首页 > 期刊投稿知识库 > 牛顿光学研究论文

牛顿光学研究论文

发布时间:

牛顿光学研究论文

主要贡献:二项式定理创建微积分方程论与变分法牛顿运动定律光学贡献构筑力学大厦牛顿的三大衡定牛顿公式

对光学问题的研究是牛顿(1642—1727)工作的重要部分之一,亦是他最后未完成的课题。牛顿 1665 年毕业于剑桥大学的三一学院,当时大家都认为白光是一种纯的没有其他颜色的光;而有色光是一种不知何故发生变化的光(亚里斯多德的理论)。1665—1667 年间,年轻的牛顿独自做了一系列实验来研究各种光现象。他把一块三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们将其称作光谱。在他的手里首次使三棱镜变成了光谱仪,真正揭示了颜色起源的本质。1672 年 2 月,牛顿怀着揭露大自然奥秘的兴奋和喜悦,在第一篇正式的科学论文《白光的结构》中,阐述了他的颜色起源学说,“颜色不像一般所认为的那样是从自然物体的折射或反射中所导出的光的性能,而是一种原始的、天生的性质”。“通常的白光确实是每一种不同颜色的光线的混合,光谱的伸长是由于玻璃对这些不同的光线折射本领不同”。 牛顿《光学》著作于 1704 年问世,其中第一节专门描述了关于颜色起源的棱镜分光实验和讨论,肯定了白光由七种颜色组成。他还给这七种颜色进行了命名,直到现在,全世界的人都在使用牛顿命名的颜色。关注材料科学与工程微信公众号,了解更多科学之美。牛顿指出,“光带被染成这样的彩条:紫色、蓝色、青色、绿色、黄色、橙色、红色,还有所有的中间颜色,连续变化,顺序连接”。正是这些红、橙、黄、绿、青、蓝、紫基础色不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。 这一实验后人可以不断地重复进行,并得到与牛顿相同的实验结果。自此以后七种颜色的理论就被人们普遍接受了。通过这一实验,牛顿为光的色散理论奠定了基础,并使人们对颜色的解释摆脱了主观视觉印象,从而走上了与客观量度相联系的科学轨道。同时,这一实验开创了光谱学研究,不久,光谱分析就成为光学和物质结构研究的主要手段。

牛顿没有用实验证明 光的粒子性,他是继续现象,提出的假设,理论和分析。光的波粒二象性光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。先熟悉一下有关光的基本知识。光的波动说与微粒说之争在人们对物理光学的研究过程中,光的本性问题和光的颜色问题成为焦点。关于光的本性问题,笛卡儿在他《方法论》的三个附录之一《折光学》中提出了两种假说。一种假说认为,光是类似于微粒的一种物质;另一种假说认为光是一种以“以太”为媒质的压力。虽然笛卡儿更强调媒介对光的影响和作用,但他的这两种假说已经为后来的微粒说和波动说的争论埋下了伏笔。十七世纪中期,物理光学有了进一步的发展。1655年,意大利波仑亚大学的数学教授格里马第在观测放在光束中的小棍子的影子时,首先发现了光的衍射现象。据此他推想光可能是与水波类似的一种流体。格里马第设计了一个实验:让一束光穿过一个小孔,让这束光穿过小孔后照到暗室里的一个屏幕上。他发现光线通过小孔后的光影明显变宽了。格里马第进行了进一步的实验,他让一束光穿过两个小孔后照到暗室里的屏幕上,这时得到了有明暗条纹的图像。他认为这种现象与水波十分相像,从而得出结论:光是一种能够作波浪式运动的流体,光的不同颜色是波动频率不同的结果。格里马第第一个提出了“光的衍射”这一概念,是光的波动学说最早的倡导者。1663年,英国科学家波义耳提出了物体的颜色不是物体本身的性质,而是光照射在物体上产生的效果。他第一次记载了肥皂泡和玻璃球中的彩色条纹。这一发现与格里马第的说法有不谋而合之处,为后来的研究奠定了基础。不久后,英国物理学家胡克重复了格里马第的试验,并通过对肥皂泡膜的颜色的观察提出了“光是以太的一种纵向波”的假说。根据这一假说,胡克也认为光的颜色是由其频率决定的。然而1672年,伟大的牛顿在他的论文《关于光和色的新理论》中谈到了他所作的光的色散实验:让太阳光通过一个小孔后照在暗室里的棱镜上,在对面的墙壁上会得到一个彩色光谱。他认为,光的复合和分解就像不同颜色的微粒混合在一起又被分开一样。在这篇论文里他用微粒说阐述了光的颜色理论。第一次波动说与粒子说的争论由“光的颜色”这根导火索引燃了。从此胡克与牛顿之间展开了漫长而激烈的争论。1672年2月6日,以胡克为主席,由胡克和波义耳等组成的英国皇家学会评议委员会对牛顿提交的论文《关于光和色的新理论》基本上持以否定的态度。牛顿开始并没有完全否定波动说,也不是微粒说偏执的支持者。但在争论展开以后,牛顿在很多论文中对胡克的波动说进行了反驳。由于此时的牛顿和胡克都没有形成完整的理论,因此波动说和微粒说之间的论战并没有全面展开。但科学上的争论就是这样,一旦产生便要寻个水落石出。波动说的支持者,荷兰著名天文学家、物理学家和数学家惠更斯继承并完善了胡克的观点。惠更斯早年在天文学、物理学和技术科学等领域做出了重要贡献,并系统的对几何光学进行过研究。1666年,惠更斯应邀来到巴黎科学院以后,并开始了对物理光学的研究。在他担任院士期间,惠更斯曾去英国旅行,并在剑桥会见了牛顿。二人彼此十分欣赏,而且交流了对光的本性的看法,但此时惠更斯的观点更倾向于波动说,因此他和牛顿之间产生了分歧。正是这种分歧激发了惠更斯对物理光学的强烈热情。回到巴黎之后,惠更斯重复了牛顿的光学试验。他仔细的研究了牛顿的光学试验和格里马第实验,认为其中有很多现象都是微粒说所无法解释的。因此,他提出了波动学说比较完整的理论。惠更斯认为,光是一种机械波;光波是一种靠物质载体来传播的纵向波,传播它的物质载体是“以太”;波面上的各点本身就是引起媒质振动的波源。根据这一理论,惠更斯证明了光的反射定律和折射定律,也比较好的解释了光的衍射、双折射现象和著名的“牛顿环”实验。如果说这些理论不易理解,惠更斯又举出了一个生活中的例子来反驳微粒说。如果光是由粒子组成的,那么在光的传播过程中各粒子必然互相碰撞,这样一定会导致光的传播方向的改变。而事实并非如此。就在惠更斯积极的宣传波动学说的同时,牛顿的微粒学说也逐步的建立起来了。牛顿修改和完善了他的光学著作《光学》。基于各类实验,在《光学》一书中,牛顿一方面提出了两点反驳惠更斯的理由:第一,光如果是一种波,它应该同声波一样可以绕过障碍物、不会产生影子;第二,冰洲石的双折射现象说明光在不同的边上有不同的性质,波动说无法解释其原因。另一方面,牛顿把他的物质微粒观推广到了整个自然界,并与他的质点力学体系融为一体,为微粒说找到了坚强的后盾。为不与胡克再次发生争执,胡克去世后的第二年(1704年)《光学》才正式公开发行。但此时的惠更斯与胡克已相继去世,波动说一方无人应战。而牛顿由于其对科学界所做出的巨大的贡献,成为了当时无人能及一代科学巨匠。随着牛顿声望的提高,人们对他的理论顶礼膜拜,重复他的实验,并坚信与他相同的结论。整个十八世纪,几乎无人向微粒说挑战,也很少再有人对光的本性作进一步的研究。十八世纪末,在德国自然哲学思潮的影响下,人们的思想逐渐解放。英国著名物理学家托马斯·杨开始对牛顿的光学理论产生了怀疑。根据一些实验事实,杨氏于1800年写成了论文《关于光和声的实验和问题》。在这篇论文中,杨氏把光和声进行类比,因为二者在重叠后都有加强或减弱的现象,他认为光是在以太流中传播的弹性振动,并指出光是以纵波形式传播的。他同时指出光的不同颜色和声的不同频率是相似的。1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。同年,杨氏在英国皇家学会的《哲学会刊》上发表论文,分别对“牛顿环”实验和自己的实验进行解释,首次提出了光的干涉的概念和光的干涉定律。1803年,杨氏写成了论文《物理光学的实验和计算》。他根据光的干涉定律对光的衍射现象作了进一步的解释,认为衍射是由直射光束与反射光束干涉形成的。但由于他认为光是一种纵波,所以在理论上遇到了很多麻烦。他的理论受到了英国政治家布鲁厄姆的尖刻的批评,被称作是“不合逻辑的”、“荒谬的”、“毫无价值的”。虽然杨氏的理论以及后来的辩驳都没有得到足够的重视、甚至遭人毁谤,但他的理论激起了牛顿学派对光学研究的兴趣。1808年,拉普拉斯用微粒说分析了光的双折射线现象,批驳了杨氏的波动说。1809年,马吕斯在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。因为惠更斯曾提出过光是一种纵波,而纵波不可能发生这样的偏振,这一发现成为了反对波动说的有利证据。1811年,布吕斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。光的偏振现象和偏振定律的发现,使当时的波动说陷入了困境,使物理光学的研究更朝向有利于微粒说的方向发展。面对这种情况,杨氏对光学再次进行了深入的研究,1817年,他放弃了惠更斯的光是一种纵波的说法,提出了光是一种横波的假说,比较成功的解释了光的偏振现象。吸收了一些牛顿派的看法之后,他又建立了新的波动说理论。杨氏把他的新看法写信告诉了牛顿派的阿拉戈。1817年,巴黎科学院悬赏征求关于光的干涉的最佳论文。土木工程师菲涅耳也卷入了波动说与微粒说之间的纷争。在1815年菲涅耳就试图复兴惠更斯的波动说,但他与杨氏没有联系,当时还不知道杨氏关于衍射的论文,他在自己的论文中提出是各种波的互相干涉使合成波具有显著的强度。事实上他的理论与杨氏的理论正好相反。后来阿拉戈告诉了他杨氏新提出的关于光是一种横波的理论,从此菲涅耳以杨氏理论为基础开始了他的研究。1819年,菲涅耳成功的完成了对由两个平面镜所产生的相干光源进行的光的干涉实验,继杨氏干涉实验之后再次证明了光的波动说。阿拉戈与菲涅耳共同研究一段时间之后,转向了波动说。1819年底,在非涅耳对光的传播方向进行定性实验之后,他与阿拉戈一道建立了光波的横向传播理论。1882年,德国天文学家夫琅和费首次用光栅研究了光的衍射现象。在他之后,德国另一位物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 至此,新的波动学说牢固的建立起来了。微粒说开始转向劣势。随着光的波动学说的建立,人们开始为光波寻找载体,以太说又重新活跃起来。一些著名的科学家成为了以太说的代表人物。但人们在寻找以太的过程中遇到了许多困难,于是各种假说纷纷提出,以太成为了十九世纪的众焦点之一。菲涅耳在研究以太时发现的问题是,横向波的介质应该是一种类固体,而以太如果是一种固体,它又怎么能不干扰天体的自由运转呢。不久以后泊松也发现了一个问题:如果以太是一种类固体,在光的横向振动中必然要有纵向振动,这与新的光波学说相矛盾。为了解决各种问题,1839年柯西提出了第三种以太说,认为以太是一种消极的可压缩性的介质。他试图以此解决泊松提出的困难。1845年,斯托克斯以石蜡、沥青和胶质进行类比,试图说明有些物质既硬得可以传播横向振动又可以压缩和延展——因此不会影响天体运动。1887年,英国物理学家麦克尔逊与化学家莫雷以“以太漂流”实验否定了以太的存在。但此后仍不乏科学家坚持对以太的研究。甚至在法拉第的光的电磁说、麦克斯韦的光的电磁说提出以后,还有许多科学家潜心致力于对以太的研究。十九世纪中后期,在光的波动说与微粒说的论战中,波动说已经取得了决定性胜利。但人们在为光波寻找载体时所遇到的困难,却预示了波动说所面临的危机。1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明!二十世纪初,普朗克和爱因斯坦提出了光的量子学说。1921年,爱因斯坦因为"光的波粒二象性"这一成就而获得了诺贝尔物理学奖。1921年,康普顿在试验中证明了X射线的粒子性。1927年,杰默尔和后来的乔治·汤姆森在试验中证明了电子束具有波的性质。同时人们也证明了氦原子射线、氢原子和氢分子射线具有波的性质。在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。正是他们的努力揭开了遮盖在“光的本质”外面那层扑朔迷离的面纱

高中物理中讲到!!

牛顿的光学研究对物理的意义论文

牛顿(Isaac Newton,1643~1727)伟大的物理学家、天文学家和数学家,经典力学体系的奠基人。 牛顿1643年1月4日(儒略历1642年12月25日)诞生于英格兰东部小镇乌尔斯索普一个自耕农家庭。出生前八九个月父死于肺炎。自小瘦弱,孤僻而倔强。3岁时母亲改嫁,由外祖母抚养。11岁时继父去世,母亲又带3个弟妹回家务农。在不幸的家庭生活中,牛顿小学时成绩较差,“除设计机械外没显出才华”。 牛顿自小热爱自然,喜欢动脑动手。8岁时积攒零钱买了锤、锯来做手工,他特别喜欢刻制日晷,利用圆盘上小棍的投影显示时刻。传说他家里墙角、窗台上到处都有他刻划的日晷,他还做了一个日晷放在村中央,被人称为“牛顿钟”,一直用到牛顿死后好几年。他还做过带踏板的自行车;用小木桶做过滴漏水钟;放过自做的带小灯笼的风筝(人们以为是彗星出现);用小老鼠当动力做了一架磨坊的模型,等等。他观察自然最生动的例子是15岁时做的第一次实验:为了计算风力和风速,他选择狂风时做顺风跳跃和逆风跳跃,再量出两次跳跃的距离差。牛顿在格兰瑟姆中学读书时,曾寄住在格兰瑟姆镇克拉克药店,这里更培养了他的科学实验习惯,因为当时的药店就是一所化学实验室。牛顿在自己的笔记中,将自然现象分类整理,包括颜色调配、时钟、天文、几何问题等等。这些灵活的学习方法,都为他后来的创造打下了良好基础。 牛顿曾因家贫停学务农,在这段时间里,他利用一切时间自学。放羊、购物、农闲时,他都手不释卷,甚至羊吃了别人庄稼,他也不知道。他舅父是一个神父,有一次发现牛顿看的是数学,便支持他继续上学。1661年6月考入剑桥大学三一学院。作为领取补助金的“减费生”,他必须担负侍候某些富家子弟的任务。三一学院的巴罗(Isaac Barrow,1630~1677)教授是当时改革教育方式主持自然科学新讲座(卢卡斯讲座)的第一任教授,被称为“欧洲最优秀的学者”,对牛顿特别垂青,引导他读了许多前人的优秀著作。1664年牛顿经考试被选为巴罗的助手,1665年大学毕业。 在1665~1666年,伦敦流行鼠疫的两年间,牛顿回到家乡。这两年牛顿才华横溢,作出了多项发明。1667年重返剑桥大学,1668年7月获硕士学位。1669年巴罗推荐26岁的牛顿继任卢卡斯讲座教授,1672年成为皇家学会会员,1703年成为皇家学会终身会长。1699年就任造币局局长,1701年他辞去剑桥大学工作,因改革币制有功,1705年被封为爵士。1727年牛顿逝世于肯辛顿,遗体葬于威斯敏斯特教堂。 牛顿的伟大成就与他的刻苦和勤奋是分不开的。他的助手H.牛顿说过,“他很少在两、三点前睡觉,有时一直工作到五、六点。春天和秋天经常五、六个星期住在实验室,直到完成实验。”他有一种长期坚持不懈集中精力透彻解决某一问题的习惯。他回答人们关于他洞察事物有何诀窍时说:“不断地沉思”。这正是他的主要特点。对此有许多故事流传:他年幼时,曾一面牵牛上山,一面看书,到家后才发觉手里只有一根绳;看书时定时煮鸡蛋结果将表和鸡蛋一齐煮在锅里;有一次,他请朋友到家中吃饭,自己却在实验室废寝忘食地工作,再三催促仍不出来,当朋友把一只鸡吃完,留下一堆骨头在盘中走了以后,牛顿才想起这事,可他看到盘中的骨头后又恍然大悟地说:“我还以为没有吃饭,原来我早已吃过了”。 牛顿的成就,恩格斯在《英国状况十八世纪》中概括得最为完整:“牛顿由于发明了万有引力定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定理和无限理论而创立了科学的数学,由于认识了力的本性而创立了科学的力学”。(牛顿在建立万有引力定律及经典力学方面的成就详见本手册相关条目),这里着重从数学、光学、哲学(方法论)等方面的成就作一些介绍。 (1)牛顿的数学成就 17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和瓦里斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利甩它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。 微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。 (2)牛顿在光学上的成就 牛顿的《光学》是他的另一本科学经典著作(1704年)。该书用标副标题是“关于光的反射、折射、拐折和颜色的论文”,集中反映了他的光学成就。 第一篇是几何光学和颜色理论(棱镜光谱实验)。从1663年起,他开始磨制透镜和自制望远镜。在他送交皇家学会的信中报告说:“我在1666年初做了一个三角形的玻璃棱镜,以便试验那著名的颜色现象。为此,我弄暗我的房间……”接着详细叙述了他开小孔、引阳光进行的棱镜色散实验。关于光的颜色理论从亚里士多德到笛卡儿都认为白光纯洁均匀,乃是光的本色。“色光乃是白光的变种。牛顿细致地注意到阳光不是像过去人们所说的五色而是在红、黄、绿、蓝、紫色之间还有橙、靛青等中间色共七色。奇怪的还有棱镜分光后形成的不是圆形而是长条椭圆形,接着他又试验“玻璃的不同厚度部分”、“不同大小的窗孔”、“将棱镜放在外边”再通过孔、“玻璃的不平或偶然不规则”等的影响;用两个棱镜正倒放置以“消除第一棱镜的效应”;取“来自太阳不同部分的光线,看其不同的入射方向会产生什么样的影响”;并“计算各色光线的折射率”,“观察光线经棱镜后会不会沿曲线运动”;最后才做了“判决性试验”:在棱镜所形成的彩色带中通过屏幕上的小孔取出单色光,再投射到第二棱镜后,得出核色光的折射率(当时叫“折射程度”),这样就得出“白光本身是由折射程度不同的各种彩色光所组成的非匀匀的混合体”。这个惊人的结论推翻了前人的学说,是牛顿细致观察和多项反复实验与思考的结果。 在研究这个问题的过程中,牛顿还肯定:不管是伽利略望远镜(凹、凸)还是开普勒望远镜(两个凸透镜),其结构本身都无法避免物镜色散引起起的色差。他发现经过仔细研磨后的金属反射镜面作为物镜可放大30~40倍。1671年他将此镜送皇家学会保存,至今的巨型天文望远镜仍用牛顿式的基本结构。牛顿磨制及抛光精密光学镜面的方法,至今仍是不少工厂光学加工的主要手段。 《光学》第二篇描述了光照射到叠放的凸透镜和平面玻璃上的“牛顿环”现象的各种实验。除产生环的原因他没有涉及外,他作了现代实验所能想到的一切实验,并作了精确测量。他把干涉现象解释为光行进中的“突发”或“切合”,即周期性的时而突然“易于反射”,时而“易于透射”,他甚至测出这种等间隔的大小,如黄橙色之间有一种色光的突发间隔为1/89000英寸(即现今2854×10-10米),正好与现代波长值5710×10-10米相差一半! 《光学》第三篇是“拐折”(他认为光线被吸收)即衍射、双折射实验和他的31个疑问。这些衍射实验包括头发丝、刀片、尖劈形单缝形成的单色窄光束“光带”(今称衍射图样)等10多个实验。牛顿已经走到了重大发现的大门口却失之交臂。他的31个疑问极具启发性,说明牛顿在实验事实和物理思想成熟前并不先作绝对的肯定。牛顿在《光学》一、二篇中视光为物质流,即由光源发出的速度、大小不同的一群粒子,在双折射中他假设这些光粒子有方向性且各向异性。由于当时波动说还解释不了光的直进,他是倾向于粒子说的,但他认为粒子与波都是假定。他甚至认为以太的存在也是没有根据的。 在流体力学方面,牛顿指出流体粘性阻力与剪切率成正比,这种阻力与液体各部分之间的分离速度成正比,符合这种规律的(如、空气与水)称为牛顿流体。 在热学方面,牛顿的冷却定律为:当物体表面与周围形成温差时,单位时间单位面积上散失的热量与这一温差成正比。 在声学方面,他指出声速与大气压强平方根成正比,与密度平方根成反比。他原来把声传播作为等温过程对待,后来P.S.拉普拉斯纠正为绝热过程。 (3)牛顿的哲学思想和科学方法 牛顿在科学上的巨大成就连同他的朴素的唯物主义哲学观点和一套初具规模的物理学方法论体系,给物理学及整个自然科学的发展,给18世纪的工业革命、社会经济变革及机械唯物论思潮的发展以巨大影响。这里只简略勾画一些轮廓。 牛顿的哲学观点与他在力学上的奠基性成就是分不开的,一切自然现象他都力图力学观点加以解释,这就形成了牛顿哲学上的自发的唯物主义,同时也导致了机械论的盛行。事实上,牛顿把一切化学、热、电等现象都看作“与吸引或排斥力有关的事物”。例如他最早阐述了化学亲和力,把化学置换反应描述为两种吸引作用的相互竞争;认为“通过运动或发酵而发热”;火药爆炸也是硫磺、炭等粒子相互猛烈撞击、分解、放热、膨胀的过程,等等。 这种机械观,即把一切的物质运动形式都归为机械运动的观点,把解释机械运动问题所必需的绝对时空观、原子论、由初始条件可以决定以后任何时刻运动状态的机械决定论、事物发展的因果律等等,作为整个物理学的通用思考模式。可以认为,牛顿是开始比较完整地建立物理因果关系体系的第一人,而因果关系正是经典物理学的基石。 牛顿在科学方法论上的贡献正如他在物理学特别是力学中的贡献一样,不只是创立了某一种或两种新方法,而是形成了一套研究事物的方法论体系,提出了几条方法论原理。在牛顿《原理》一书中集中体现了以下几种科学方法: ①实验——理论——应用的方法。牛顿在《原理》序言中说:“哲学的全部任务看来就在于从各种运动现象来研究各种自然之力,而后用这些方去论证其他的现象。”科学史家I.B.Cohen正确地指出,牛顿“主要是将实际世界与其简化数学表示反复加以比较”。牛顿是从事实验和归纳实际材料的巨匠,也是将其理论应用于天体、流体、引力等实际问题的能手。 ②分析——综合方法。分析是从整体到部分(如微分、原子观点),综合是从部分到整体(如积分,也包括天与地的综合、三条运动定律的建立等)。牛顿在《原理》中说过:“在自然科学里,应该像在数学里一样,在研究困难的事物时,总是应当先用分析的方法,然后才用综合的方法……。一般地说,从结果到原因,从特殊原因到普遍原因,一直论证到最普遍的原因为止,这就是分析的方法;而综合的方法则假定原因已找到,并且已经把它们定为原理,再用这些原理去解释由它们发生的现象,并证明这些解释的正确性”。 ③归纳——演绎方法。上述分析一综合法与归纳一演绎法是相互结合的。牛顿从观察和实验出发。“用归纳法去从中作出普通的结论”,即得到概念和规律,然后用演绎法推演出种种结论,再通过实验加以检验、解释和预测,这些预言的大部分都在后来得到证实。当时牛顿表述的定律他称为公理,即表明由归纳法得出的普遍结论,又可用演绎法去推演出其他结论。 ④物理——数学方法。牛顿将物理学范围中的概念和定律都“尽量用数学演出”。爱因斯坦说:“牛顿才第一个成功地找到了一个用公式清楚表述的基础,从这个基础出发他用数学的思维,逻辑地、定量地演绎出范围很广的现象并且同经验相符合”,“只有微分定律的形式才能完全满足近代物理学家对因果性的要求,微分定律的明晰概念是牛顿最伟大的理智成就之一”。牛顿把他的书称为《自然哲学的数学原理》正好说明这一点。 牛顿的方法论原理集中表述在《原理》第三篇“哲学中的推理法则”中的四条法则中,此处不再转引。概括起来,可以称之为简单性原理(法则1),因果性原理(法则2),普遍性原理(法则3),否证法原理(法则4,无反例证明者即成立)。有人还主张把牛顿在下一段话的思想称之为结构性原理:“自然哲学的目的在于发现自然界的结构的作用,并且尽可能把它们归结为一些普遍的法规和一般的定律——用观察和实验来建立这些法则,从而导出事物的原因和结果”。 牛顿的哲学思想和方法论体系被爱因斯坦赞为“理论物理学领域中每一工作者的纲领”。这是一个指引着一代一代科学工作者前进的开放的纲领。但牛顿的哲学思想和方法论不可避免地有着明显的时代局限性和不彻底性,这是科学处于幼年时代的最高成就。牛顿当时只对物质最简单的机械运动作了初步系统研究,并且把时空、物质绝对化,企图把粒子说外推到一切领域(如连他自己也不能解释他所发现的“牛顿环”),这些都是他的致命伤。牛顿在看到事物的“第一原因”“不一定是机械的”时,提出了“这些事情都是这样地井井有条……是否好像有一位……无所不在的上帝”的问题,(《光学》,疑问29),并长期转到神学的“科学”研究中,费了大量精力。但是,牛顿的历史局限性和他的历史成就一样,都是启迪后人不断前进的教材。

艾萨克·牛顿爵士,FRS(Sir Isaac Newton,1643年1月4日-1727年3月31日,英语发音[�0�4a�0�1z�0�5k �0�4nju�0�9t�5�5])[ 儒略历:1642年12月25日-1727年3月20日][1]是一位英格兰物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,牛顿曾担任会长的英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会会员和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。[2]数学大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。[7]不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。[编辑] 光学从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。牛顿1672年使用的6英寸反射式望远镜复制品,为皇家学会所拥有他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,而不是物体产生颜色的结果。(更多的细节,参看牛顿的色彩理论。)从这项工作中,他得出了如下结论:任何折射式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿式反射望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折射式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。[8]而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”[9]但牛顿对炼金术的兴趣却与他对科学的贡献息息相关[10],而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的重力理论。(参见艾萨克·牛顿的神秘学研究)1704年,牛顿著成《光学》,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?[11]牛顿还使用玻璃球制造了原始形式的摩擦静电发电机[12]。[编辑] 力学和引力 牛顿自己的《原理》副本,并带有为第二版所作的修正1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。

牛顿最初成名主要是靠光学上的成就,他在自然科学上的发明与发现,最早成熟的是关于光学的思想和研究。他走上剑桥大学卢卡斯讲座的讲台,给他的学生们所开的第一门课程也是光学。牛顿对光的研究在上大学的时候就已经开始了。

主要有:首先是牛顿三大定律;其次是数学上的微积分;最后是由微积分推导出来的万有引力定理和它的计算公式.

牛顿力学论文2000字

计算智能原理对创新模式的探索摘要:科技创新能力培养是本科生培养的一个重要方面,在国家大力提倡科技创新的背景下,加强大学生科技创新具有重要的意义。培养有创新能力的人才是高等学校建设的中心。本文基于计算智能原理与方法,结合指导的国家大学生创新项目的实践,就建设高效的创新团队的方法进行了初探。关键词:计算智能;科研训练;创新团队0引言目前,我们要提高自主创新能力,建设创新型国家。高等教育担负着培养创新型人才的重要责任。学生科技活动对于提高学生科技创新能力,培养拔尖创新型人才具有重要意义。而构建了一批锐意进取、大胆创新的大学生创新团队,对提高学生的创新能力和团队协作能力就显得特别的重要。目前就团队理论的研究还有待与深入,用计算智能的基本理论原理与方法来指导建设大学生创新项目团队,是一种跨学科研究的新尝试。1计算智能的基本理论与方法简介计算智能由美国学者James C.Bezedek1992年首次给出其定义,广义的讲就是借鉴仿生学思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等某些机制,用数学语言抽象描述的计算方法。是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。计算智能的主要方法有:人工神经网络、模糊系统、进化计算等。1.1模糊计算模糊系统以模糊集合理论、模糊逻辑推理为基础,它试图从一个较高的层次模拟人脑表示和求解不精确知识的能力。在模糊系统中,知识是以规则的形式存储的,它采用一组模糊IF—THEN规则来描述对象的特性,并通过模糊逻辑推理来完成对不确定性问题的求解。模糊系统善于描述利用学科领域的知识,具有较强的推理能力。1.2人工神经网络人工神经网络系统是由大量简单的处理单元,即神经元广泛地连接而形成的复杂网络系统。在人工神经网络中,计算是通过数据在网络中的流动来完成的。在数据的流动过程中,每个神经元从与其连接的神经元处接收输入数据流,对其进行处理以后,再将结果以输出数据流的形式传送到与其连接的其它神经元中去。网络的拓扑结构和各神经元之间的连接权值(Wi)是由相应的学习算法来确定的。算法不断地调整网络的结构和神经元之间的连接权值,一直到神经网络产生所需要的输出为止。通过这个学习过程,人工神经网络可以不断地从环境中自动地获取知识,并将这些知识以网络结构和连接权值的形式存储于网络之中。人工神经网络具有良好的自学习、自适应和自组织能力,以及人规模并行、分布式信息存储和处理等特点,这使得它非常适合于处理那些需要同时考虑多个因素的、不完整的、不准确的信息处理问题。1.3进化计算自然界在几十亿年的进化过程中,生物体己经形成了一种优化自身结构的内在机制,它们能够不断地从环境中学习,以适应不断变化的环境。对于大多数生物体,这个过程是通过自然选择和有性生殖来完成的。自然选择决定了群体中哪些个体能够存活并繁殖:有性生殖保证了后代基因的混合与重组。进化计算受这种自然界进化过程的启发,它从模拟自然界的生物进化过程入手,从基因的层次探寻人类某些智能行为发展和进化的规律,以解决智能系统如何从环境中进行学习的问题。2计算智能原理在创新团队实践中的启发从系统论的视角看,创新团队的建设问题是一个复杂系统的优化和控制问题。复杂系统具有:1)自适应性/自组织性(self-adaptive/self-organization)。2)不确定性(uncertainty)。3)涌现性(emergence)。4)预决性(Finality)。5)演化(Evolution)。6)开放性(opening)。而计算智能的这些方法具有自学习、自组织、自适应的特征,创新团队的建设是具有一定的研究价值的。2.1在专家指导下的自学习、自组织、自适应计算智能特点提到,模糊系统善于描述和利用经验知识;神经网络善于直接从数据中进行学习,把人工神经网络与专家系统结合起来,建立一个混合的系统,要比各自单一地工作更为有利。创新团队在相关专家的指导下,突出学生自由组建、自主管理、自我服务的特色。在明确团队任务的前提下对团队人数、组成人员条件及内部控制制度做些原则性的规定,赋予团队负责人充分的权力如决定团队成员构成、支配内部经费、对团队成员进行分工和考核等,保证其对团队工作直接有效的管理。2.2合作与竞争意识计算智能特点提到,进化计算善于求解复杂的全局最优问题,具有极强的稳健性和整体优化性。种群的进化过程就是优胜劣汰的自然选择过程。团队建设的基石是合作与竞争理论。Deutsch早就指出,如果人们处于散乱的、互不相干的独立竞争关系,认为双方目标之间没有关系,那么,在资源有限的情况下,人们会表现得更为自私,彼此之间的利益存在冲突,这种关系会引起组织内耗和人际关系紧张,最终导致低生产率和低创造率。Dcutsch认为,应该使人们在组织中具有共同目标,在共同目标下合作共事。具有合作关系的人们会相互尊重、共享信息和资源,他们会将他人的进步看成对自己的促进,并交流意见和取长补短,现代科学的进步表明,今天每一项科技成果的取得,差不多都是多学科协同作战的结果。大学科研团队的建设就是要很好地贯彻这种理念,在适度的竞争与合作之间构建这种理念。2.3融入计算智能思想的协同学习团队人们在研究人类智能行为中发现,大部分人类活动都涉及多个人构成的社会团体,大型复杂问题的求解需要多人或组织协作完成,师生之间的关系也更强调合作和共同发展。随着计算机网络、计算机通信和并发程序设计的发展,分布式人工智能逐渐成为人工智能领域的一个新的研究热点,它是以智能Agent概念为研究核心。虽然每个智能Agent都是主动地、自治地工作,多个智能Agent在同一环境中协同工作,协同的手段是相互通信。计算智能与分布式人工智能结合则是研究在逻辑上或物理上分散的智能动作如何协调它们的知识、技能和规划,求解单目标或多目标问题,因此这也为设计和建立大型复杂的智能系统或计算机支持的协同学习工作提供了有效途径。2.4选好综合能力强的团队带头人计算智能特点提到,对复杂系统的控制,要用处理各种不确定的智能方法,这就要求团队带头人有处理复杂问题的综合能力。科技创新团队应是由不同类型的人为实现特定的目标组成的群体。激励和聚合大家的力量,负责内部的计划、组织、指挥、协调和控制等方面组织工作,必须要有一位核心人物,即学术带头人。优秀的学术带头人是高校科技创新团队必备的要素。团队的带头人处于沟通、协调团队内外的中心位置,是团队其他成员获得工作方向、具体任务、工作目标等信息的主要来源,是团队维持士气、活力、凝聚力的中心环节和纽带,在很大程度上决定了整个团队的学术水平、科研风格和文化氛围。同时对团队整体加强协调与组织,提高团队的内部凝聚力。2.5加强交流,资源公享计算智能特点提到自适应,进化机制,是建立在信息传输基础上的。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中的每个成员都为组织的发展倾尽所有。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中的每个成员都为组织的发展倾尽所有。2.6配备优势互补的成员在计算智能机制的调控,非线性复杂系统有涌现性特征。所谓涌现性,就是肩负不同角色的组件间通过多种交互模式、按局部或全局的行为规则进行交互,组件类型与状态、组件之间的交互以及系统行为随时间不断改变,系统中子系统或基本单元之间的局部交互,经过一定的时间之后在整体上演化出一些独特的、新的性质,形成某些模式,这便体现为涌现性。子系统之间的相互作用,可导致产生与单个子系统行为显著不同的宏观整体性质。涌现性也体现为一种质变,主体之间的相互作用开始后,系统能自组织、自协调、自加强,并随之扩大,发展,最后发生质变,即发生了涌现。3结束语计算智能理论对处理复杂系统的优化和控制问题是有效,计算智能原理在创新团队实践中的启发是多方面的。目前就团队理论的研究还有待与深入,利用计算智能原理与方法来指导建设大学生创新项目团队,是一种新的思路。

关于牛顿第二定律研究论文阅读人数:1337人页数:4页wscq11wwgx“The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.” “动量的变化与冲量成同向正比”——艾萨克•牛顿运动是物质无时无刻都在做的,2百年前伟大的物理学家,数学家,哲学家艾萨克•牛顿博士就在《自然哲学之数学原理》中做了探究。今天就让我们追寻前辈的足迹来一探辛秘。关于牛顿第二定律研究论文 Newton's Second Law of Motion-Force and Acceleration一、概述牛顿第二运动定律(Newton's second law of motion)说明了物体的加速度与物体所受的合力成正比,并和物体的质量成反比。而物体加速度的方向与合力的方向相同。以物理学的观点来看,牛顿第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。即动量对时间的一阶导数等于外力之和。牛顿第二定律表明,物体的加速度与施加的合外力成正比,与物体的质量成反比,方向与合外力方向相同。这定律又称为“加速度定律”。以方程表达:,其中, F是合外力,是所有施加于物体的力的矢量和,m 是质量,a 是加速度。而数学上,牛顿第二定律通常表达为:这里实际上定义了质量为合外力与加速度的比率。这样定义的质量称为物体的惯性质量,是物体的固有属性,与外力无关。这样在数量上,施加于物体的合外力等于物体质量与加速度的乘积。国际标准制中,将力的单位定义为使得单位质量的物体得到单位加速度的所需[1],这与惯性质量的定义相容。具体来说,力、加速度、质量的单位分别规定为牛顿(N)、米每二次方秒(m/s2),公斤(kg)。施加1牛顿的力于质量为1公斤的物体,可以使此物体的加速度为1m/s2。也就是说,合外力只能造成物体朝着同方向的加速度运动。假定物体的质量、初始速度与初始位置为已知量,则从施加于物体的合外力,可以应用第二定律计算出物体的运动轨迹。这是一个非常有用的方法。1/4二、牛顿论述牛顿试着解释冲量与动量之间的关系。假设施加于物体的冲量造成了物体的动量改变,则双倍的冲量会造成双倍的动量改变,三倍的冲量会造成三倍的动量改变,不论冲量是全部同时施加,还是一部分一部分慢慢地施加,所造成的动量改变都一样。牛顿又试着解释这动量改变与原先动量之间的关系。这动量改变必定与施加的冲量同方向。假设在冲量施加之前,物体已具有某动量,则这动量改变会与原先动量相加或相减,依它们是同方向还是反方向而定,假设动量改变与原先动量呈某角度,则最终动量是两者按著角度合成的结果。牛顿所使用的术语的涵意、他对于第二定律的认知、他想要第二定律如何被众学者认知、以及牛顿表述与现代表述之间的关系,科学历史学者对于这些论题都已经做过广泛地研究与讨论三、实验[实验目的]验证牛顿第二定律,即质量一定时,物体的加速度与合外力大小成正比;合外力一定时,物体加速度大小和质量成反比。[实验原理]①、保持车质量不变,改变车所受合外力大小(改变砂的质量)。用打点计时器打出纸带,求出加速度,用图象法验证物体运动的加速度是否正比于物体所受到的合外力。②、保持砂子质量不变,改变研究对象质量。利用打点计时器打出的纸带,求出运动物体加速度,用图象法验证物体的加速度是否反比于物体的质量。[实验器材]纸带和复写纸、小车、小桶、细绳、砂子、刻度尺、砝码、打点计时器、低压学生电源、天平(带有一套砝码)、附有定滑轮的长木板。[实验步骤]①、用天平测出车和桶的质量M和M'。在车上加砝码,在桶内放入适量砂,使桶和砂总质量远小于车和砝码总质量,记下砝码和砂的质量m和m'。 ②、安装好实验装置。③、平衡车和纸带受的摩擦力:在长木板不带定滑轮的一端下垫一块木板,反复移动木板位置,直到车在斜面上运动时可保持匀速直线运动,这时车拖着纸带运动时所受的阻力恰与车所受到的重力在斜面方向上的分量平衡。④、把细绳系在小车上,并绕过滑轮悬挂小桶。接通电源,放开小车,打点计时器在纸带上打下一系列点。取下纸带,在纸带上标上纸带号码。2/4 ⑤、保持车的质量不变,通过改变砂桶的质量而改变车所受到的牵引力,再做几次实验。⑥、在每条纸带上选取一段比较理想的部分,测量各计数点间的距离Sn,利用公式 Δs=at2,算出各条纸带所对应的小车的加速度。⑦、根据实验结果画出车运动的a─F图线,如图线是过原点的倾斜直线,则证明物体运动的加速度a和合外力大小成正比。⑧、保持砂子和小桶的质量不变,在小车上加放砝码,重复上面的实验。⑨、根据实验结果画出小车运动时的a~图线,如果图线是过原点的的倾斜直线,则证明物体运动的加速度a和物体的质量大小成反比。[注意事项]①(M'+m')取30~100克,(M+m)大于1千克,满足 ②、平衡摩擦时,要让车拖着纸带运动,且打点计时器要打点。摩擦力一经平衡,当改变小车的质量或改变小桶的质量时,不需要重新平衡摩擦力。③、a─F图象不过坐标原点的原因和调节方法图线和横轴相交的原因是阻力大于下滑力,此时应该增大长木板的倾角B、图线和纵轴相交的原因是下滑力大于阻力,应该减小长木板的倾角。[实验思考题]1[ 1、3 ]在验证牛顿第二定律的实验中,平衡摩擦力时 不能将装砂子的小桶用细绳通过滑轮系在小车上小车后的纸带必须连好,但打点计时器可以不打点应使打点计时器打在纸带上的相邻点迹间的距离相等每次改变小车的质量,必须再次平衡摩擦力2[ A、C、D ]在做验证牛顿第二定律实验时应该使砂子和小桶的总质量远小于小车和砝码的总质量,以减小实验误差3/4 可用天平测得小桶和砂的总质量m1,小车和砝码的总质量m2,根据公式求出

物理学的发展,促进了科学技术的进步。现代物理学更成为高新技术的基础。 1、在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。也使中国人“九天揽月”成为可能。(2007年我们国家要登月,那时就是神州7号)。杨得伟是神州6号。 (学完万有引力定律可窥一斑) 2、带电粒子在电场磁场中的偏转的规律在科学技术中的应用。电视机显像管等。(学完带电粒子在电场磁场中的偏转会了解了。) 刀。如核磁共振,超声波,X光机等。3、核物理的研究使放射线的应用成为可能。医疗上的放疗。在医疗上还有很多,如用于治疗脑瘤的 4、20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片。电子计算机。没有量子力学也就没有现代科技 。 5、20世纪60年代,激光器诞生。激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。大家熟悉的微机光盘就是用激光读的。光导纤维等。 6、20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 7、20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 8、生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 可以说物理学的发展,促进了各个领域科学技术的进步。使人类的生产和生活发生了翻天覆地的变化。 物理学的发展引发了一次又一次的产业革命,推动着社会和人类文明的发展。可以说社会的每一次大的进步都与物理学的发展紧密相连。 18世纪中叶,在热学发展的基础上发明并改进了蒸汽机。蒸汽机的广泛使用,促成了手工业向机械化的大生产的转变,并使陆上和海上的大规模的长途运输成为可能。大大推动了社会的发展。古人云:一日千里。火车、飞机的使用使每一个地球人实现了“一日千里”甚至日行万里的梦想。蒸汽机的使用是第一次产业革命。 1840年,法拉弟发现了电磁感应现象,并逐渐形成了完整的电磁场理论。在此基础上发展起来的电力工业,使人类进入电气化的时代,给人类的生产和生活带来翻天覆地的变化。大家想想现在使用的电灯、电话、电视、微机等一切的电力设施就能体会了。这是第二次产业革命。 20世纪70年代,微观物理方面取得重大突破,开创了微电子工业,使世界开始进入了以电子计算机应用为特征的信息时代。这是第三次产业革命。 可以说社会的每一次巨大的进步都是在物理学发展的基础上完成的。没有物理学的发展就没有人类社会和文明的巨大进步。麻烦采纳,谢谢!

牛顿在科学上最卓越的贡献是创建了微积分和经典力学。牛顿运动定律是艾萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。为“牛顿第一定律(惯性定律:一切物体在不受任何外力的作用下,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——它明确了力和运动的关系及提出了惯性的概念)”、“牛顿第二定律(物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。)公式:F=ma”、“牛顿第三定律(两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。)”

牛顿力学对社会科学影响研究论文

牛顿力学体系的影响深刻。牛顿经典力学的成就之大使得它得以广泛传播,深深地改变了人们的自然观。人们往往用力学的尺度去衡量一切,用力学的原理去解释一切自然现象,对自然科学的影响,牛顿经典力学的内容和研究方法对自然科学,特别是物理学起了重大的推动作用,但也存在着消极影响。对社会科学的影响,经典力学不但对自然科学产生了很大影响,在社会科学方面,特别是对哲学和人类思想发展,也产生了重大影响。

牛根据前人研究总结出牛顿运动三定律(只有第三条是他自己的,前两条是伽利略的)万有引力定律(什么苹果掉下来之类的故事)微积分! 其实这个才是牛顿对经典力学的最大贡献。通过微积分牛顿一手从牛顿力学三定律出发构建了整个牛顿力学体系。也就建立了决定论/机械论的宇宙观。只要给定初态,以后宇宙的演化就是决定的。(牛顿本身的理论体系就是完整的,虽然后来拉格朗日和哈密顿各自提出了另一个等价体系,并且计算上更方便) 插曲(和莱布尼茨关于发明权的竞争)。天体力学 从理论上解释了开普勒三定律伽利略相对性原理(就是常用那个v'=v+v0) 绝对时间 绝对空间 上帝的第一推动力 弹力性质的研究 胡克定律(和胡克关于发明权的竞争,著名的站在巨人的肩膀上的真实版本,真相令人极为受打击)划时代的巨著 自然哲学之数学原理(哈雷的工作对于他的出版的推动)。牛顿和莱布尼茨以及胡克的两场著名的口水,个人认为他们的确都是独立同时得到自己的结果,但牛顿为了争发明权过于不择手段。穿插的几个小逸事其实算不上牛顿对经典力学的贡献。

。。。。牛顿算是经典力学的开创者吧,经典力学时从他的牛顿三大定律开始完善和被认可的。

完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。

牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系。

人物评价

他在1688年发表的著作《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为现代工程学的基础。

他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。

爱因斯坦牛顿都研究神学了吗论文

爱因斯坦在他12岁阅读了哲学之后,再也没有相信宗教了,说他在晚年研究宗教简直是一种侮辱,牛顿在他30岁的时候就发表过有关宗教信仰的文章,显然他在中年时期已经信仰了宗教。

如果要追溯到牛顿的时代,那么不单是很多著名的科学家晚年都有宗教信仰,而是很多科学家终生都有信仰。

我们都知道在现代科学起源地的欧洲,那时候全是基督教信仰的国家,民众从小到大都接触宗教,耳濡目染,相信宗教是一件很自然的事情,相反不信宗教才比较另类,我们很少听到那时代有这种另类。

我国属于无神论国家,从小到大接受的是唯物论的教育,民众大多不相信宗教,在这样的大环境下,相信宗教的反倒成为了另类。而我在网上遇到过好些人,可能是由于从小所受的教育,对国外科学家的信仰状况有着奇怪的认知。比如他们都认为哥白尼和伽利略都由于科学研究而受到教廷的迫害,所以他们理所当然都是相信科学不相信上帝的。但实际上他俩都是虔诚的信徒,甚至那个被烧死的所谓科学殉道者布鲁诺,实际上也是宗教徒,他只是弄了一个奇怪的教派被判为了异端,被异端裁判所判了火刑。有研究分析认为布鲁诺并非因宣传日心说被烧的,而是因宣传他的奇怪教派被烧的,只不过刚好日心说被用来支持他的教义。

因此,如果你从近代科学开创者伽利略开始算,科学家里确实是很多都是有宗教信仰的,但它们当中很多都是终生都相信,而不是从小就不信到老了才信。

不过大约是到了达尔文发表《物种起源》以后,无神论思潮开始在西方国家,特别是在知识分子中蔓延。自然科学界也是首当其冲的。但依然有一些出类拔萃的科学家是终生保持了信仰的。比如量子论的创立者普朗克,还有那个把爱因斯坦、杨振宁怼得一身冷汗的怼王泡利。

但更多的科学家是没有宗教信仰的,比如爱因斯坦。我不知道江湖上为什么流传着爱因斯坦晚年信仰了上帝,大概是他晚年老说上帝不真掷骰子让宗教徒误会了吧……

爱因斯坦其实比较特殊,他生于一个信仰比较散漫的犹太人家庭,父母对犹太教都不怎么感冒,因此爱因斯坦从小也没什么宗教信仰,但到了中学的时候,他上了一所天主教学校,在学校里不知怎地突然狂热地信了天主教的上帝和耶稣(犹太教是不信耶稣的)。不过到了12岁左右,他看了一些科学和哲学著作后就放弃了宗教信仰直到去世都没有再信仰任何宗教。但同时爱因斯坦并不承认自己是个无神论者,他坚持自己是有信仰的,只是不相信人格化的上帝,仅此而已。

虽然,对于一般人来说,到了年老找一个信仰的依托是人之常情,但科学家好像没有看到有这种情况,可能是我不知道吧,比如前些时候因宣扬量子佛学而被群批的中科院院士朱清时,我没有查到他具体是什么时候开始相信佛学的。(其实从他的一些言论里我觉得他所相信的佛学跟一般人信的佛教是不一样的)

实际上,现在大多数的科学家都没有宗教信仰,但例外总是有的,比如前两年意外去世的美国科学院院士,美籍华人物理学家张首晟就是个宗教信徒,他意外去世时年仅55岁,还没到退休年龄呢,怎么也不能说是晚年相信吧。

还有刚刚因黑洞研究获得2020年度诺贝尔物理学奖的罗杰·彭罗斯(下图左边),百科里显示他是基督新教徒,也就是我们平常所的基督教。

在我遇见的很多科学爱好者的观念里,科学与宗教信仰是水火不容的,更有极端的认为科学与信仰是水火不容的。但实际上在顶级科学家里都不乏信仰宗教的人,像爱因斯坦一样没有宗教信仰但有信仰的就更不在少数了。

这是一份美国科学院科学家信仰状况的调查报告,截至1998年的调查中,依然有7%左右的美国科学院的顶级科学家自称有宗教信仰(相信人格化的上帝)。

事实上我一直认为无神论本身就是一种信仰,只是无神论者可能自己都不知道。他们对“无神”有着迷之信仰。当年泡利就曾开玩笑嘲讽过坚定的无神论者狄拉克,他说“今天狄拉克创立了一个宗教——无神教,他们的教义是世上没有神,狄拉克是这个宗教的先知。”

当前的科学并不能完全解释一切,有些事情科学还没办法解释清楚。晚年的爱因斯坦和牛顿都投入神学研究是为了探求与科学有所不同的神学。

因为他们同样有这样一个问题:世界的不确定性。有好多的问题我们可以用科学来说明,可有更多的问题他们无法用科学来说明。比喻哈哈36选7为什么每一期不同号啊,为什么会有人买中啊,他们会无言。再者他们都在做引力啊,空间啊,可他们只能用万有引力来说哈哈,他们无法说明引力到底从哪里来啊,如是他们就想啊想,想不出来了哈哈这超越了他们的能力,他们也像我们的祖先一样把这些全归结到一个神学(超自然的,控制自然的,不可说明的力量)。我想有一天也许会有人找出这些答案的,不过不是我们能看到的了。

  • 索引序列
  • 牛顿光学研究论文
  • 牛顿的光学研究对物理的意义论文
  • 牛顿力学论文2000字
  • 牛顿力学对社会科学影响研究论文
  • 爱因斯坦牛顿都研究神学了吗论文
  • 返回顶部