS2多态性的人的线粒体中没有这种蛋白,这可能与AMD的发展有关。 吸烟者罹患该病的可能性比其他人高一倍以上 一些流行病学研究表明,吸烟是发展AMD的一个有力因素。 在久山的研究中,每天吸烟10-19支的人在5年内AMD的发病率比不吸烟的人高2.21倍,而每天吸烟20支以上的人则高3.32倍。 在日本,男性AMD的发病率高于女性的原因之一被认为是男性的高吸烟率。 动脉硬化是另一个加重的因素。 被称为 "代谢综合征 "的全身性异常,如高血压、动脉硬化和异常的脂质代谢,可以促进AMD的发展并使其恶化。 这些阻碍了眼睛里的血液流动,导致视网膜缺氧,并使其更容易从新血管中出血。 事实也表明,患有AMD的人更有可能发生心肌梗塞或中风,所以代谢综合征对你的眼睛和身体都不好。 饮食与此有很大关系 高血压、动脉硬化和脂质代谢异常都与饮食密切相关。 此外,视网膜含有一种黄色的色素,称为黄斑色素,它可以保护光感受器细胞免受氧化压力。 黄斑色素是由饮食中的类胡萝卜素构成的,人们认为饮食中缺乏类胡萝卜素可能是该疾病发展的一个因素。 干细胞治疗带来治疗希望 干细胞是一种具有再生分化功能的细胞,而黄斑变性的本质,就是在视力结构中缺失了这部分细胞,或这部分细胞发生萎缩所致。 干细胞能够替换这些老化和缺失的细胞,来实现恢复黄斑变性患者视力。 治疗原理很简单,首先通过运用干细胞,将干细胞分化为成熟的成体视网膜色素上皮(RPE),正是这部分患者所缺失的细胞类型,然后在实验室的培养皿中培养成RPE,把它们移植在一种很薄的聚合物上,让细胞被携带上去,更方便植入眼睛。 当细胞达到受损部位后,就会发挥分化和再生功能,重新修复,再造新的细胞,从而恢复视力。 “年龄相关性黄斑变性,如果早期发现并进行适当的治疗,绝对不是会导致失明的可怕疾病。 来我这里治疗的患者,很多都没有注意到视野的扭曲,而是在症状恶化了很多之后再来就诊。 为了不变成这样,也要时常一只眼睛确认观察方法,如果直线看起来扭曲,或者左右眼看起来不一样,希望尽快去眼科接受检查。 今后治疗方法也会不断进步,所以不要放弃,希望大家抱着希望接受治疗。”

老年性黄斑变性又称“衰老性黄斑变性”或称“年龄相关性黄斑变性”。它是一种随年龄增加而发病率上升并导致无痛性慢性视力下降的眼底病变。一般双眼发病,一轻一重。病人视力逐渐下降,视物变形,阅读困难,眼前出现黑点或黑影。在西方国家,它被认为是50岁以上的人主要的致盲原因之一。随着社会的发展,老年人生活质量也有所改变,老年人眼病亦有所变化,曾为人们所熟知的沙眼在老年人致盲眼病中已不断地减少,而被糖尿病性视网膜病变、老年性黄斑变性所取代。特别是老年性黄斑变性,在欧美国家已为老年致盲眼病的第一位。在我国,随着人口年龄结构的老化,老年性黄斑变性也已成为我国常见致盲眼病之一。国内统计资料表明,目前我国45岁以上人群的患病率约为6%~7%。老年性黄斑变性的确切发病机制尚不清楚,但大多数学者认为与视网膜色素上皮的代谢功能衰退有很大关系。此外,还与遗传、光损伤、慢性炎症、免疫功能紊乱及自由基损伤等因素有关。老年性黄斑变性临床上分渗出型和萎缩型两型。渗出型的表现为视力急剧下降,视物变形,治疗效果不佳;萎缩型为视力缓慢下降,最终留下永久性中心暗点,90%的患者为此型。由于老年性黄斑变性的确切病因尚不清楚,至今没有特效的药物治疗和有效的预防措施。激光光凝治疗对部分渗出型老年性黄斑变性有一定的效果。因此,患者早期症候的发现非常重要。对所有的可疑病人,以及一侧眼睛已发生渗出型病变而另一侧眼睛处于早期阶段者,每日用Amsker方格表自查,如有扭曲或暗点出现,应及时就诊,以便尽早发现新生血管的早期渗出症状,获得及时治疗的机会。抗衰老及改善微循环的药物对本病萎缩型有较好的疗效。此外,应补充锌及维生素C、维生素E制剂。近年来的研究认为,老年性黄斑变性系脾气虚所致,可用补肾健脾、益气活血的方法治疗。最后,我们提醒老年性黄斑变性等眼底病患者,一定要早期发现、早期诊断,早期治疗。眼底病病人比白内障病人的视力障碍更可怕,白内障患者可通过手术而复明,而眼底病患者不早期防治,可能会导致终生失明。

白菜黑斑病病原菌的研究论文摘要

要多浇水,适当的翻土,让土壤保持透气性和渗水性,可以买一些农药喷洒在白菜的叶子上,在天气比较热的时候是不要浇水的,一般在早晚浇水是可以的。

可以喷洒药物防治,也可以选择抗病能力强的品种。

可以通过大白菜上面的一些斑点来进行识别。我觉得时候一定要注意大白菜的种植方式,还要注意疾病的预防,这样才可以治疗这种疾病。

晚期多处病灶汇聚有时中间穿孔或破裂植物的下叶往往会得重病然后逐渐发展到上叶,导致整个植物死亡。如何防止大白菜黑斑病?致病菌大白菜黑斑病的病原是链格孢菌。白菜黑斑病的主要病原菌是甘蓝黑斑病和甘蓝黑斑病。两种链格孢菌的适宜温度不同,甘蓝型链格孢菌甘蓝型链格孢菌,在我国北方地区高温季节白菜黑斑病的主要病原菌是十字交链孢菌。

从气孔或直接通过表皮侵入第一种白菜叶子上出现小黑点洗菜的时候可以洗掉。这些小黑点往往是蚜虫、青虫等害虫产生的代谢产物。一般来说,只要把这些虫子的粪便冲走,白菜还是可以吃的,也没有相关研究证明吃这种白菜会对人体产生危害。白菜上撒点草木灰或石灰粉也可以利用蚜虫对黄色反应大的特点。

大白菜收获前20天内最好采用前两种方法进行物理防治种白菜的时候白菜有黑点可以吃吗?有哪些预防方法第二种。大白菜叶茎上有小黑点洗不掉可以清楚地观察到小黑点长在叶子和茎上这种白菜的小黑点往往是由于施肥不合理造成的,这与氮肥的偏施和农民朋友对钙肥的忽视有直接关系,尤其是氮肥施用过量。

以致液泡中的酚类物质与细胞质中的多酚氧化酶接触酚类物质氧化形成的醌类物质再次被褐变,这表明大白菜的叶和茎中出现了黑点。这种有小黑点的白菜也是可以吃的。除了选择抗病品种最重要的是合理施肥。为了促进大白菜的生长,氮肥和腐熟的农家肥应在生长前期适量施用,而氮肥应在生长中后期严格控制。每亩大白菜的氮肥施用总量不应超过氮肥类型的选择上,应尽量施用硝态氮铵应该少用或者不用。

病原菌耐药性研究论文

1.韩天龙,王敏,毛冉,张艳明,韩晓华,李志明.雏鸡传染性法氏囊病的病因分析及综合防治[J].黑龙江畜牧兽医,2014.2.韩天龙,王敏,李清泉,张广和,张英浩,石剑华,李志明.种鸡垂直传播病的病原学研究进展[J].黑龙江畜牧兽医,2014.3.韩天龙,王敏,李清泉,毛冉,肖雪宾,张英浩,李志明.微量元素锌在蛋鸡生产中的应用[J].饲料研究,2014.4.韩天龙,王敏,毛冉,肖雪宾,石岩,李志明.鸡病毒性免疫抑制病的病原学研究进展[J].黑龙江畜牧兽医,2014.5.韩天龙,王敏,赵瑞霞,石岩,李晓龙,李志明.肉牛生产福利研究进展[J].家畜生态学报,2014.6.王敏,王丽萍,韩天龙,黄敬海,李国华,李志明.鸡常用抗球虫药的应用研究进展[J].中国兽医杂志,2014.7.王敏,王丽萍,赵瑞霞,张英荣,韩天龙,李志明.鸡抗绦虫药的作用机理及应用[J].家畜生态学报,2014.8.韩天龙,赵瑞霞,高翠英,陈学礼,王敏,李志明.鸭营养性猝死综合征的诊治[J].中国家禽,2013.9.韩天龙,王敏,赵瑞霞,张广和,徐彦玲,李清泉,李志明.雏鸡传染性法氏囊病的发病机理及鉴别诊断[J].家畜生态学报,2013.10.韩天龙,王敏,赵瑞霞,黄国成,宗泽君,李志明.牛异食癖的病因分析及防治对策[J].中国畜牧兽医,2013.11.王敏,韩天龙,王丽萍,黄敬海,李国华,李志明.雏鸡绿脓杆菌病的诊断及综合防治[J].家畜生态学报,2013.12.王敏,徐彦玲,乌云,王丽萍,韩天龙,李志明.蛋鸡腹泻的发生机制及综合防治[J].家畜生态学报,2013.13.韩天龙,王敏,赵瑞霞,宗泽君,李志明.绒山羊必需微量元素缺乏与中毒症探讨[J].饲料研究,2012.14.韩天龙,赵瑞霞,高翠英,陈学礼,王敏,李志明.硒在肉鸭养殖生产中的应用研究[J].饲料研究,2012.15.韩天龙,王敏,赵瑞霞,照日格图,李志明.产纤维素酶系黑曲霉的二次活化与传代培养研究[J].饲料研究,201116.韩天龙,王敏,张英荣,王曦明,李志明.豚鼠牙齿组织总RNA的提取研究[J].安徽农业科学,2011.17.韩天龙,王敏,李志明.铜在绒山羊日粮中的应用研究[J].饲料研究,2011.18.韩天龙,王敏,李志明.QRT-PCR检测目的基因mRNA转录水平的应用[J].安徽农业科学,2011.19.王敏,韩天龙,黄敬海,任希文,付宁,李国华,李志明.蛋鸡细菌性腹泻病原菌的耐药性分析[J].中国家禽,2011.20.韩天龙,王敏,李志明,赵瑞霞,宗泽君.绒毛用羊常见食源性中毒病的探讨[J].中国畜牧兽医,201021.乌艳红,李志明,孙德欣,吕宁,乌仁图雅,娜日娜,赵剑平,王军,韩晓华,李峰.11种帚用高粱形态特征分析[J].安徽农业科学,200922.陈素云,李志明,孙德欣.产蛋鸡呼吸道疾病的综合诊治报告[J].畜牧与饲料科学,200923.王洪荣,冯宗慈,卢德勋,李玉荣,任家琨,李志明,李恒荣,张富,王庆基,DWPeter,JLindsay,DBPurser.应用瘤胃液氨氮、挥发性脂肪酸和血浆尿素氮水平检测放牧绵羊营养状况的研究[J].畜牧与饲料科学,199724.王洪荣,冯宗慈,卢德勋,王晓冬,任家琨,李志明,李恒荣,王庆基,张富,DBPurser,DWPeter,JLindsay.放牧绵羊瘤胃液挥发性脂肪酸的变化规律及其受蠕虫感染的影响[J].畜牧与饲料科学,199725.王洪荣,冯宗慈,卢德勋,李玉荣,王学荣,任家琨,李志明,王庆基,李恒荣,张富,DWPeter,JLindsay,DBPurser.草地牧草饲料的营养动态与放牧绵羊营养限制因素的研究[J].畜牧与饲料科学,1997

兽药中纳米乳的优点和缺点分析论文

无论在学习或是工作中,大家都不可避免地会接触到论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么一般论文是怎么写的呢?以下是我为大家整理的兽药中纳米乳的优点和缺点分析论文,仅供参考,欢迎大家阅读。

摘要:

纳米乳技术是纳米乳化技术的简称,是在乳化剂作用下将水相、油相进行乳化后获得纳米级别药物微粒的一项制药技术,其在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物的溶解度,提高药物生物利用度,避开肝脏首关效应等,也存在制药成本高,保质期短,影响标准检测等缺点;相信随着科学的发展和技术的进步,纳米乳技术因缺点带来的推广困难会逐步解决,在不久的将来能广泛应用于养殖业。

关键词:

纳米乳;纳米技术;兽药;推广;应用;

引言:

纳米乳技术是纳米乳化技术的简称,纳米乳实质上是乳剂的一种,是在乳化剂作用下利用特殊的'乳化工艺,将药物制备成纳米级别的小乳粒的技术[1]。和普通剂型相比,纳米乳剂型药物微粒更小,比表面积更大,生物利用度更高,药效更加理想。为了能帮助大家更清楚地认识纳米乳技术,笔者以此为话题和大家作一下交流。

1、纳米乳

纳米乳是药物的一种剂型,由水相、油相和表面活性剂组成,有的药物中还加入了助表面活性剂而使体系更加稳定[2]。纳米乳早在上世纪90年代就有企业在兽药产品中进行了应用,但由于多种原因,如乳化设备不够先进、制造成本高、市场接受度低等,导致当时该剂型在兽药临床并未得到广泛应用。随着畜牧业的发展和时代的不断进步,兽药监察力度空前加大,市场上不规范的兽药品类越来越少,90%以上都是按照国家、地方或行业标准制成的国标药物。而国标药物临床效果要想充分体现,第一需要药物的配伍技术,第二就是对于药物本身来讲,需要提升本身的生物利用度。纳米乳技术正是基于上述背景在近些年脱颖而出,在化药领域、中兽药领域、饲料添加剂等领域都得到了应用。

2、纳米乳的优点

纳米乳在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物溶解度,提高药物生物利用度,避开肝脏首关效应等。

2.1、使油相和水相共为一体

纳米乳体系由油相、水相、表面活性剂以及助表面活性剂等成分组成,其中表面活性剂又称乳化剂,其分子结构中,一端亲水,一端亲油,这种特殊的结构可使得体系在表面活性剂作用下,将油相溶解于水或将水相溶解于油中,前者又称“水包油”型纳米乳剂,后者则称之为“油包水”型纳米乳剂。只要选择的配方得当,表面活性剂本身的亲水亲油平衡值(HLB值)和油相乳化所需的亲水亲油平衡值相同或相近,则做出来的体系就比较稳定,能使油相和水相非常均匀地共为一体,而不是油相漂浮在水相上面出现分层现象。

2.2、增加药物溶解度

有些药物本身不溶于水,但能溶于某种油中,利用这个原理,可以先将药物溶解在油中,之后将此作为油相,通过纳米乳化技术将油相在表面活性剂的作用下溶解于水,从而增加药物在水中的溶解度。一般来讲,以纳米乳为载体制备的药物,载药量通常在0.1%~5%之间,载药量过低就会失去意义,载药量过高又会引发体系的不稳定,药物很容易在后期储藏过程中出现析出现象,尤其是耐低温性能下降,冬季很容易析出,但和普通剂型相比,纳米乳剂型已经显着提高了药物在水中的溶解度。

2.3、提高药物生物利用度

纳米乳的乳滴粒径一般在100nm以下,有些药甚至能够做到10nm左右,如此小的粒径使其在口服后很容易穿透细胞膜或细胞间隙而进入体循环中。这种小尺寸效应是纳米乳剂型有别于其他剂型的重要一点,加上粒径变小后药物的比表面积大幅增加,和靶器官的组织细胞接触面也得到增大,最终使得药物生物利用度提高。拿临床常用的兽药替米考星来讲,通过药代动力学检测发现,普通的口服液剂型只是纳米乳剂型的0.6~0.7倍左右。药物生物利用度的提高有利于降低用药剂量和缩短疗程,从而降低治疗费用,也有利于减少病原菌耐药性的产生,还有利于解决因兽药残留产生的食品安全问题。

2.4、避开肝脏首关效应

纳米乳剂型有别于其他制剂,由于药物是溶解在油相当中的,而油相成分为脂类物质,在进入肠道后,其吸收不是通过小肠血管的,而是先进入到肠淋巴管,最后再经淋巴循环汇入到血液中,如此吸收方式使得药物没有经过肠道静脉进入到肝门静脉,再经过肝脏进入到体循环,也就避免了肝药酶的灭活作用,有效避开了肝脏首关效应。这种特殊的吸收方式使得药物使用时无需首次加倍,即节约了药物使用成本,同时也降低了药物对肝脏的损害,可谓一举两得。

3、纳米乳的缺点

纳米乳临床应用过程中虽然具有多种优点,但也同样具有一些不可回避的缺点,如制备成本就比较高,纳米乳的工艺中大部分都是通过高速乳化机的乳化作用来制备的,设备的投入和对乳化过程的工艺要求都较高,加上本身表面活性剂的市场价格也不低,实际纳米乳原液中表面活性剂含量能占到18%~36%之间,这些成本加起来导致药物市场售价较高,对推广造成了一定困难。另外,纳米乳为液体制剂,和固体制剂相比稳定性会差一些,药物保质期通常在6~18个月,而固体制剂的则为2~3年。还有在中药制剂中,尤其是口服液制剂和注射液制剂,产品在按照国家标准检测过程中有一项是薄层检验,其中的有关物质通过条带的位置对照能判定产品质量,但表面活性剂的存在会影响薄层检验结果,这也是导致很多中药液体制剂无法使用纳米乳技术的原因。虽然纳米乳技术在推广和应用过程中有诸多困难,但相信随着科技的不断发展,该技术在推广过程中的困难会逐渐被克服。

4、小结

纳米乳化技术是一种新型药物制剂技术,属于纳米技术的一种,由于药物粒子达到了纳米级别,这种小尺寸效应直接解决了很多传统技术无法解决的难题[3]。在我国,目前多家兽药巨头已经将氟苯尼考、替米考星、土霉素、红霉素等药物制成了纳米乳剂应用于临床,添加剂领域则以纳米维生素应用最为广泛,植物精油领域目前薄荷油、牛至油、香芹酚、连翘油、桉叶油等也制成了纳米乳剂在无抗养殖领域得到了应用。相信通过以产品为载体的纳米乳化技术的不断普及,在不久的将来一定会给兽药行业带来革命性的改变。

参考文献

[1]吴旭锦,欧阳五庆,朱小甫,等.黄芩甙纳米乳的制备[J].精细化工,2007(5):470-472.

[2]刘岳,曹丹丹.纳米乳在兽医药剂学中的应用[J].畜牧兽医科技信息,2018(10):155.

[3]胡宏伟,李剑勇,吴培星,等.纳米乳在药剂学中的研究进展及其应用[J].湖北农业科学,2009,48(3):747-750.

专家认为,这种高抗药性沙门氏菌可以致人死亡,尤其对儿童和老人。丹麦专家在调查报告中建议,在禽畜喂养时必须有限制地使用抗生素类药物,以免造成更大范围的病菌抗药性。二月七日新英格兰医学杂志刊登了长庚医院追踪了十多年有关於「猪霍乱沙门氏菌对赛普洛(ciprofloxacin)抗药性於台湾的崛起」的论文,该篇论文是台湾30年来第七篇刊登於这本临床医学杂志牛耳的重要论文,显示了目前在台湾抗药性问题的严重程度,让我们一面欣慰於台湾医学水准的提升,一方面忧心於现况。 嘉义长庚医院小儿科主任邱政洵医师表示沙门氏菌是一种人畜共通的感染菌,为台湾常见的病原菌之一,在台湾,由猪霍乱沙门氏菌所引起的感染病例远较欧美为多,可能与国人喜食猪肉或养猪业猪只的排泄物污染到食物或饮用水有关,这种血清型的沙门氏菌在人类通常造成侵袭性感染,比如败血症、关节炎、骨髓炎等,病程一般较为急性而且严重。 该篇论文主要是探讨『猪霍乱沙门氏菌对赛普洛(ciprofloxacin)的抗药性』问题。临床医师面对沙门氏菌感染所使用的第一线抗生素安比西林(ampicillin)的抗药性已达60%以上,所以治疗沙门氏菌要用到第三代头孢芽素或赛普洛,然而,目前赛普洛也以出现抗药性的问题,确实令人感到忧心,如此的研究结果揭示了赛普洛对於治疗因猪霍乱沙门氏菌引起的败血症、菌血症等将不再是一个安全的选择。 邱政洵医师表示临床上以小孩子及有免疫力缺损的成年人较易感染,例如:长期服用类固醇、罹患爱滋病、癌症的病人,一旦感染死亡率非常高。然而,抗药性产生的主因乃是抗生素的滥用,除了人类的滥用,畜牧业的滥用也是重要原因。 是否不吃猪肉就可以避免感染呢?错!一旦我们食入了受到感染的水源及食物或是吃了已经受到此菌感染而没有煮熟的猪肉,感染的机会将大增。猪霍乱沙门氏菌是众多沙门氏菌的其中一种,存在於受到病菌感染的猪只肠道之中,如果该猪只的排泄物未依规定处理,流入河川,污染了我们的饮用水,或是在屠宰的过程中,业者没有确实洗净猪只,导致排泄物污染猪体或是在屠宰时不小心划破肠道,种种原因都容易使猪肉受到猪霍乱沙门氏菌的污染。 长庚大学医技系暨医学生物技术研究所吴竹兰副教授表示,消费者要消毒猪霍乱沙门氏菌并不是一件很困难的事情。切记食用猪肉一定要煮熟了再食用,沙门氏菌的抗热力弱,於60℃加热20分钟即被杀灭;在制作食物的过程中,务必将生食(不限定只有猪肉喔!)及熟食的砧板及菜刀分开,以免交叉感染,选用经卫生署检验合格的CAS优良肉品及注意食品卫生安全,才能远离沙门氏菌。 当然卫生单位对於猪只的饲养、防疫、检验等各个关卡,都应严格把关、责无旁贷,消费者也不要因为贪图便宜的私宰猪肉,而提供非法的私宰业者任意污染美丽宝岛的机会。

古细菌研究论文

这个题不好写“如果地球上没有生命”本身就有问题,现(事)实与理想的完美冲突!哪我就反其道而为之吧!希望你不要见笑。 生命何时、何处、特别是怎样起源的问题,是现代自然科学尚未完全解决的重大问题,是人们关注和争论的焦点。历史上对这个问题也存在着多种臆测和假说,并有很多争议。随着认识的不断深入和各种不同的证据的发现,人们对生命起源的问题有了更深入的研究,第一个阶段,从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的,这一过程教材中已有叙述,这里不再重复。需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。米勒先给烧瓶加热,使水蒸汽在管中循环,接着他通过两个电极放电产生电火花,模拟原始天空的闪电,以激发密封装置中的不同气体发生化学反应,而球型空间下部连通的冷凝管让反应后的产物和水蒸汽冷却形成液体,又流回底部的烧瓶,即模拟降雨的过程。经过一周持续不断的实验和循环之后。米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。第二个阶段,从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。第三个阶段,从生物大分子物质组成多分子体系。这一过程是怎样形成的呢?前苏联学者奥巴林提出了团聚体假说,他通过实验表明,将蛋白质、多肽、核酸和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。奥巴林等人认为,团聚体可以表现出合成、分解、生长、生殖等生命现象。例如,团聚体具有类似于膜那样的边界,其内部的化学特征显著地区别于外部的溶液环境。团聚体能从外部溶液中吸入某些分子作为反应物,还能在酶的催化作用下发生特定的生化反应,反应的产物也能从团聚体中释放出去。另外,有的学者还提出了微球体和脂球体等其他的一些假说,以解释有机高分子物质形成多分子体系的过程。图7团聚体简单代谢示意图第四个阶段,有机多分子体系演变为原始生命。这一阶段是在原始的海洋中形成的,是生命起源过程中最复杂和最有决定意义的阶段。目前,人们还不能在实验室里验证这一过程.生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。首先,生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的。在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它们是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米。因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳、一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。1859年,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,既然你说地球早期温度都是比较高,又充满了很多还原性气体,还有水,那么我就把这些气体,把水放在一个瓶子里面,看看它是不能产生生命,或者产生有机化合物。米勒在1953年把氨气、氢气,还有水、一氧化碳放在一个密封的瓶子里面,在瓶子里面两头插上金属棒,完了通上电源,通过这个类似于闪电的作用,确实在几天之后产生了大量的氨基酸。那么就是说在地球上面,在闪电下,在常温下,也能成为无机分子,合成有机分子。我们知道,你氨基酸的话,是组成蛋白质的最重要的物质,可以说,组成生命起源最重要的物质。因此,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、有水、有氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质,蛋白质和其他的多糖类,以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。但是这种温暖水池说,也遇到一些问题,其中有两个问题,第一个问题是现在地质学家认为,地球早期大气圈它并不是含有大量的还原性气体,它是含有大量的二氧化碳和氮气,比米勒的这个气体多一些惰性。在闪电的情况下,你并不能形成大量的氨基酸。第二个,温暖的水池在地球早期并不能长期形成,为什么呢?因为当时地球早期,刚才说过它有大量的陨石、流星,还加上地球本身的放射性,温度很高,你这个温暖水池一旦生命产生了,一个陨星过来,温度在瞬间之内可能达到上千度、甚至几千度,生命已经绝灭了,只能再来一次生命的起源。但是我们现在就这么想,现今的地球上是不是有温度比较高,还有还原性气体,还有生物存在呢?那么,有两件工作可以说具有划时代的意义,一个是1967年美国学者布莱克,在黄石公园的热泉中发现了大量嗜热生物,我们知道蛋白质一般的话超过六十度,就会凝固的,煮鸡蛋六十度七十度以上鸡蛋就熟了,但是生物,是不是在六十度以上还能够生活呢?在以前是不敢想的。现代生物学家,他通过生物分子学的研究,他把热泉中的一些嗜热古细菌,跟现在的普通细菌进行了基因的对比,发现它们基因的相同点,不超过60%。那么就是说这些古细菌它们含有非常多的古老的基因,也就是说,它们很有可能就是生命起源时候的这种类型。应该说,生命起源我们研究生命起源它最好的证据,还是在地球上,40亿年到38亿年间的岩石和化石所包含的信息。但是,经过40亿年的变化,地球已经面目全非,现在的地球即使你有40亿年到38亿年的岩石,它也进入了大量的变种,信息也几乎全无。因此我们把目光不要局限在只是在地球上,如果说生命是宇宙之中一个普遍的现象的话,除了地球之外的其他天体上,是否也有类似于地球早期的这样的环境呢?如果有的话,也许能为研究生命起源打开新的窗户,我们第一个目标是什么地方呢?不是火星是月球,现在地质学家认为,月球是40亿年前,一颗大的行星撞击地球,而从地球上迸发出去。形成了当今的月球,这个时间正好是40亿年,如果地球上有生命起源的话,我们在月球上看看,那不就是解决这个问题了吗。在中国的古代神话中有嫦娥奔月的这个说法,月球上有月桂、有月兔,还有浪漫的爱情故事,但是二十世纪六十年代到七十年代,随着前苏联和美国的宇航员登陆的成功,这个神话彻底破灭了,月球其实是一个没有生命,没有水,没有氧气,不适合生命生存的荒漠的星体。那么我们第二个目标是什么呢?第二个目标是火星,因为火星也许在40亿年以前,有着跟地球类似的经历,火星的物质成分跟地球非常近似,它的轨道也跟地球非常近似,那么火星上是不是有生命呢?我们到火星上去干什么呢?我们寻找生命起源,要从哪几点入手呢?一般来说是三点,第一个在火星上寻找是不是有活的生命?如果有活的生命,那好了。那生命的话,可能真是在宇宙中起源的,或者地球上的生物也许来自火星,或者来自其他的彗星。第二个我们寻找液态水,因为我们知道,水是万物之源,水是生命之源。现在地球上我们所理解的生命形式是离不开水的,所以寻找液态水也是非常重要的一个指标。第三个寻找与生命有关的化合物,如果我们现在没有活的生物的话,过去有没有呢?过去的生物是不是形成了一些化合物?它是不是以化石的形式保存在这些岩石之中呢?所以我们到火星上寻找生命,抱着三个目的。1957年美国的海盗号航天器发回到地球的信息时,火星上没有生命,没有液态水的存在,它是一个荒芜干渴的红色的星球。但是人类并没有气馁,20世纪90年代,美国宇航局加大了对火星的探测力度,通过火星探测者号、火星拓荒者号航天器和哈博望远镜得到的图片,和其他的有关天体物理的信息资料显示,火星上过去很可能有过液态水的存在。一些航天资料显示,火星上有类似于像我们发生大洪水山前的冲积扇的构造,还有水、河道、像地球上干涸的河床的河道,还有水侵蚀岩石的痕迹。另外还有非常特别的一点,在火星的两极,发现了类似于地球上冻土解冻的情况,这是我们的航天资料。那么我们对火星的研究,那就束手无策了吗?现在至少在现阶段并不是,我们有来自火星上的陨石,非常幸运,在1984年,人们在南极的冰盖上面,发现了一颗陨石,这个陨石拿回来以后呢,对它进行它的元素和做气体化学分析,发现这个陨石呢,它的气体它的同位素,跟火星上非常类似。所以他们认为这个陨石是来自火星,这个陨石是在一万年前,掉在冰盖上,南极的冰盖上。通过这个陨石的放射性同位素年龄测定呢,这个陨石40亿年,距现在有40亿年左右,正好跟地球上生命起源的年龄是一样的。那么几十年来,科学家通过了大量研究这个陨石,一些研究者认为,这个陨石上含有了生命的迹象,有哪几个方面的证据呢?有三个,第一个这个陨石里面含有数种沉积矿物,因为沉积矿物它是有水的情况下形成的,所以科学家从中推断,火星上可能有水,特别这些矿物里面有一种是磁铁矿物。他认为这种磁铁矿,它只能由生命的形式存在,这是第一个证据。第二个,在这个陨石的表面通过化学分析,获得了多种多环的芳香烃,他认为这种多环的芳香烃的话,与生命的形式有关。第三个它是通过扫描电镜仔细观察,发现了形态非常类似细菌的生物化石。这化石并不是很大,只有几百个纳米,因此,在1996年,美国宇航局向全世界宣布,在40亿年前火星上曾经有过生命,当然这是一家之言。这颗陨石里面,这个有关生命存在的信息是不是真的呢?当然有很多学者对这些证据提出了置疑。第一个就拿磁铁矿来说,你认为只能由生命生存,我同意,你认为这个沉积矿物它也是由生命生存,我也同意。它是生命有水的形式下才能沉积,我也同意。但是你要知道这个陨石是在南极的冰盖上找到的,那冰全是水,你在陨石撞击冰盖的时候,可能有很多的水溶化了,陨石撞击这个地球的时候,它可能形成很多裂隙,如果有液态水,溶化的水,从这个裂隙进去的话,那不也可能形成一个自身的沉积矿物吗?另外你认为这个磁铁矿,你也可能,有人认为磁铁矿的话,也并不是说是生命特有的,在其他物质条件下也可以形成,所以第一条证据的话,就有很多科学家认为它占不住。第二就是多环芳香烃的问题,同样你看像南极冰盖,你是零下40度,或者50度也好,也有大量的菌藻的生存,它是不是污染的呢?现在的污染,也许是一万年以前污染的呢。所以这条证据的话,你也不能说是一个非常可靠的证据,百分之百的证据。第三个证据,特别是第三个证据它更加靠不住,就是把陨石把它劈开,你看见这些所谓的细菌的化石,这些化石,第一个它太小,它的直径的话只有几十个纳米,我们知道,你像一个铁的原子核的话,它可能就有0.6个纳米,所以你这个,所谓生物化石它的直径的话,它可能就是几百个,甚至由上千个原子核组成。所以这基本的话,在现在我们理解的这个具有细胞膜包裹的原始细胞最小形态是不可想象的。所以这个有关陨石上生命的存在,或者火星上生命的存在,还需要继续的研究。我们所观察的第三个天体,就是木星的卫星,特别是第二个卫星,叫木卫二,它的大小跟地球直径非常类似,在1997年美国的伽利略号航天器对木卫二进行了观察,他们发现在木卫二表面的话,有大量的裂痕存在,并且是多起的裂痕,通过天体物理学的方法研究,这个星球其实全是由水组成的,这个水是固态的冰,变成了固态的冰,我们从这些很多很多的裂隙可以看起来,多起裂痕看起来,这个星球也许在过去或者某个时候,某几个时候,这个水曾经溶化过。也就是说,它曾经有液态水的存在,有液态水存在,它是不是也有生命的存在呢?但是这个还是一个未知数,我们需要更进一步的研究。总之,随着航天科技和其他相关技术的进一步发展,地外生命的探索,为我们研究生命的起源开辟了一个新的途径。但无论怎么样生命起源的过程的话,这三个过程是跑不了:第一个是从无机物到有机小分子,这种过程,比如说你一氧化碳、二氧化碳、水、氢气、氨气、甲烷,这些东西你合成有机小分子,像氨基酸、嘌呤、啶、核苷酸、高能化合物、肪酸、有卟呤等这些东西,这个过程是跑不掉的,因为地球生命的起源的话,你从无机界到有机界,所以这个过程。一个过程是不管在什么地方,在海底也好,在热泉里面,在火星上或者在木卫二,都跑不了这个过程,所以研究生命起源的过程的话,是第一个。第二个呢,它是有机小分子到有机大分子这个形式,就是刚才说的氨基酸嘌呤嘧啶这个东西,有机大分子像蛋白质多糖,核酸这个过程,因为蛋白质是组成生物体的主要的物质,还有多糖、糖类、都是组成很多细胞的这个骨架,细胞壁的主要成分,还有核酸、这是遗传物质,所以这个过程的话,也是跑不掉的。第三个这些生物的大分子,演化到原始单细胞的生命,这也是跑不掉的。一个原始的单细胞,外面有一个膜包裹,里面有遗传物质,要进行新陈代谢的交换。所以生命起源的过程其实可以简单地分成这三个过程:对这三个过程我们现在做到哪一步呢?我们还有什么没解决的呢?第一个我们看看从无机物到有机小分子这个过程,其实这个过程的话,在热泉中,在深海的海底“黑烟囱”中,还是在实验室中,我们都能够合成这个米勒的实验就是一个最经典的实验,它就是把无机物合成了有机小分子。第二个过程,我们再看看,第二个过程是有机小分子,到有机大分子这个过程,这个过程的话,其实在热泉,像海底热泉口,还有陆地上,像黄石公园,我们国家云南的热泉都有这种过程,因为这个温度很高,它有机物在里面的话它可以进行热聚合脱水反应,能形成蛋白质,我们在实验室里面,这个过程也是可以重复的,所以生命起源的第二个过程也不是难的事情。最难的是生命起源的第三个过程,就是生物大分子到原始单细胞这个过程,可以说这个过程是迄今为止科学家们研究上遇到最大的难题。也是无机生命到生命,无机化合物到有机生命不可跨越的一个鸿沟,这个过程包括哪几部分呢?换句话说,我们要研究生物大分子,到原始单细胞生命,要从几个部分来入手呢?第一个我们要研究自我遗传系统,一个遗传系统,就是能自我复制的生物大分子这个系统的建立,DNA、RNA这种系统的建立。它怎么建立的?它怎么合成的?它们怎么有遗传的功能?第二个,蛋白质的合成,它要纳入到自我复制系统的控制,这是什么意思呢?就是它新陈代谢,它是能量和物质在细胞内的交换,接受太阳光、接受化学能,产生有机物,再用这有机物分解而产生能量,这个能量像一个马达一样,来运转这个细胞,是这个过程。这个过程也是非常难的一个过程,第三个过程,生物膜系统的形成,也就是说比如说像细胞壁、细胞膜,生物膜的系统,为什么重要呢?因为我们知道无机界是没有隔离的,没有这种隔离,只有在生物里面它有一个膜跟外界隔离,同时这个膜也不是绝对隔离,而是跟外面进行物质的交换。它有一些小的空隙,所以这个生物膜系统也是一个非常精密的生物机构,所以在生命起源之中这三个阶段或者三个步骤缺一不可,也是非常难的三个步骤。迄今为止,我们把生命起源可以描述成这样子的:在40亿年前的地球上,由无机分子合成的有机小分子,它聚集在热泉口,或者火山口附近的热水中,通过聚合反应,形成了生物的大分子,这些大分子进行自我复制,自我选择,进而通过分子的自我组织,并自我复制和变异,从而形成核酸和活性蛋白质,同时分隔结构同步产生,最后在基因的控制下的代谢反应,为基因的复制和蛋白质的合成提供能量,这样一个由生物膜包裹着的具有能自我复制的原始细胞,就在地球上产生了。这个原始细胞可能是异养的,或者是化学自养的,它可能类似于现代生物在热泉附近的嗜热古细菌,这个描述短短几百字,就把生命起源的过程描述过来了。但它有四个无法逾越的鸿沟,一个是自我选择,因为你组成生物大分子或者RNA,DNA,它这些分子都是非常有限的几种分子。在无机条件下,或者在闪电情况下、或者在热水中,它形成很多这样的分子,这些分子怎么能自我选择,能合成DNA,RNA,能把其他的大分子抛弃掉,这个过程的话,我们并不知道它,为什么这样子?第二个是自我复制,DNA,RNA它自己能够复制,能够为下一代遗传下去,这个过程我们也并不知道。第三个是分隔结构,就是细胞膜,比如细胞膜、或者细胞内部的膜结构,这个过程我们也不是很清楚,它怎么形成的?像磷脂、精细的生物结构怎么形成的,我们也并不是很清楚。另外是一个新陈代谢的问题,你怎么先是吸收外面的能量,这个过程我们并没有解决,但不管怎么样这种热泉中生命起源假说的话,它确实有很多有利证据的支持,特别是近年来,它取得了一系列最重要的进展。我们知道,热泉中含有大量的一氧化碳、硫化氢和硫化金属矿物,特别是黄铁矿物和硫,一方面硫化铁和硫,有新陈代谢的出现。硫化铁是一种非常重要的催化剂,很多化学反应在它的表面或者说在它的晶体骨架里,进行得非常非常的顺利,一些重要化合物已在在热泉中被发现。例如一种活性物质,像硫化脂就发现在热泉之中,它与一种非常重要的化合物,一些复合物非常类似,这种化合物提供了能量新陈代谢的一种途径。所以说这个新陈代谢的途径的话,可能跟热泉中的黄铁矿和硫,以及它们的聚合物有一定的关系。另一方面,遗传物质核糖核酸,RNA的出现的话,与硫化脂和硫的化学过程有着非常密切的关系。而脱氧核糖核酸,DNA它还可以直接用RNA脱氧演变而来。还有另一个的话,像黄铁矿的聚合物,就是这个热泉口中的这个黄铁矿的聚合物的话。其实,存在于很多重要的生化酶的中心,那些生化酶的话,可能就产生于含有大量的硫热泉之中。由此看来,地球上的生命也许就产生在距今38亿年到40亿年间这些充满硫磺味的热水池或者软泥之中。但是我们应该清醒的明白,我们距离揭开生命起源这一亘古之谜,还有一段遥远的科学历程。从无机物到有机物,到有机化合物到有机生命体的演化,同时还具有很多的偶然性,并不是有这种环境,有这种形成条件,它就能产生生命。有人曾经比喻说,这些无机物好像一个垃圾堆里面什么都有,塑料、塑料瓶子、铁,废弃金属、油,而生命,一个单细胞,就像一辆精美的奔驰车,在一阵台风过后,这些垃圾组装成了一个奔驰车。因此我们可以想像,这个生命起源的过程是非常非常地艰难。因此,也许我们在这个蓝色的星球,是生命的惟一的乐园,因此请保护我们的地球,珍惜地球上的生命,我们不能奢望地球上第二次的生命起源,谢谢大家。

[编辑]历史 古细菌这个概念是1977年由Carl Woese和George Fox提出的,原因是它们在16SrRNA的系统发生树上和其它原核生物的区别。这两组原核生物起初被定为古细菌(Archaebacteria)和真细菌(Eubacteria)两个界或亚界。Woese认为它们是两支根本不同的生物,於是重新命名其为古菌(Archaea)和细菌(Bacteria),这两支和真核生物(Eukarya)一起构成了生物的三域系统。 [编辑]古菌、细菌和真核生物 在细胞结构和代谢上,古菌在很多方面接近其它原核生物。然而在基因转录这两个分子生物学的中心过程上,它们并不明显表现出细菌的特徵,反而非常接近真核生物。比如,古菌的转译使用真核的启动和延伸因子,且转译过程需要真核生物中的TATA框结合蛋白和TFIIB。 古菌还具有一些其它特徵。与大多数细菌不同,它们只有一层细胞膜而缺少肽聚糖细胞壁。而且,绝大多数细菌和真核生物的细胞膜中的脂类主要由甘油酯组成,而古菌的膜脂由甘油醚构成。这些区别也许是对超高温环境的适应。古菌鞭毛的成分和形成过程也与细菌不同。 Image:PhylogeneticTree.jpg 基於rRNA序列的系统发生树,显示了可明显区别的三支:细菌(Bacteria)、古菌(Archaea)和真核生物(Eukarya)[编辑]生境 很多古菌是生存在极端环境中的。一些生存在极高的温度(经常100℃以上)下,比如间歇泉或者海底黑烟囱中。还有的生存在很冷的环境或者高盐、强酸或强碱性的水中。然而也有些古菌是嗜中性的,能够在沼泽、废水和土壤中被发现。很多产甲烷的古菌生存在动物的消化道中,如反刍动物、白蚁或者人类。古菌通常对其它生物无害,且未知有致病古菌。 [编辑]形态 单个古菌细胞直径在0.1到15微米之间,有一些种类形成细胞团簇或者纤维,长度可达200微米。它们可有各种形状,如球形、杆形、螺旋形、叶状或方形。它们具有多种代谢类型。值得注意的是,盐杆菌可以利用光能制造ATP,尽管古菌不能像其他利用光能的生物一样利用电子链传导实现光合作用。 [编辑]进化和分类 从rRNA进化树上,古菌分为两类,泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。另外未确定的两类分别由某些环境样品和2002年由Karl Stetter发现的奇特的物种纳古菌(Nanoarchaeum equitans)构成。 Woese认为细菌、古菌和真核生物各代表了一支具有简单遗传机制的远祖生物的后代。这个假说反映在了“古菌”的名称中(希腊语archae为“古代的”)。随后他正式称这三支为三个域,各由几个界组成。这种分类后来非常流行,但远组生物这种思想本身并未被普遍接受。一些生物学家认为古菌和真核生物产生於特化的细菌。 古菌和真核生物的关系仍然是个重要问题。除掉上面所提到的相似性,很多其他遗传树也将二者并在一起。在一些树中真核生物离广古菌比离泉古菌更近,但生物膜化学的结论相反。然而,在一些细菌,(如栖热袍菌)中发现了和古菌类似的基因,使这些关系变得复杂起来。一些人认为真核生物起源於一个古菌和细菌的融合,二者分别成为细胞核和细胞质。这解释了很多基因上的相似性,但在解释细胞结构上存在困难。 目前有22个古菌基因组已经完全结束了测序,另外15个的测序工作正在进行中。[1] [编辑]参见古菌分类表 [编辑]补充20世纪70年代,卡尔·乌斯(Carl Woese)博士率先研究了原核生物的进化关系。他没有按常规靠细菌的形态和生物化学特性来研究,而是靠分析由DNA序列决定的另一类核酸---核糖核酸(RNA)的序列分析来确定这些微生物的亲缘关系。我们知道,DNA是通过指导蛋白质合成来表达它决定某个生物个体遗传特征的,其中必须通过一个形成相应RNA的过程。并且蛋白质的合成必须在一种叫做核糖核蛋白体的结构上进行。因此细胞中最重要的成分是核糖核蛋白体,它是细胞中一种大而复杂的分子,它的功能是把DNA的信息转变成化学产物。核糖核蛋白体的主要成分是RNA,RNA和DNA分子非常相似,组成它的分子也有自己的序列。 由于核糖核蛋白体对生物表达功能是如此重要,所以它不会轻易发生改变,因为核糖核蛋白体序列中的任何改变都可能使核糖核蛋白体不能行使它为细胞构建新的蛋白质的职责,那么这个生物个体就不可能存在。因此我们可以说,核糖核蛋白体是十分保守的,它在数亿万年中都尽可能维持稳定,没有什么改变,即使改变也是十分缓慢而且非常谨慎。这种缓慢的分子进化速率使核糖核蛋白体RNA的序列成为一个破译细菌进化之谜的材料。乌斯通过比较许多细菌、动物、植物中核糖核蛋白体的RNA序列,根据它们的相似程度排出了这些生物的亲缘关系。 乌斯和他的同事们研究细菌的核糖核蛋白体中RNA序列时,发现并不是所有的微小生物都是亲戚。他们发现原来我们以为同是细菌的大肠杆菌和能产生甲烷的微生物在亲缘关系上竟是那么不相干。它们的RNA序列和一般细菌的差别一点也不比与鱼或花的差别小。产甲烷的微生物在微生物世界是个异类,因为它们会被氧气杀死,会产生一些在其它生物中找不到的酶类,因此他们把产生甲烷的这类微生物称为第三类生物。后来又发现还有一些核糖核蛋白体RNA序列和产甲烷菌相似的微生物,这些微生物能够在盐里生长,或者可以在接近沸腾的温泉中生长。而我们知道,早期的地球大气中没有氧气,而含有大量氨气和甲烷,可能还非常热。在这样的条件下植物和动物无法生存,对这些微生物却非常合适。在这种异常地球条件下,只有这些奇异的生物可以存活,进化并在早期地球上占统治地位,这些微生物很可能就是地球上最古老的生命。 因此,乌斯把这类第三生物定名为古生菌(Archaea),成为和细菌域、真核生物域并驾齐驱的三大类生物之一。他们开始还没有如此大胆,只是称为古细菌(Archaebacteria),后来他们感到这个名词很可能使人误解是一般细菌的同类,显不出它们的独特性,所以干脆把“bacteria”后缀去掉了。这就是古生菌一词的来由。 [编辑]补充古菌的发现 人们对古菌的兴趣并非始于1970年代。古菌一些奇特的生活习性和与此相关的潜在生物技术开发前景,长期以来一直吸引着许多人的注意。古菌常被发现生活于各种极端自然环境下,如大洋底部的高压热溢口、热泉、盐碱湖等。事实上,在我们这个星球上,古菌代表着生命的极限,确定了生物圈的范围。例如,一种叫做热网菌(Pyrodictium)的古菌能够在高达113℃的温度下生长。这是迄今为止发现的最高生物生长温度。近年来,利用分子生物学方法,人们发现,古菌还广泛分布于各种自然环境中,土壤、海水、沼泽地中均生活着古菌。 目前,可在实验室培养的古菌主要包括三大类:产甲烷菌、极端嗜热菌和极端嗜盐菌。产甲烷菌生活于富含有机质且严格无氧的环境中,如沼泽地、水稻田、反刍动物的反刍胃等,参与地球上的碳素循环,负责甲烷的生物合成;极端嗜盐菌生活于盐湖、盐田及盐腌制品表面,它能够在盐饱和环境中生长,而当盐浓度低于10%时则不能生长;极端嗜热菌通常分布于含硫或硫化物的陆相或水相地质热点,如含硫的热泉、泥潭、海底热溢口等,绝大多数极端嗜热菌严格厌氧,在获得能量时完成硫的转化。 尽管生活习性大相径庭,古菌的各个类群却有共同的、有别于其他生物的细胞学及生物化学特征。例如,古菌细胞膜含由分枝碳氢链与D型磷酸甘油,以醚键相连接而成的脂类,而细菌及真核生物细胞膜则含由不分枝脂肪酸与L型磷酸甘油,以酯键相连接而成的脂类。细菌细胞壁的主要成分是肽聚糖,而古菌细胞壁不含肽聚糖。 有趣的是,虽然与细菌相似,古菌染色体DNA呈闭合环状,基因也组织成操纵子(操纵子为原核生物基因表达和调控的基本结构单位,生物活性相关的基因常以操纵子的结构形式协调基因表达的开启和关闭),但在DNA复制、转录、翻译等方面,古菌却具有明显的真核特征:采用非甲酰化甲硫氨酰tRNA作为起始tRNA,启动子、转录因子、DNA聚合酶、RNA聚合酶等均与真核生物的相似。 比较生物化学的研究结果表明,古菌与细菌有着本质的区别,这种区别与两者表现在系统发育学方面亲缘关系的疏远是一致的。 二分法和三域学说 地球上究竟有几种生命形式?当亚里士多德建立生物学时,他用二分法则将生物分为动物和植物。显微镜的诞生使人们发现了肉眼看不见的细菌。细菌在细胞结构上与动植物的最根本差别是,动植物细胞内有细胞核,遗传物质DNA主要储存于此,而细菌则没有细胞核,DNA游离于细胞质中。由于动物与植物的差别小于它们与细菌的差别,沙东(E. Chatton)于1937年提出了生物界新的二分法则,即生物分为含细胞核的真核生物和不含细胞核的原核生物。动植物属于真核生物,而细菌属于原核生物。 1859年达尔文发表《物种起源》以后,生物学家便开始建立基于进化关系而非表型相似性的分类系统,即所谓系统发育分类系统。可是,由于缺乏化石记录,这种分类方法长期未能有效运用于原核生物的分类。1970年代,随着分子生物学的发展,伍斯终于在这方面获得了意义重大的突破。 在漫长的进化过程中,每种生物细胞中的信息分子(核酸和蛋白质)的序列均不断发生着突变。许多信息分子序列变化的产生在时间上是随机的,进化速率相对恒定,即具有时钟特性。因此,物种间的亲缘关系可以用它们共有的某个具有时钟特性的基因或其产物(如蛋白质)在序列上的差别来定量描述。这些基因或其产物便成了记录生物进化历程的分子记时器(chronometer)。显然,这种记录生物系统发育历程的分子记时器应该广泛分布于所有生物之中。基于这一考虑,伍斯选择了一种名为小亚基核糖体核酸(SSU rRNA)的分子,作为分子记时器。这种分子是细胞内蛋白质合成机器——核糖体的一个组成部分,而蛋白质合成又是几乎所有生物生命活动的一个重要方面。因此,把SSU rRNA分子作为分子记时器是合适的。 在比较了来自不同原核及真核生物的SSU rRNA序列的相似性后,伍斯发现原先被认为是细菌的甲烷球菌代表着一种既不同于真核生物,也不同于细菌的生命形式。考虑到甲烷球菌的生活环境可能与生命诞生时地球上的自然环境相似,伍斯将这类生物称为古细菌。据此,伍斯于1977年提出,生物可分为三大类群,即真核生物、真细菌和古细菌。基于SSU rRNA分析结果的泛系统发育(进化)树随后诞生了。 进一步的研究表明,进化树上的第一次分叉产生了真细菌的一支和古细菌/真核生物的一支,古细菌和真核生物的分叉发生在后。换句话说,古细菌比真细菌更接近真核生物。 据此,1990年伍斯提出了三域分类学说:生物分为真核生物、真细菌和古细菌三域,域被定义为高于界的分类单位。为突出古细菌与真细菌的区别,伍斯将古细菌更名为古菌。真细菌改称细菌。三域学说使古菌获得了与真核生物和细菌等同的分类学地位。 自诞生之日起,伍斯的三域学说便遭到部分人,特别是微生物学领域外的人反对。反对者坚持认为:原核与真核的区分是生物界最根本的、具有进化意义的分类法则;与具有丰富多样性表型的真核生物相比,古菌与细菌的差异远没有大到需要改变二分法则的程度。但在詹氏甲烷球菌基因组序列测定完成前的近20年中,采用多种分子记时器进行的系统发育学研究一再证明,古菌是一种独特的生命形式。 三域学说的第一个基因组学证据 尽管对古菌已有了上述认识,当人们第一次面对詹氏甲烷球菌的全基因组序列时,还是大吃了一惊。詹氏甲烷球菌共有1738个基因,其中人们从未见过的基因竟占了56%!相比之下,在这之前完成测序的流感嗜血菌(Haemophilus influenzae)和生殖道枝原体(Mycoplasma genitalium)基因组中未知基因仅占20%左右。于是人们终于在基因组水平上认识到,古菌是一种崭新的生命形式。 更有趣的是,詹氏甲烷球菌基因组中占总数44%的那些功能或多或少已经知道的基因似乎勾勒出了古菌与另两类生物之间的进化关系:古菌在产能、细胞分裂、代谢等方面与细菌相近,而在转录、翻译和复制方面则与真核生物类似。换言之,一个生活在大洋底部热溢口处的、习性古怪的微生物,在遗传信息传递方面竟有着与人(而不是与人的消化道中细菌)相似的基因!在赞叹生命奇妙的同时,许多人开始欢呼三域学说的最终确立。美国《科学》周刊在把詹氏甲烷球菌基因组序列测定工作列为1996年度重大科学突破之一时宣称,这一成果使围绕三域学说的争论差不多可以结束了。 对伍斯进化树的新挑战 就在古菌的悬念似乎行将消失时,接踵而来的新发现却使人们重新陷入困惑之中。各类完整的微生物基因组序列一个接一个出现在人们轻点鼠标便可查阅的数据库中,在已发表的18种生物基因组序列中,古菌的占了4个。采用更灵敏的方法对这些基因组(包括詹氏甲烷球菌基因组)进行分析,得到了令人吃惊的结果:詹氏甲烷球菌基因组中只有30%(不是先前估计的半数以上)的基因编码目前未知的功能,这与细菌基因组相近。古菌的神秘性和独特性因此减少了许多。 对三域学说更为不利的是,在詹氏甲烷球菌的那些可以推测功能的基因产物(蛋白质)中,44%具有细菌蛋白特征,只有13%的像真核生物的蛋白质。在另一个古菌,嗜热碱甲烷杆菌(Methanobacterium thermoaotutrophicum)的基因组中也有类似情况。因此,从基因组比较的数字上看,古菌与细菌间的差异远小于古菌与真核生物间的差异,不足以说服三域学说的反对者。 更令人难以理解的是,利用同一生物中不同基因对该物种进行系统发育学定位常常会得到不同的结果。最近,一种能在接近沸点温度下生长的细菌(Aquifex aeolicus)的基因组序列测定完成。对该菌的几个基因进行的系统发育学研究表明:如果用参与细胞分裂调控的蛋白质FtsY作为分子记时器,该菌与伍斯进化树上位于细菌分枝的一个土壤细菌——枯草芽孢杆菌相近;如果以一种参与色氨酸合成的酶为准,该菌应属于古菌;而当比较该菌和其他生物的合成胞苷三磷酸(DNA的基本结构单位之一)的酶时,竟发现古菌不再形成独立的一群。看来不同的基因似乎在诉说不同的进化故事。那么,古菌还能是独特的、统一的生命形式吗? 属于真核生物的啤酒酵母基因组序列测定完成后,三域学说遇到了更大危机。酵母细胞核基因中,与细菌基因有亲缘关系的比与古菌有亲缘关系的多一倍。有人还对在三种生命形式中都存在的34个蛋白质家族进行了分析,发现其中17个家族来源于细菌,只有8个显示出古菌与真核生物的亲缘关系。 如果伍斯进化树正确、古菌与真核生物在进化历程中的分歧晚于两者与细菌的分歧的话,那么怎样才能解释上面这些结果呢? 根据细胞进化研究中流行的内共生假说,真核细胞细胞器(线粒体、叶绿体)的产生源于细菌与原真核生物在进化早期建立的内共生关系。在这种关系中,真核细胞提供稳定的微环境,内共生体(细菌)则提供能量,久而久之,内共生体演变为细胞器。真核生物细胞核中一部分源于细菌的基因可能来自线粒体,这些为数不多的基因通常编码重新运回线粒体的蛋白质分子。可是,现在发现许多源于细菌的核基因编码那些在细胞质、而不是线粒体中起作用的蛋白质。那么,这些基因从何而来呢?显然,内共生假说已不足以挽救伍斯进化树。 不过,伍斯进化树也不会轻易倒下,支撑它的假说依然很多。最近,有人提出了新版的“基因水平转移”假说。根据这个假说,基因组的杂合组成是进化过程中不同谱系间发生基因转移造成的。一种生物可以采用包括吞食等方式获得另一种、亲缘关系也许很远的生物的基因。伍斯推测,始祖生物在演化形成细菌、古菌和真核生物三大谱系前,生活于可以相互交换基因的“公社”中,来自这个“史前公社”的生物可能获得了不同的基因遗产。这一切使得进化树难以枝杈分明。不过,伍斯相信,基于SSU rRNA的进化树在总体上是正确的,三种生命形式是存在的。 争 论 在 继 续 三年前詹氏甲烷球菌基因组序列的发表,似乎预示着一场延续了20多年的、关于地球上到底有几种生命形式的争论的终结。古菌似乎被认定为生命的第三种形式。如今,仅仅过了三年,即使最乐观的人都无法预料伍斯进化树的命运。这场仍在继续的争论中,尽管古菌的分类地位遭到质疑,但古菌这一生命形式的独特性依然得到不同程度的肯定。 目前,古菌研究正在世界范围内升温,这不仅因为古菌中蕴藏着远多于另两类生物的、未知的生物学过程和功能,以及有助于阐明生物进化规律的线索,而且因为古菌有着不可估量的生物技术开发前景。古菌已经一次又一次让人们吃惊,可以肯定,在未来的岁月中,这群独特的生物将继续向人们展示生命的无穷奥秘。

地球陆地表面大部分被生命(生物)所覆盖,它们强烈地影响着地表景观的形成过程。然而,从最近获得的图像显示,火星与地球的地貌惊人地相似。这便提出一个有趣的问题:如果我们拿出一幅高分辨率地貌图,把明显的生命痕迹从上面抹去,我们能否仅仅从地貌判断地球上有无生命?

  • 索引序列
  • 西瓜细菌性叶斑病研究现状论文
  • 老年性黄斑变性研究现状论文
  • 白菜黑斑病病原菌的研究论文摘要
  • 病原菌耐药性研究论文
  • 古细菌研究论文
  • 返回顶部