我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。
关于边边角不能使三角形全等的论文那你具体什么题目,格式内容,如何要求,怎么评级的
现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知) 所以AF+ FC=DC+ FC 所以 DF= AC 在 △DEF和△ABC 因为 AC=DF (已证) 因为 AB=DE (已知) 有因为 DC=EF (已知) 所以△ABC≌△DEF (SSS) 因为∠EFD=∠BCA ( 全等三角形的对应角相等) 这是比较基础的一道几何证明题。。以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。
三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
判断定义:1、SSS(Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应相等的话,该两个三角形就是全等三角形。2、SAS(Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。3、ASA(Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应相等,且这两个角的夹边(即公共边,)都对应相等的话,该两个三角形就是全等三角形。4、AAS(Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应相等,且其中一个角的对边(三角形内除组成这个角的两边以外的那条边)或邻边(即组成这个角的一条边)对应相等的话,该两个三角形就是全等三角形。5、HL定理(hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。
以下三条之一。1、三条边对应相等(SSS);2、有一个角相等且夹这角的两边也对应相等(SaS);3、有一条边相等且夹这边的两个角对应相等(aSa)。
全等三角形是几何中全等之一。根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。
1、等三角形的对应角相等。
2、全等三角形的对应边相等。
3.、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
有一天,三角形、圆形和长方形大吵了一架,吵架的原因是应为圆形在看电视的时候有一个广告上面说:快来参加!快来参加!快来参加!快来参加我们的谁最有用,是三角形、圆形还是长方形快来踊跃参加吧!我们的热线电话是:123456~123456789快来踊跃参加吧!就是这样他们大吵了一架.后来他们边吵边走,来到了一个叫“很悲伤”的小学,这里没有一个玩具,小朋友们都很悲伤.于是,圆形当滑滑梯的身子,三角形当滑滑梯的滑板,长方形当滑滑梯的楼梯,组成一个大的滑滑梯.小朋们乐坏了,他们爬上去,又溜下来,整个幼儿园一片欢腾,小朋友们得到了快乐.幼儿园的名字也改成了“快乐”幼儿园.然后三角形、圆形和长方形他们又来到了一个叫做一个“破烂”的村庄,在这个村庄中什么都没有,什么都是破烂不堪的.那里的房子下雨会漏水,锅子都破了个大洞,床都是用干草和树枝堆起来的.他们那里的人看起来很悲伤,脸上好像从来都没有过笑容.这让三角形、圆形和长方形他们心里感到很难受,觉得那里的人们很可怜,想去帮帮他们.于是他们动起来了.圆形变成了新的铁锅、桌子、凳子等日常用品.正方形和三角形变成了一栋栋的新房子.这使那里的村民非常感动,他们的脸上逐渐的布满了笑容,幸福和开心的笑容.就在这个时候,三角形、圆形和长方形他们和好了,他们不再吵架了.因为他们看见村民们的笑容很幸福,很开心.所以他们也感到开心,所以什么都不计较了.都知道自己也有不对的地方.从此以后,他们是再也不吵架的好朋友,好伙伴了.我觉得三角形、圆形和长方形都是有用的,比如没有了圆圈我们也不能把三角和正方形带替吧,所以 我觉得三角形、圆形和正方形都是有用的。
从一年级开始,我的数学成绩那叫一个字:好。无论哪次考试,从未低过90分,有很多人简直成了我的“粉丝”。可就是你们:三角形和梯形,害得我……哎!
那是五年级上学期的一个单元测试,考的是三角形的和梯形面积,我根本没把你们放在眼面,因为从五年级开始,我的数学考分常常是“一根烤肠加两个鸡蛋”,所以考试前我胸有成竹:我肯定能考100分。考试开始了,我神采飞扬,笔走龙蛇,仅用了30分钟就把所有题目搞定。老师考试前再三强调,试卷做好后要检查。检查?那是对没有自信的人说的,我做的试卷还用检查吗?我想都没想,直接把试卷交了上去,然后骄傲地倚在座位上,得意地欣赏着还在奋笔疾书的同胞们,享受着一些男生的忌妒;另一些男生的愤怒;当然,还有一些女生的崇拜;粉丝们无声的尖叫和全班大部分同学的瞠目结舌……
我的得意只持续了不到两天时间,老师公布成绩了,80多分90多分的同学纷纷亮相,我对他们的成绩不屑一顾,因为无数次他们都是我的手下败将。终于,老师读到我的名字了,全班同学立即喧闹起来:“不用说了,肯定是100分”;“就是不考100分,99分应该没问题的!”面对同学们对我的仰视,我快飘起来了,仿佛在云端漫步。“78分”“什么?这……这……”我像是遭到了五雷轰顶,半天没回过神来。全班同学再一次瞠目结舌,都不敢相信自己的耳朵,甚至有的人还为我吼起来:“不可能,是不是改错了啊?”老师发话了:“掌必成,看你粗心的,三角形和梯形的面积公式运用全部没有除以二。”咔嚓!我再遭五雷轰顶,从云端重重地摔在地上,心都摔碎了。我的“忌妒们”飞眉窃喜;“愤怒们”幸灾乐祸;“崇拜们”厄腕叹息;“粉丝们”伤心欲绝。我的心哇凉哇凉的,三角形和梯形啊,我恨死你们了!
但是我就是我,恩怨分明,敢爱敢恨。虽然你们三角形和梯形害得我糗大了,但是我还是要感谢你们,是你们让我明白了考场如战场,没有常胜将军,稍一粗心就会马失前蹄。我会永远地记你们,记住那场考试,记住那个78分……
从一年级开始,我的数学成绩那叫一个字:好。无论哪次考试,从未低过90分,有很多人简直成了我的“粉丝”。可就是你们:三角形和梯形,害得我……哎!
那是五年级上学期的一个单元测试,考的是三角形的和梯形面积,我根本没把你们放在眼面,因为从五年级开始,我的数学考分常常是“一根烤肠加两个鸡蛋”,所以考试前我胸有成竹:我肯定能考100分。考试开始了,我神采飞扬,笔走龙蛇,仅用了30分钟就把所有题目搞定。老师考试前再三强调,试卷做好后要检查。检查?那是对没有自信的人说的,我做的试卷还用检查吗?我想都没想,直接把试卷交了上去,然后骄傲地倚在座位上,得意地欣赏着还在奋笔疾书的同胞们,享受着一些男生的忌妒;另一些男生的愤怒;当然,还有一些女生的崇拜;粉丝们无声的尖叫和全班大部分同学的瞠目结舌……
我的得意只持续了不到两天时间,老师公布成绩了,80多分90多分的同学纷纷亮相,我对他们的成绩不屑一顾,因为无数次他们都是我的手下败将。终于,老师读到我的名字了,全班同学立即喧闹起来:“不用说了,肯定是100分”;“就是不考100分,99分应该没问题的!”面对同学们对我的仰视,我快飘起来了,仿佛在云端漫步。“78分”“什么?这……这……”我像是遭到了五雷轰顶,半天没回过神来。全班同学再一次瞠目结舌,都不敢相信自己的耳朵,甚至有的人还为我吼起来:“不可能,是不是改错了啊?”老师发话了:“掌必成,看你粗心的,三角形和梯形的面积公式运用全部没有除以二。”咔嚓!我再遭五雷轰顶,从云端重重地摔在地上,心都摔碎了。我的“忌妒们”飞眉窃喜;“愤怒们”幸灾乐祸;“崇拜们”厄腕叹息;“粉丝们”伤心欲绝。我的心哇凉哇凉的,三角形和梯形啊,我恨死你们了!
但是我就是我,恩怨分明,敢爱敢恨。虽然你们三角形和梯形害得我糗大了,但是我还是要感谢你们,是你们让我明白了考场如战场,没有常胜将军,稍一粗心就会马失前蹄。我会永远地记你们,记住那场考试,记住那个78分……
我喜欢许多图形,当我最喜欢三角形。
每当看到那三角形似的小雨伞,在我眼前浮现出一件事。天气真是变化莫测。
那一天下午,突然下起了大雨。我正在写作业,想起了妈妈今天没有带雨伞,该怎么回来呢?想到这里,我赶紧带好雨伞,锁上门,往车站跑去。
车站非常空旷,没有什么人,我站在那里冷飕飕的,真想跑回家去,但我又想:妈妈工作那么辛苦,我应该帮她减轻负担。终于等到了公交车,我兴奋极了,踮起脚尖,看看车上有没有妈妈的身影。
看呀看呀,没有看见,我急得像热锅上的蚂蚁。天渐渐暗了下来,风呼呼地刮着,雨簌簌地下着,街上的行人也越来越少,风都快把我弱小的身躯吹倒了。
又有一辆公交车来了,车上的乘客挤来挤去,看不清真面孔。突然,有一张熟悉的面孔映入我的眼帘。
啊,是妈妈!我终于等到了妈妈。我门母女俩撑着雨伞,在雨中露出了两张笑脸。
我虽然非常冷,但这雨伞给我们带来了母女之间的亲情,使我感到更加温暖,更加快乐。真是小小雨伞见真情!我喜欢三角形,它使我们母女之间的感情更加深厚了。
有一天,圆和三角形见面了,他们觉得对方长得很特别,决定一起玩游戏。
圆和三角形可是个死对头,他们各说各的优点, 争吵不休 ,谁也 不甘示弱 。圆说:“我比你跑得快。”
可三角形说:“我能站得 稳稳当当 。”他们说完后决定比赛跑步和站立。
跑步开始了,只见圆一眨眼功夫就不见影子了,而三角形怎么也跑不了,还把他的三个角磕得 伤痕累累 。不一会,圆跑完一圈回来后,看见三角形还在起跑线上挣扎,圆哈哈大笑起来,三角形不甘心的说:“你别太得意,等站立比赛时再让你瞧瞧我的厉害。”
圆又说:“比就比,谁怕谁呀!”说完站立比赛开始了,只见三角形站得稳稳当当,而圆还像是在跑步一样,不停的转动着。三角形 骄傲 的说:“圆,你认输吧,你是不可能站稳的。”
圆说:“我虽然站不稳,可你也跑不快。”他们争吵的 面红耳赤 ,谁也不服气。
圆和三角形终于冷静下来,决定合作。圆说:“三角形,你跳到我的圆圈里。”
三角形说:“好的。”他们组成了一个新的图形,圆带着三角形跑来跑去,三角形高兴地说:“我终于能跑步了。”
于是三角形对圆说哦:“你跳到我的三条边里面。”圆说:“好的。”
他们又组成一个新的图形,三角形一动不动,圆感觉站得很稳,只听见圆说:“太好了,我也能站稳了。”圆和三角形明白了一个道理:想实现愿望,有时光靠自己的力量是不够的,还需要别人的帮助。
怎样的等腰三角形满足条件:画一条直线将之分成两个等腰三角形?首先,这条直线必须经过顶点,不然得到的两个图形中一个是三角形,另一个是四边形,那么经过等腰三角形的顶点,又可以将等腰三角形分成两个等腰三角形,分两种情况进行:⑴过顶角顶点的直线:如图一:已知AB=AC,①AD=BD,AD=CD,这时ΔABD≌ΔACD(SSS),∴∠ADB=∠ADC,又∠ADC+∠ADB=180°,∴∠ADB=90°,又AD+BD,∴ΔABD是等腰直角三角形,∴∠B=∠C=45°,∴∠BAC=90°,即ΔABC是等腰直角三角形.②AD=BD,AD=AC,∵∠ADC=∠C>∠B,与∠B=∠C矛盾.③AD=BD,AC=CD,∵∠CDA=∠CAD=∠DAB+∠DBA=2∠B=2∠C,∴在ΔACD中,5∠C=180°,得∠C=36°,∴∠BAC=108°.以上由于其它情况的对称关系,已经考虑了所有的可能性.⑵过底角顶点的直线:如图二,AB=AC,首先,AB>AD,ΔABD中只考虑AD=BD,其次∠DBCCD,不必考虑BD=CD.分以下两种情况:①AD=BD,BD=BC,∠BDC是ΔABD的外角,∴∠BDC=∠DAB+∠DBA=2∠A,∴∠C=∠BDC=2∠A,∴∠ABC=2∠A,在ΔABC中:5∠A=180°,∠A=36°.②AD=BD,BC=CD,这时∠BDC=2∠A,∴∠DBC=∠BDC=2∠A,∠C=180°-4∠A,在ΔBC中,∠B=∠C=180°-4∠A,根据三角形内角和为180°得方程:360°-8∠A+∠A=180°,7∠A=180°,∠A=(180/7)°,通过以上的分析总结出:一条直线分为两个等腰三角形的等腰三角形存在四种情况,它们的顶角分别为:90°、108°、36°、(180/7)°.从探究过程得到教训:科学的探索是无止境的,只要用心观察,认真推理,我们可能得到尚未让人知道的自然规律.原创数学小论文,请选为满意答案.。
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形. 2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底.三角形只有3条高.重点:三角形高的画法. 3、三角形的特性:1、物理特性:稳定性.如:自行车的三角架,电线杆上的三角架. 4、边的特性:任意两边之和大于第三边. 5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC. 6、三角形的分类: 按照角大小来分:锐角三角形,直角三角形,钝角三角形. 按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△). 等边△的三边相等,每个角是60度.(顶角、底角、腰、底的概念) 7、三个角都是锐角的三角形叫做锐角三角形. 8、有一个角是直角的三角形叫做直角三角形. 9、有一个角是钝角的三角形叫做钝角三角形. 10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角. 11、两条边相等的三角形叫做等腰三角形. 12、三条边都相等的三角形叫等边三角形,也叫正三角形. 13、等边三角形是特殊的等腰三角形 14、三角形的内角和等于180度.四边形的内角和是360°有关度数的计算以及格式. 15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形. 16、用2个相同的三角形可以拼成一个平行四边形. 17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形. 18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形.一个大的等腰的直角的三角形. 19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等.。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
费马点 定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。 在平面三角形中: (1).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 (1) 等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。 (2) 当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1
等腰三角形中费马点在底边的高上
例谈椭圆与三角形相关问题解析几何与三角是高中数学的重要内容,两者结合能体现两主干知识的内在联系和知识之间的综合应用,而在知识网络交汇处设计的试题历来受命题者的青睐,在各级各类考试中频频出现,各省和全国高考卷对此也情有独钟.本文就以椭圆和三角形相关问题作一归例谈解析.粗;一、三角形边长问题例1设只、抓为椭圆兰十丝=1的两个焦点.p为椭圆上一点.已知尸、抓、几是一个直94角三角形的三个顶点,且}PF,l>IP不飞I,求里旦的值.IP不’2l分析:利用定义,求出两焦半径即可将问题解决.但根据直角的位置,分两种情解:(l)若乙尸凡式为直角,则}PFl}2二}PFz}2+l名FzI,,…}PF,}2=(6一IPF,l)’+20,得}PF,l=14.。。.4}尸F,}7—,廿?21=一,…二二丁,=一33}件铆2(2)若乙FIPFz为直角,则IFIFzlz=IPFzlz+IPFI尸,…20:lPF.}2+(6一}PF,l)’,得IPFI}=4,IPFI.二2,故塑二2.!丹U本题还可以根据椭圆的对称性,求出P点的坐标:略解如下(l)若乙PFzFI为直角,P(二,力满足方程组。V了兰+竺=l’’“94拭吓,{),..·器7一2一一扩扩=(2)若乙乙PFz为直角尹(:,力满足方程组x2—十9丝=l4n13V污es1--1—终可亏!5/四l二2.}PFzl说明:本题的直角三角形直角的位置没有确定,要分类讨论,这点不注意就可能导致解题不全,其二是解题利用方程的思想.髻撇鑫全、离心率问题例2已知脆椭圆兰+止=1(a>。>0)上一点.只、兀是左右两焦点在△抓PF,中.若矿乙2乙凡外飞二90“,求椭圆离心率的取值范围.解法一:设P(x。,y0),由椭圆的第二定义可得}PFll=a+ex0,}PFzl=a一:。,丫乙凡PFz=900,:.}PF,lz+IPFz臼几月,,即az+e、;二2c,,则了鉴2c,,.,.:.。·{粤,‘}·二〕卫二又因为0 在平常学习中,有许多关于证明全等三角形的问题。 据我现在知道,证明全等三角形的方法就有四种:SSS,SAS,ASA,AAS。唯独不能用的就是SSA,用这种方法证明是完全错误的。现在,我就先分别每一种证明方法列一个题目。 SSS是指有三边对应相等的两个三角形全等。 第一题是SSS证明方法里最简单的。 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 证明:∵AF=DC(已知) E ∴AF+FC=DC+FC ∴ AC=DF 在△ABC与△DEF A F ∵ AC=DF(已证) C D AB=DE(已知) DC=EF(已知) ∴△ABC≌△DEF(SSS) B ∴∠EFD=∠BCA(全等三角形的对应角相等) 这是最基础的一道题。。SAS是指有两边和它们的夹角对应相等的两个三角形全等。第一题还是SAS证明方法中最简单的题目。 如图,AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD. 证明:在△AOB与△COD中 A B ∵OA=OC(已知) ∠AOB=∠COD(对顶角相等) O OB=OD(已知) ∴△AOB≌△COD(SAS) D C 这一题是非常的简单但是如果前面的对顶角知识没学好的话,这一题就不会这么轻松了。 ASA是指两角和它们的夹边对应相等的两个三角形全等。 第一题是ASA比较简单的。 如图,已知∠DAB=∠CAB,∠EBD=∠EBC,说明△ABC≌△ABD. 证明:∵∠EBD=∠EBC(已知) D ∴∠ABC=∠ABD(等角的补角相等) 在△ABC与△ABD中 A B E ∵∠DAB=∠CAB(已知) AB=AB(已知) ∠ABC=∠ABD(已证) C △ABC≌△ABD(ASA)这一题我说它简单是因为有许多已知的条件,但是有一条件是要记得等角的补角相等这一知识。还有最后一种是运用AAS的方法来证明题目。如图,已知∠B=∠C,AD=AE,说明AB=AC. B证明:在△ABE与△ACD中 ∵∠B=∠C(已知) D ∠A=∠A(公共角) A AE=AD(已知) E ∴△ABE≌△ACD(AAS) C ∴AB=AC(全等三角形的对应边相等)这也只是一种,还有一种不仅用AAS方法证明全等三角形,其中还用了角平分线的知识。如图,点P是是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,说明PB=PC。证明:∵AP是∠BAC的平分线(已知) ∴∠CAP=∠BAP(角平分线的定义) ∵PB⊥AB,PC⊥AC(已知) ∴∠ABP=∠ABP(垂线的定义) 在△APB与△APC中 C ∵∠PAB=∠PAC(已证) P ∠ABP=∠ABP(已证) AP=AP(公共边) V A B ∴△APB≌△APC(AAS) ∴PB=PC(全等三角形的对应边相等) 在这些所以的证明全等三角形的题目中,有一类题目最让我头痛,经常让我做错,就像下面这题:如图△ABC和△AB’C’中,AB=AB’,要使△ABC≌△AB’C’,再添加一个条件________ B’ C A C’ B在这种情况下,我们可以用SAS,ASA,AAS.唯独不能用来证明的就是SSA的方法,可我有时就偏用SSA的方法去证明,填入BC=B’C’,这是完全错误的,在这个空内我们可以选填∠B’=∠B或∠ACB=∠AC’B’,或AC=AC’.这就是我在生活中发现的关于证明全等三角形的问题。 答案楼上给了 我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。 不知道不知道! 函授本科毕业论文查重一般都不会太严格,一般情况下,考生在函授毕业论文答辩之前都要进行毕业论文的查重,而每个院校对考生的查重率标准其实都是不一样的,但是一般论文的查重率都不会超过30%,具体的查重规则需要视考生所在院校的查重规则为准,所以考生在撰写论文时要尽可能原创,切忌在网上大量抄袭或作弊。 除此之外为了更好地帮助考生通过论文查重率这一关,建议考生在完成论文撰写后,可在本专科论文检测系统(如知网)导入自己的毕业论文,先自行进行查重检测,根据修改意见进行相关的论文修改,争取把论文的查重率控制在及格范围内,在进行一次比较正式的论文查重就可以了,通常论文查重修改办法就是对文章词句进行优化,即考生对重复度太高的词句进行适当的删减及语言“重装”,合理利用表格及图片等描述方式,进而降低毕业论文的查重率,在毕业论文中获得更高的分数。 如今的函授教育是相对于面授教育而提出的一个学习方式,函授教育主要对象是在职人员和以及在校生。教学方式主要是以自学为主面授为辅,学员可以通过信函的方式报名,学校将教材及其他辅导资料通过邮寄的方式邮寄给学员,教师与学生的交流一般也是通过信函来完成,使学员在不耽误工作以及学习的情况下完成相关的学业,鱼和熊掌兼得,何乐而不为。 看论文要求去做 函授论文怎么写如下: 1、毕业论文选题 毕业论文题目的选定不是一下子就能够确定的。若选择的毕业论文题目范围较大,则写出来的毕业论文内容比较空洞,难以结合实际;而选择的毕业论文题目范围过于狭窄,又难以查找相关文献资料,会让人感到无从下手。为了避免出现纯理论的标题,导致文章不具有实用性。基本上来说选题要尽量结合实际,结合实例,理论联系实际是最好的。 2、论文提纲的拟定 本科毕业论文的基本结构:即由绪论、本论、结论三大部分组成。 把握拟定毕业论文提纲的原则: (1)要有全局观念。从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。 (2)从中心论点出发。把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多么好的材料都必须舍得抛弃。 (3)要考虑各部分之间的逻辑关系。初学撰写论文的人常犯的毛病,是论点和论据没有必然联系,有的只限于反复阐述论点,而缺乏切实有力的论据;有的材料一大堆,论点不明确;有的各部分之间没有形成有机的逻辑关系,这样的毕业论文都是不合乎要求的,这样的毕业论文是没有说服力的。 (4)理论与实践相结合。为了有说服力,必须有论点有例证,理论和实际相结合,论证过程有严密的逻辑性,拟提纲时特别要注意这一点,检查这一点。主三角形函授毕业论文