首页 > 期刊投稿知识库 > 数学论文初一500字

数学论文初一500字

发布时间:

数学论文初一500字

教初中的老师们都常半开玩笑地说这样一句话:“初一是基础,初二是关键,要不然初三就完蛋!”初中的数学知识也不例外,初中数学是一个完整的体系.其中,初中二年级的难点最多,初中三年级的考点最多,而初一年级的数学知识点虽然很多,但相对而言都比较简单.因此,很多同学在刚刚进入初中数学的学习时,常常感觉比较简单,甚至觉得和小学没有什么区别,因而并没有感到压力.这些同学往往对初一的数学知识不够重视,与此同时也慢慢积累了很多小问题,而这些问题在学生进入初二年级,遇到很多综合题或复杂的题目时,就会很快凸显出来.这时,学生会感到跟不上老师的进度,感觉学习数学越来越吃力.究其根源,还是因为这部分同学对初中一年级的数学知识不够重视,没有打下坚实的基础. 下面我先具体列举一下初一年级同学在数学学习中主要存在的问题: 1.不能端正学习态度,没有兴趣,甚至存在害怕数学的心理,缺乏主动积极学习的意向. 2.没有养成良好的学习习惯(预习、认真听讲、记录笔记、归纳总结、复习等). 3.在知识上,对数学定义、概念等基本知识点的理解不够准确,只停留在一知半解的层次,特别是对特殊情况等的把握十分含糊. 4.数学能力(审题能力、计算能力、分析方法、数学思想等)或多或少总存在欠缺,导致各种小错误,不能完整的完成题目. 5.在实践做题中,不能领会出题者的意思,简单的说,不能把握题目的关键,找不到正确的解题思路. 6.平时做题速度较慢,考试时不能在规定时间内完成试卷. 以上这些问题如果不能在学生初一阶段得到改善,将会直接导致学生在初二两极分化的阶段出现数学成绩大幅滑坡,甚至导致在初三年级的学习中存在更大的障碍.相反的,如果学生能够在初一的学习过程中打好基础,那么初二的学习只是在知识点上的增多和加深,而在学习习惯和学习方法上,学生是很容易适应的. 那么,针对以上学生容易存在的问题,怎样才能帮助学生打好初一年级的数学基础呢? 我认为有以下几点值得注意: 1)端正学习态度. 任何一个学科都有其各自的学科特点,数学也不例外.只要养成良好的学习习惯,掌握科学正确的方法方法,就一定能够学好数学.但是,数学学习不能投机取巧,数学学习没有捷径可走,要明白保证做题的数量和质量是学好数学的必经之路. 2)养成良好的学习习惯. 课前预习,带着问题听课.看两遍书:第一遍大概了解下一讲或下一章的内容、知识枝干以及重难点等.第二遍对重要的概念、性质、判定、公式等反复阅读,思考其内在联系及其因果关系,并在不明白的地方作上记号,带着问题去听课,也便于求教老师. 课上认真听讲,会记笔记.初一的学生往往对课程的增多、课堂学习量的加大感到不适应,顾此失彼,很大一部分学生觉得数学没有笔记可记,有笔记的学生也记得不够合理,认为教师在黑板上所写的都记下来就是认真听讲,盲目的用记笔记代替听讲与思考,进而导致了听课效果下降.在听课的过程中应该注意做到:听知识的引入和形成过程;听懂教学中的重、难点,尤其是预习中不明白或有疑问的地方;听题目关键部分的提示(突破口)及数学思想方法;听课后小结.记录笔记时应注意:有选择的进行记录,主要记录知识要点、自己的疑点、课本上没有的教师补充的内容、解题的思路、数学思想方法、课堂小结等. 课后认真复习,及时归纳总结.课后要及时温故老师所讲内容,特别是经典例题,分析、归纳、总结,以内化成自己的知识体系,完善认知结构. 此外,学习应有整体计划,学会管理自己的时间. 3)细心、认真地学透课本. 有一部分学生认为课本上的内容很简单,而考试都是难题.其实,这是由于学生没有真正学透课本,考试的内容究其实质,都是课本上的基本概念、基本模型.因此,在初一这一打基础的重要阶段,更要对数学定义、概念等基本知识的十分准确把握,不能只停留在一知半解的层次.对于课本上的基本概念、基本模型的学习,我认为应该注意:重点理解基本概念、基本模型的特殊情况(特例),要抓住定义、概念的本质,全面举例、不重不漏的明确概念、定义等.对概念和公式不能死记硬背,而缺乏与实际题目的联系,在理解的基础上进行记忆可以有效地促进数学的学习.切记:理解和记忆数学的基础知识是学好数学的前提. 4)学会归纳总结复习. 复习总结的工作,不仅仅是老师的事,学生一定要学会自己去做.当你会总结题目,会对所学内容、所做的题目进行分类,了解每一知识点的基本题型,熟悉对应每一题型的解题方法等时,你才真正的做到了知识的内化.归纳总结这个问题如果解决不好,在进入高年级的学习时,同学们会发现,天天做题,成绩却不升反降.究其原因,天天都在做重复的题目,很多相似的题目反复在做,而需要解决的问题却没有专心解决.久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学整体系统的把握,弄的一团糟.总结归纳是把书读薄的过程,题目应该越做越少. 5)建立“改错本”. 建立错题本是一种非常高效率且针对性较强的学习方法,主要用来收集自己的错误和不会的题目.容易犯的错误可能有有审题不细心,计算马虎,书写格式不规范,对概念、公式等理解似是而非,对隐含条件分不清等等.不会的题目往往因为没有思路、思路不清晰或找不到突破口等等.针对前一类错题,我们应该 首先进行独立思考,及时进行反思,弄清产生错误的原因,加以重视.而对于不会的题目,我们要参考教师或答案的讲解,注意体会其思路、思想、悟其道理并总结方法规律,找相关习题进一步巩固.建立一本错解本,可以达到错一次而加深十倍认识的效果. 6)不懂就问,积极讨论. 爱因斯坦说过:“提出问题比解决问题更重要.”遇到不懂的问题,要积极及时的与同学讨论,向老师求教.在提问时,不仅要问其然,还要问其所以然,这对建立良好的数学知识体系非常有好处.这里我想说的是,讨论是一种非常好的学习方法.经过与同学讨论,你可能会获得不同的灵感,从对方那里学到好方法和技巧.值得注意的是,讨论的对象最好是与自己水平相当的同学,这样更有利于大家相互学习. 7)注重实战. 平时每天保证1小时左右的练习时间,自己平时做作业可以给自己限定时间,以提高做题的速度.在实际考试中,也要考虑每部分的完成时间,避免出现慌乱,同时注意调整好心态,把“做作业”当成考试,把“考试”当成做作业.当然,经历大型考试也是必要的锻炼途径. 以上内容是我针对初一年级学生数学学习中常见问题提出的我个人的一些建议,希望对同学们有所帮助.最后我想说的是,每个同学的学习方法都会对根据自己的情况不同而有些许差别,适合你的最有效的方法就是最好的.

只含有一个未知数,即“元”,并且含有未知数的式子都是整式,是整式方程(即分子中含未知数的不是一元一次方程)。未知数的次数是1,这样的方程叫做一元一次方程,一元一次方程的标准形式(即所有一元一次方程经化简都能化成的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。一元一次方程(英文名:linear equation with one unknown)一元一次方程所具备的条件:等号两边必须是整式,必须只有一个字母,而且字母的指数必须是1.列如:2a=4a-6 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(其中x是未知数,a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0(未知数常设为x、y、z)。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。解方程的通常步骤:去分母→去括号→移项→合并同类项→系数化为一。“方程”一词来源于中国古算术书《九章算术》。在这本著作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。合并同类项⒈依据:乘法分配律⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项 ⒊合并时次数不变,只是系数相加减。移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 ⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-,×改为÷}。性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立编辑本段解法步骤使方程左右两边相等的未知数的值叫做方程的解。一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);依据:等式的性质2 ⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质1⒋合并同类项:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律) ⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.依据:等式的性质2同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:⒈认真审题(审题)⒉分析已知和未知量⒊找一个合适的等量关系⒋设一个恰当的未知数 ⒌列出合理的方程 (列式)⒍解出方程(解题) ⒎检验⒏写出答案(作答)ax=b(a、b为常数)[3]解:当a≠0,b=0时,ax=0x=0(此种情况与下一种一样)当a≠0时,x=b/a。当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小公倍数)得:5(3x+1)-10×2=(3x-2)-2(2x+3)去括号得:15x+5-20=3x-2-4x-6移项得:15x-3x+4x=-2-6-5+20合并同类项得:16x=7系数化为1得:x=7/16。字母公式(等式的性质)a=b a+c=b+c a-c=b-c (等式的性质1)a=b ac=bca=bc(c≠0)= a÷c=b÷c(等式的性质2)检验 算出后需检验的。求根公式由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。但对于标准形式下的一元一次方程 aX+b=0可得出求根公式 X=-(b/a)

(1). 因为方程x^2-4x+m=0有两个正整数解所以 m 可分解为:-2、-2和-1、-3这两种情况由三角形三边关系得:b=3 ,如图:作BD⊥AC于D ,设AD=x ,则CD=3-x ,由勾股定理得:25-x^2 = 9-(3-x)^2 解得:x= 25/6 ,所以sinA=x/5 = 5/6(2).设售价为(50+x)元,则可卖出(500-10x)个所以 (50+x-40)*(500-10x)=8000解得:x=10或x=30 即50+x=60或80所以售价为60元时,进货400个或售价为80时,进货为200个。(3).设甲种商品投入x元,则乙种商品投入为(3-x)元,再商最大利润为y=(1/5)*x + (3/5)*√(3-x) ,所以5y-x= 3*√(3-x) ,两边平方得:x^2 -(10y-9)*x +(25y^2 -27)=0所以△=(10y-9)^2-4*(25y^2-27)≥0 ,解得:y≤ 21/20y取最大值21/20时 ,x=3/4 所以甲、乙两种商品的投入分别为:(3/4)万元和(9/4)万元

初一下册500字数学论文

好难写...不会...

.......靠自己

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。

呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃

初一科学论文500字

科技小论文——警惕全球变暖最近这几年,大家觉得天气一下子就变热了,原本凉爽的秋天现在几乎要到10月下旬才开始,8月份最热的天居然达到了40度以上。这是为什么呢?原来,是人类自己惹的祸。随着人类高科技发展进程越来越快,科学随之产生的副作用逐渐体现出来,全球变暖就是一个例子。天气炎热,在酷暑里泡空调成为了一项新的“业余爱好”,但人们可曾想过,空调会带来什么负面影响呢?答案当然是肯定的,空调排放的气体中含有大量的甲烷,输送到外面,甲烷也是导致全球变暖的气体。同时,空调还会浪费掉许多电,所以要尽量避免用空调,适当即可。而另一个原因就是:二氧化碳!汽车尾气与工厂废气中含有大量二氧化碳,而二氧化碳最可能导致温室效应(即全球变暖)现在汽车逐渐增多,据有关方面统计,到21世纪,汽车在全世界已有7亿辆,大量的尾气严重影响着我们,咳嗽,喉咙发炎……最重要的是全球变暖。有人统计,美国人均二氧化碳排放量已达到了20吨一年!中国每年的二氧化碳排放量人均排放量也有2.51吨一年!我们周围的环境在恶劣地变化。更重要的原因就是:森林锐减,水资源破坏,生态链严重被破坏,大量土地贫瘠,水污染严重,据统计全世界10%的河水被污染,新鲜的淡水供应成了问题,同时由于矿物质被大量使用,燃烧出的CO2气体导致了大气污染,同时臭氧层被严重破环,南北极出现臭氧层洞,加剧了环境的恶化。这样恶性循环的话,最终会导致人们的生活被严重影响。这样一来的悲剧是什么呢?当然是显而易见了!天气加热,海平面上涨,南北极冰川融化,海滨城市,岛国被淹。这一切,都严重影响了人类的生存,实验证明,以后300年,海平面将上涨半米多,这还是最乐观的数据。再过7年,全球变暖将会无可逆转地持续。更可怕的是,由于北极冰融化,降雨量加强,大量淡水汇入北大西洋,破坏了墨西哥暖流,一旦墨西哥暖流被切断后,欧洲西北部温度将会下降5—8度之多,从而造成的影响,很可能引发新的冰河时期!想必大家一定看过《后天》这部电影,剧中的情景正是几百年后对我们地球的一个真实写照:龙卷风,冰层断裂,温度急剧下降,冰风暴,冻雨,地震,洪水,海啸……这并不是疯狂的幻想,如果人类不停止毁坏环境的话,这将成为现实!全球变暖不仅仅是天气变热,更会牵连出许多负面影响!为了拯救地球,我们应该尽量做到:不开空调,使用回收环保纸张,舍弃肉类(牛排)食品(牛消化中含有一氧化二氮,如果你转为素食主义者,每年二氧化碳的排放量将减少1.5吨!)不用塑料袋,乘公交车……生活中的点点滴滴。其实环保并不难,只要你支持环保,就是你给这个星球的最好礼物,不需要太多言辞,只要每个人都行动起来,就会是一股强大的力量!如今,日本,英国,美国等国家纷纷行动起来,我们虽然也采取了行动,但,对于一个有13亿人口的泱泱大国,这一点,还是不够的。所以,警惕全球变暖,是全人类为了挽救地球的唯一方法,有人也许会说:我们不是可以移居到别的星球上去吗?答案虽是肯定的,但那又能容纳多少人呢?有人说:治理温室效应的资金太大了,对金融来说是天价。但,如果一直拖延,最终的结果,是我们的地球面目全非,别说金融,就连自己的生命也难保啊!所以环境保护不应只停留在口头上,而要真正付之与行动了。P.S:绝对原创

论文还是要自己写的,这样比起别人给的也要满意些。可选择适当的题材查找相应的资料做实际的实验对照个人的需求与实际情况,购买相应的工具1、标题恰当,符合内容需要2、插入实例,对照分析3、有自己的体会4、实验的结果或心得5、最好有实物,如标本6、论文简单而不复杂,通俗易懂,不要让人认为你是抄的7、图片,能够自己照更好8、作总结归纳注意写的时候文字不要太带感情色彩,注意科学论文的严谨程度,言语不要轻佻,视线广阔一些。以上列举,可借鉴参考 以给你提点建议:600字也不多,尽量自己写吧加油

关于宇宙的作文500字每天在我身体里,总有许多事发生,有时是星球爆炸了,有时是哪儿又多了个黑洞,有时是那儿又产生了新生命!没错,我就是无边无际的宇宙。以前,是一个渺小的星球,爆炸了。在那一片混沌间,产生了我。我无限膨胀,没有东西能阻挡我的吞噬,我也是初始的黑洞。如今,在我身体里每天都有许多事,就比如那如同可爱的小女孩一样的地球吧,不久前,地球上有一种狂暴的生物,叫恐龙,它们的破坏力太大了,这种摧枯拉朽的力量把地球糟蹋得面目全非,地球向我求助。我气坏了,直接一颗半径为3367千米的小行星飞过去,灭绝了恐龙这种生命,却造就了人类的崛起。可是,我最近又接到了地球的求助,我疑惑不解,人类这渺小的生物,我打打喷嚏,或吹一口气,都能轻易杀死这小生命,他们何以毁灭地球?但是,我低估了这些小生命的破坏力,他们发明了各种各样的东西,还有工业烟尘,把臭氧层毁坏,把河水弄浑,把森林伐光……我又是怒从心头起,想再灭绝人类。地球却向我求情了,她说:“人类已经知错了,他们开始保护我了,你能恢复我的原貌吗?”我说:“不是我不帮,人类得自食其果,我帮不了。”说完我又去另一个星系去解决纠纷了,同时,我让火星密切关注地球动态,一旦地球有什么伤害就得秘密报告我。火星一开始还不太情愿,可当我对它允诺当它对地球照顾的很好,我就赐予它生命时,它很高兴地接受了任务,所以它现在和地球是邻居关系。还有,人类们,你们一旦再毁坏地球,你们会自取灭亡的。

初二数学小论文500字

黄金分割 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。 黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的帕撒神农庙就是一个很好的例子,他的<维特鲁威人>符合黄金矩形.<蒙娜丽莎>的脸也符合黄金矩形,<最后的晚餐>同样也应用了该比例布局.发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为(√5-1)/2 黄金分割数是无理数,前面的1024位为: 0.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...生活应用有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.168…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.168…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.168…处。艺术家们认为弦乐器的琴马放在琴弦的0.168…处,能使琴声更加柔和甜美。 数字0.168…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。0.618与战争:拿破仑大帝败于黄金分割线? 0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。 也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量? 0.618与武器装备 在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。 当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。 实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。 在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。 0.618与战术布阵 在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。 把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。 马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见, 在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。 两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。 此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。 0.618与战略战役 0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。 一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。我们常常听说有“黄金分割”这个词,“黄金分割”当然不是指的怎样分割黄金,这是一个比喻的说法,就是说分割的比例像黄金一样珍贵。那么这个比例是多少呢?是0.618。人们把这个比例的分割点,叫做黄金分割点,把0.618叫做黄金数。并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=0.618最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0.618证明方法:设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为bAC/AB=BC/ACb^2=a*(a-b)b^2=a^2-aba^-ab+(1/4)b^2=(5/4)*b^2(a-b/2)^2=(5/4)b^2a-b/2=(根号5/2)*ba-b/2=(根号5)b/2a=b/2+(根号5)b/2a=b(根号5+1)/2a/b=(根号5+1)/2

有关什么是黄金分割及黄金分割的应用问题详解:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。 发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 |..........a...........| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |......b......|..a-b...| 通常用希腊字母 表示这个值。 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。 确切值为根号5+1/2 黄金分割数是无理数,前面的1024位为: 1.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922...

黄金分割点在现实生活中的应用论文 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。 “科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 现代科学研究表明,0.618在养生中也起重要作用。注意了这些黄金分割点,对养生健体大有好处。“0.618",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。现在发现此比值和医学保健、健康长寿有着千丝万缕的联系,亦可称为健康的黄金分割律。在人体结构上,0.618更是无处不在。脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于0.618。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的0.618规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合0.618的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个0.618比例关系,大致四分动六分静才是较佳养生之法。饮食:医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病;摄入的饮食以六分粗粮、四分精食为适宜。从黄金分割律看,结婚的最佳季节是一年12个月的0.618处,约在7月底至8月底。医学研究已表明,秋季是人的免疫力最佳的黄金季节。因为7月至8月时人体血液中淋巴细胞最多,能生成大量的抵抗各种微生物的淋巴因子,此时人的免疫力强.较少小户型以其"低总价、低首付、低月供",把众多刚刚踏入社会的年轻人吸引为有房一族。虽然市场上对小户型的需求很热烈,但也同样具有投资风险。如何进行小户型投资?市场时兴一套有趣的"黄金分割论".时间分割因为工作时间与居家时间之比正好构成一个黄金分割,即0.618比0.382,所以专家认为,最有价值的地段可能是工作与社区之间的黄金分割点.尺度分割小户型因其小,面积更要精打细算.在小户型越来越热的过程中,市场有一个趋势,即户型越小越好。但绝对的小既不符合居住者的正常生活需求,也绝对不会是潮流。新消费或投资趋势表明,小户型在面积大小上也存在黄金分割率.在30至80平方米之间,有一个黄金分割数,正好是50余平方米。所以,市场上50余平方米的小户型热卖度超过了其他规格.空间主要是卧室与起居,30平方米根本无法细分任何功能区,难以满足高品质居家生活。而50多平方米是功能上黄金分割区的最小面积,即可分出30平方米的主体空间和20平方米的配套空间,解决独立厨卫、阳台、储藏等各个功能.因此,根据"黄金分割论"选择的小户型应该是既节省户型面积,减少投资总额,同时又能满足空间上的审美和功能需求,保证居住者的生活品质与居家情趣。 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。 黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。120相机4.5X6近似3:5,6X6虽然是方框,但在后期制作用,仍多数裁剪为长方形近似黄金分割的比例。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。这可能是受传统的影响,也养成了人们的审美习惯。另外,也确实因为它具有悦目的性质,所以有时人们在时间中并非注意到这个比例,而特意去运用它,但往往就不自觉中,进入了这个法则之中。这也说明了,黄金分割的本身就存在有美的性质。在摄影实践中,运用黄金分割法则,主要表象在黄金分割点、线、面的运用中。黄金分割点,在全景构图中,多是主要表现对象,或是视觉中心所处的位置,在中、近景构图中,多是景物主要部位所处的位。在人像构图中常常是将人的眼睛处理在近于黄金分割点的位置。黄金分割线,多用作地平线、水平线、天际线所处的位置。 《梦幻曲》是一首带再现三段曲式,由A、B和A′三段构成。每段又由等长的两个4小节乐句构成。全曲共分6句,24小节。理论计算黄金分割点应在第14小节(240.618=14.83),与全曲高潮正好吻合。有些乐曲从整体至每一个局部都合乎黄金比例,本曲的六个乐句在各自的第2小节进行负相分割(前短后长);本曲的三个部分A、B、Aˊ在各自的第二乐句第2小节正相分割(前长后短),这样形成了乐曲从整体到每一个局部多层复合分割的生动局面,使乐曲的内容与形式更加完美。大、中型曲式中的奏鸣曲式、复三段曲式是一种三部性结构,其他如变奏曲、回旋曲及某些自由曲式都存在不同程度的三部性因素。黄金比例的原则在这些大、中型乐曲中也得到不同程度的体现。一般来说,曲式规模越大,黄金分割点的位置在中部或发展部越*后,甚至推迟到再现部的开端,这样可获得更强烈的艺术效果。莫扎特《D大调奏鸣曲》第一乐章全长160小节,再现部位于第99小节,不偏不依恰恰落在黄金分割点上(1600.618=98.88)。据美国数学家乔巴兹统计,莫扎特的所有钢琴奏鸣曲中有94%符合黄金分割比例,这个结果令人惊叹。我们未必就能弄清,莫扎特是有意识地使自己的乐曲符合黄金分割呢,抑或只是一种纯直觉的巧合现象。然而美国的另一位音乐家认为。"我们应当知道,创作这些不朽作品的莫扎特,也是一位喜欢数字游戏的天才。莫扎特是懂得黄金分割,并有意识地运用它的。"贝多芬《悲怆奏鸣曲》Op.13第二乐章是如歌的慢板,回旋曲式,全曲共73小节。理论计算黄金分割点应在45小节,在43小节处形成全曲激越的高潮,并伴随着调式、调性的转换,高潮与黄金分割区基本吻合。肖邦的《降D大调夜曲》是三部性曲式。全曲不计前奏共76小节,理论计算黄金分割点应在46小节,再现部恰恰位于46小节,是全曲力度最强的高潮所在,真是巧夺天工。我们再举一首大型交响音乐的范例,俄国伟大作曲家里姆斯-柯萨科夫在他的《天方夜谭》交响组曲的第四乐章中,写至辛巴达的航船在汹涌滔天的狂涛恶浪里,无可挽回地猛撞在有青铜骑士像的峭壁上的一刹那,在整个乐队震耳欲聋的音浪中,乐队敲出一记强有力的锣声,锣声延长了六小节,随着它的音响逐渐消失,整个乐队力度迅速下降,象征着那艘支离破碎的航船沉入到海底深渊。在全曲最高潮也就是"黄金点"上,大锣致命的一击所造成的悲剧性效果慑人心魂。 黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数的美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。 "0.618"还始终与军事发展有不解之缘,而且常常与战争不期而遇。无论是古希腊帕特农神庙的美轮,还是中国古代的兵马俑,它们的垂直线与水平线之间的关系竟然完全符合1∶0.618的比例。成吉思汗的蒙古骑兵横扫欧亚大陆令人惊叹。经过研究发现,蒙古骑兵的战 斗队形与西方传统的方阵大不相同,在他的五排制阵型中,重骑兵和轻骑兵为2∶3,人盔马甲的重骑兵为2,快捷灵活的轻骑兵为3,两者在编配上恰巧符合黄金分割律。欧洲人是最早有意识地把黄金分割律运用于宗教和艺术方面的,而在军事上的应用是从黑火药时期开始的。那时滑膛枪呈现出取代长矛之势,率先将滑膛枪 兵和长矛兵对半混编的荷兰将军摩利士未能突破传统阵型的羁绊,瑞典国王古斯 塔夫对这种正面强翼侧弱的阵型进行调整后,使瑞典军队变成了当时欧洲战斗力最强的军队。他的做法是,在摩利士将军原来的216名长矛兵与198名滑膛枪兵混 合编组的基础上,再增加96名滑膛枪兵,这一改变,顺应了科技发展和武器装备 进步对战术发展的影响规律,突出了火器在战斗中的作用,使之跨越了冷热兵器时代的分水岭。198+96名滑膛枪兵与216名长矛兵之比,让我们又一次看到了黄金 分割律的神奇作用。1812年6月,拿破仑进攻俄国;9月,他在博罗金诺战役后进入莫斯科,这时的拿破仑并未意识到天才和运气正从他身上一点一点地消失,他一生事业的顶峰 和转折点正同时到来。一个月后,法军便在大雪纷飞中撤离莫斯科,三个月的胜 利进军加上两个月的盛极而衰,从时间轴线上看,拿破仑脚下正好踩在了黄金分割线上。 130年后的另一个6月,纳粹德国启动了针对苏联的"巴巴罗萨"计划,在长 达两年多的时间里,德军一直保持进攻势头,直到1943年8月,"城堡"行动结束,德军从此转攻为守,再也没有能对苏军发起一次战役规模的进攻行动。被所有 战史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的 第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点.海湾战争中,美军一再延长空袭时间,持续38天,直到摧毁了伊拉克在战区内4280辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,也就是将伊 拉克军事力量削弱到黄金分割点上后,才抽出"沙漠军刀"砍向萨达姆,地面作战只用100个小时就达成了战争目的。 透过战争中的一些零散战例,依稀可见"0.618"的影子在晃动、在徘徊。如 果孤立地看待它们,好似偶然巧合,但是如果太多的偶然遵循着同一个轨迹,那 就成为规律,就特别值得人们深入研究了。 一次无意中和同学在操场上打球,顺手测量了雕相牛顿的鼻子,其鼻孔间的距离和到鼻梁的比刚好接近于0.618。之后又测量了几个人的鼻子,结果符合黄金分割点。接下来的生活中对0.618变得很敏感,经过同学的推想与实践,我们发现了多弥乐古牌的长宽之比,蝴蝶的身体部位之比,漂亮花瓣的长宽之比也都符合这一规律。查询了很多的相关资料例如埃及金字塔便是这一规律的最好应用。 想象一下如何让一根很普通的细橡皮筋发出“哆来咪”的声音?把它拉紧,固定住,拨动一下,就是“1”,然后量出其长,作一道初三几何题——把这条“线段”进行黄金分割, 可以测出“分割”得到的两条线段中较长的一段,约是原线段长度的0.618倍。捏住这个点,拨动较长的那段“弦”,就发出“2”;再把这段较长线进行黄金分割,就找到了“3”, 以此类推“4、5、6、7”同样可以找到。 你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的0.618倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“0.618”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。 气势雄伟的建筑物少不了“0.618”,艺术上更是如此。舞台上,演员既不是站在正中间, 也 不会站在台边上,而是站在舞台全长的0.618倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——0.618,因而作品达到了美的奇境。 达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为0.618,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是0.618,组成了人体的美。 我国一位二胡演奏家在漫长的演奏生涯中发现 ,如果把二胡的“千斤”放在琴弦某处,音色会无与伦比的美妙。经过数学家验证,这一点恰恰是琴弦的黄金分割点0.618!黄金比值,在创造着奇迹!� 偶然吗?不,在人们身边,到处都有0.618的“杰作”:人们总是把桌面、门窗等做成长方形、宽与长比值为0.618。在数学上,0.618更是大显神通。0.618,美的比值、美的色彩、美的旋律,广泛地体现在人们的日常生活中,与人们关系甚密。0.618,奇妙的数字!它创造了无数的美,统一着人们的审美观。 爱开玩笑的0.618,又制造了大量的“巧合”。在整个世界中,无处不闪耀着0.618那黄金一样熠熠的光辉!人们时时刻刻在有意无意创造着一个个的黄金分割。只要稍微留心一下便可发现它离我们的生活有多近!数学离我们很近,无时不刻地在应用着它! 我们要首先感受并体会到数学学习中的美。数学美不同于其它的美,这种美是独特的、内在的。这种美,正如英国著名哲学家、数理逻辑学家罗素所说:“数学,如果正确地看它,不但拥有真理,而且也具有至高无上的美,正象雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能显示的那种完满的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐地领略到数学美的真正含义,这种感觉是奇异的、微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力……在生活中只要我们善于观察,善于思考,将所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。

某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。

初三数学小论文500字

数学小论文---生活中的数学 前几天时,我去了三个地方,大型商场,路边文具小店和天意批发市场。而我发现,这三个地方在同一样商品上价格差很多。因此我做了一个关于超艺 GP-8106梦&彩 0.8mm 6色这种笔的调查。 在大型商场,价格约是5~10元/支。在路边小店,价格约是2~3元/支。在批发市场,价格约是1~1.5元/支。由此可见,价格上,大型商场,路边小店都不如批发市场便宜。而在质量上,我在三种地方各买了一支笔,大型商场,小店,批发市场的质量都差不了多少。但是批发市场人多而杂乱,容易被偷钱,而大型商场又太贵了,所以综合起来,在路边小店买可能是一种很不错的选择。 生活中处处有数学,数学也是所有学科的基础,在生活中,我们应当多使用数学的方法思考问题,这样我们的思路就会更加的清晰,对自身的将来有莫大的好处。不用谢我,我六年级,我本来也要做的,只不过顺便发上来而已。

游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了.大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解.回到家,我在小篮子里挑了十个石子,准备新手操作一下.我把爸爸叫来,让爸爸和我一起做这个游戏.我找来一支笔和一本本子,将我做的每一步记录下来.规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了.第一场我失败了.原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿.现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了.为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!原来,生活中数学无处不在,它们正等着你去发现呢! 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中.比如说,上街买东西自然要用到加减法,修房造屋总要画图纸.类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题. 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算.评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识. 从这以后,我开始有意识的把数学和日常生活联系起来.有一次,妈妈烙饼,锅里能放两张饼.我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来.然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定. 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的.看来,我们必须学以致用,才能更好的让数学服务于我们的生活. 数学就应该在生活中学习.有人说,现在书本上的知识都和实际联系不大.这说明他们的知识迁移能力还没有得到充分的锻炼.正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视.希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处. 我在商场里学数学用数学之买家角度 作为一个买家,最主要的是要做到货比三家.要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较.一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了.其实在省钱这方面有一个更好的办法——网上购物.网上购物价格要便宜多了.在网上一个物品的价格是进价+运费.一件三四百的衣服,在网上可能只卖五六十,十分实惠.就算加上运费也要便宜许多.所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买.当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了.可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的.同样一件商品,便宜的和贵的,您会选择哪个呢? 大家也知道网上东西便宜,但存在的风险较大.这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考.同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上行所设置的.现在网上购物已经很透明了,多转转多看看总吃不了亏. 毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦! “买一赠一了啊,满200送200!”哟,你瞧,活动来了! 1.满额送券销售活动 每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌.消费者们蜂拥而至,商场里人山人海,抢购成风.而实际上商家心里早打好了如意算盘.俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题. 就说满200送200元购物券.某顾客先用490元买了一件羊绒外衣,送来了400元购物券.此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废).于是这位顾客又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾.那么顾客到底便宜了多少呢?我们可以算一下128+248+490=866(元),这是原来不打折时需要花的钱.490/866,所打的折扣大约是五六折.这位先生处理还好,因为购物券只能在指定地点使用,如果买了送,送了买…….这样循环下去的话,那商家就赚大了!因为你不得不一直在这个地点消费,商家就算把你套上套了,所以经过真么一算,看来数学真的很重要! “快看报纸!快看看!有奖耶~!诶?!还有个商场打折耶~!不过哪个合算啊?”你瞧瞧!又是一个活动哟… 2.有奖销售与折扣比较 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然.在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案. 分析:(1)若甲商厦确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知乙商厦的营业额为280000元(14000÷5%=280000). “喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!” 学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学!

生活中的数学 黄哲超 金华市红湖路小学六(2)班 指导老师 盛小兰 摘要:本文通过对生活中商品促销的实例分析,得出数学其实与我们的生活息息相关,数学在现实生活中无处不在的结论。 关键词:数学;生活;促销 “对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 上文利用了什么数学知识

1. 数学思想和数学方法 蔡上鹤 文献来自: 中学数学 1997年 第09期 CAJ下载 PDF下载 编者按数学思想、数学方法、数学思想方法,是近十年来中数界的热门话题.其内涵是什么?如何界定 ... 在数学学科中,概念、法则、性质、公式、公理、定理等显然属于知识的范围.这些知识要素也都有其本身的内容 ... 被引用次数: 25 文献引用-相似文献-同类文献 2. 数学教学观与数学差生 程亚焕 文献来自: 数学教育学报 2001年 第01期 CAJ下载 PDF下载 这里的数学差生是指智力正常,但在正常的学习环境中,数学水平较低,达不到国家数学教学大纲要求的学生 ... 1 产生数学差生的一个重要原因 产生数学差生的原因很多,有主体的原因,如学生自身的一些非智力因素(动机、兴趣、信念、意志等)的影响等 ... 被引用次数: 18 文献引用-相似文献-同类文献 3. 数学实验与数学建模 姜启源 文献来自: 数学的实践与认识 2001年 第05期 CAJ下载 PDF下载 “数学实验”是近几年数学教育界常提起的一个名词 ,泛指学生在教师指导下用计算机和数学软件学习数学 ... 被引用次数: 15 文献引用-相似文献-同类文献 4. 数学教育与数学文化 张顺燕 文献来自: 数学通报 2005年 第01期 CAJ下载 PDF下载 数学的重要性1 1 当今形势二次世界大战以后 ,数学与社会的关系发生了根本性的变化 ... 数学已经深入到从自然科学到社会科学的各个领域 .著名数学家A Kaplan说 :“由于最近 2 0年的进步 ,社会科学的许多领域已经发展到不懂数学的人望尘莫及的阶段 ... 被引用次数: 8 文献引用-相似文献-同类文献 5. 数学化与数学现实思想 张国祥 文献来自: 数学教育学报 2005年 第01期 CAJ下载 PDF下载 1 弗赖登塔尔和他的水平及垂直数学化思想 弗赖登塔尔(1905—1990)是 20 世纪著名的荷兰数学家和数学教育家.他提出“数学应该被看待为人类的一种活动”的教育信念,形成了一套具现象学特色的数学教育理论,这套理论的出发点是教育和教 ... 被引用次数: 6 文献引用-相似文献-同类文献 6. 数学史与数学教育 郭熙汉 文献来自: 数学教育学报 1995年 第04期 CAJ下载 PDF下载 数学史与数学教育郭熙汉摘要从教学目的、教学方法、思维方法三方面论述了数学史与数学教育之间的关系,并认为:数学史的资料、知识和研究成果的运用,将有益于数学教育成为“最高、最好的教育” ... 被引用次数: 9 文献引用-相似文献-同类文献 7. 数学实验与实验数学 王汝发,张志强 文献来自: 哈尔滨师专学报 2000年 第04期 CAJ下载 PDF下载 一、数学实验数学实验是介于古典演绎法和古典实验法之间的一种科学研究方法,它既非数学在通常实验中的应用,也不是实验在数学研究中的移植。数学实验是一种随着人类思维、数学理论和计算机等现代科学技术的发展而形成的一种独特的 ... 被引用次数: 5 文献引用-相似文献-同类文献 8. 数学史 文献来自: 中国科学院自然科学史研究所论文论著目录(2001-2002) 2002年 CAJ下载 主要来源的先秦数学著作或其衍生本的数学方法并结 合下层官吏管理的实际而编成的作品。《算数书》有助于确立 先秦至秦汉实用算法式数学发展演变的历史。028李俨与中国古代圆周率邹大海著 ... 对今天的数学史乃至科学史研究仍有意义。029《算数书》校勘郭书春著;《中国科技史料》;2001, Vol ... 被引用次数: 4 文献引用-相似文献-同类文献 9. 数学思想与数学教育 严华祥 文献来自: 数学教育学报 1995年 第01期 CAJ下载 PDF下载 数学思想与数学教育严华祥摘要分三个层次表述:数学思想与数学创造,数学思想的教学功能,数学的"过程教学" ... 关键词数学思想,数学教育,过程教学.数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,对数学教育有根本的指导意义 ... 被引用次数: 9 文献引用-相似文献-同类文献 10. 数学史与数学教育 徐五光 文献来自: 杭州师范学院学报(自然科学版) 1997年 第03期 CAJ下载 PDF下载 数学史研究引起了国内广泛重视,研究人员增多,专著与论文不断涌现,史实被更多人引用,这些可喜现象,无论对数学史本身的研究和对数学史知识的普及,还是对中华民族优秀传统文化的弘扬以及对数学教育改革的深化,都具有深远影 ... 被引用次数: 4 文献引用-相似文献-同类文献 搜数学 的学术趋势 翻译 数学

  • 索引序列
  • 数学论文初一500字
  • 初一下册500字数学论文
  • 初一科学论文500字
  • 初二数学小论文500字
  • 初三数学小论文500字
  • 返回顶部