定积分的计算在高中数学中占了一定的内容, 并且是高考内容之一 . 学生对当被积函数比较简单时, 可直接积分求值的计算方法掌握较好 . 但当被积函数较复杂 、 不可直接积分时, 缺少解题方法和技巧 . 寻求最佳的解法, 不仅可以增加学生计算定积分的方法和技巧, 而且还增强了他们的学习兴趣, 引导他们积极思考问题, 培养他们分析问题和解决问 题 的 能 力 . 为 此, 下 面 介 绍 几 种 定 积 分 的 简 单 计 算方法:
参考文献:
微积分的基本思想及其在经济学中的应用
摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用
微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用
微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。
随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确
微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
2.1微分学的基本思想
微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。
2.2积分学的基本思想
积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。
3.微分在经济学中的应用
随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.
3.2弹性分析
在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。
4.积分在经济学中的应用
积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结:
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。
参考文献:
[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.
[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.
[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.
[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.
[15] Elizabeth George Bremigan.Ball State University 2005.An Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus problems.Journal for Research in Mathematics Education,2005Vol.36,No.3:48-277.
[16]Sandra Crespo.Cythia Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by zero.School.
应该是先求原函数,例如x^2的原函数是1/3x^3,再分别将1和0代进去原函数中,用1的结果减去0的结果,就是三分之一了
参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见D.A.Drennen,ed.,AModernIntroductiontoMetaphysics,NewYork:FreePressofGlencoe,1962。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见R.G.Collingwood,AnEssayonMetaphysics,Oxford:ClarendonPress,1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找
不定积分的计算方法:
积分公式法:直接利用积分公式求出不定积分。换元积分法:换元积分法可分为第一类换元法与第二类换元法,第一类换元法通过凑微分,最后依托于某个积分公式。进而求得原不定积分。分部积分法:将所求积分化为两个积分之差,积分容易者先积分。
任何真分式总能分解为部分分式之和。有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和可见问题转化为计算真分式的积分。
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
设函数和u,v具有连续导数,则uv=udv+vdu。移项得到udv=duv-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu 。称公式1为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到
具体回答如图所示:
把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2
扩展资料:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
不定积分的积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
参考资料来源:百度百科——积分公式
一种快速消除彩色图像高脉冲噪声的方法 摘要:针对彩色图像脉冲噪声的分布特性,提出噪声检测和滤波复原的2 步算法。该算法通过长针统计检测技术判断脉冲噪声位置,用 改进适应性中值滤波技术复原图像。实验表明,与已有算法相比,该算法能有效去除彩色图像中的高水平脉冲噪声,噪声密度大于80%时 仍有良好性能,且算法实时性好,适宜于在线处理。 关键词:脉冲噪声;长针统计检测;适应性中值滤波 Method for Fast Denoising High Level Impulse Noises in Color Image ZHANG Ting-li, ZHANG Zhi-hong (School of Information Engineering, Zhengzhou University, Zhengzhou 450001) 【Abstract】Considering the distribution of impulse noises of color images, a two steps algorithm is proposed. The algorithm uses spike statistical detection to detect noise pixels, and rebuilds image using adaptive median filter. Experimental results show that the proposed algorithm works effectively in denosing high level impulse noises although the noise density is higher than 80%, compared with other existing algorithms. It is suitable for online processing tasks, as its lower time-cost. 【Key words】impulse noise; spike statistical detection; adaptive median filter 全息图的数字化频域滤波及数值再现研究 【摘要】采用计算机对普通离轴计算全息图及博奇型修正离轴参考光计算全息图进行数字化滤波操作,可在频域将零级及孪生像消除,从而得到单一的清晰实像或虚像。利用快速傅里叶变换算法计算菲涅耳衍射积分,实现了计算全息图的设计制作、频域滤波、再现过程的全数字化,计算机数值模拟结果表明该方法具有再现图像信噪比高、操作过程简便、计算速度快、灵活性强等特点。 关 键 词计算机制全息图; 傅里叶变换; 数字滤波; 数值再现 中图分类号O438.1 文献标识码A Digital Frequency Filtering and Numerical Reconstruction of Computer Generated Hologram QIU Yu (Students’ Administration Department, Mianyang Normal University Mianyang Sichuan 621000) Abstract Digital filtering method for frequency domain is employed to process conventional and modified off-axis reference beam computer generated holograms, then the spatial spectra of zero order image and one twin image can be eliminated, and single clear virtual image or real image can be reconstructed numerically. In this paper, fast Fourier transform algorithm is used to calculate the Fresnel diffraction integration, and the total digitization of design, fabrication, frequency filtering, and reconstruction procedures are achieved successfully. The numeric simulation by computer shows that this method has some advantages such as high signal-to-noise ratio, convenient operation procedures, fast computing speed, and high flexibility. Key words computer generated hologram; Fourier transform; digital filtering; numerical reconstruction 一种改进的图像自适应非线性滤波方法 摘要: 针对图像的保边光滑问题,分析了Perona2Malik ( PM) 方程的非线性滤波扩散行为,利用保边正则化 思想给出了由一种新的各向异性扩散方程所决定的图像自适应光滑算法. 这种新的各向异性扩散滤波方法 与PM 方程的不同之处在于:扩散系数不是直接来源于图像的梯度幅值,而是在图像梯度模基础上恢复出图 像的边缘信息. 实验结果表明,所提方法对图像边缘的恢复结果要比PM 的方法具有更高的可靠性和准确 性. 关键词: 各向异性扩散;保边光滑;非线性滤波 中图分类号: TN406 文献标识码: A 文章编号: 0253 - 987X(2004) 02 - 0162 - 05 Improvement of Image Adaptive Nonl inear Filtering Zhang Y uanlin , Zheng Nanning , Y uan Zejian (School of Electronics and Information Engineering , Xi′an Jiaotong University , Xi′an 710049 , China) Abstract : Based on the analysis of nonlinear diffusion of Perona2Malik ( PM) equation , a novel nonlinear filter2 ing method is proposed for image smoothing. The idea of edge2preserving regularization is int roduced through a boundary intensity function. Comparing with PM equation , the diffusion coefficient is not obtained f rom the gradient magnitude of the image directly , but the edge information (i. e. boundary intensity function) restored f rom the gradient magnitude based on the mode of the image. Experiment s demonst rate that the proposed ap2 proach has better accuracy and reliability than PM for the result s of edge restoration. Keywords : anisot ri pic dif f usion ; edge2preserving smoothing ; nonlinear f il tering 一种基于FPGA 的图像中值滤波器的硬件实现基于几何矩的抵抗RST攻击的数字图像水印一种自适应中值滤波器算法的FPGA实现基于真实性鉴别的数字图像盲取证技术综述基于彩色分量的数字图像水印基于数字滤波技术的红外焦平面非均匀校正算法
微积分的基本思想及其在经济学中的应用
摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用
微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用
微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。
随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确
微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
2.1微分学的基本思想
微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。
2.2积分学的基本思想
积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。
3.微分在经济学中的应用
随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.
3.2弹性分析
在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。
4.积分在经济学中的应用
积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结:
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。
参考文献:
[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.
[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.
[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.
[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.
[15] Elizabeth George Bremigan.Ball State University 2005.An Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus problems.Journal for Research in Mathematics Education,2005Vol.36,No.3:48-277.
[16]Sandra Crespo.Cythia Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by zero.School.
数学小课题开题报告
在教学中引导学生掌握审题的具体步骤和方法。以下是我J.L为大家分享的2017年关于数学小课题的开题报告范文。
题目:初中数学主体合作学习方式的探究开题报告
一.本选题的意义和价值:
理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。
应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。
通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。
省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。
二 研究内容、目标、思路
什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。
学习方式现状的调查与分析。
目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。
主体合作学习在学习数学中的作用。
高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。
教师在主体合作学习中的角色和地位。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。
如何引导学生合作学习?
引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。
小组学生合作学习评价对象和方法。
评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。
本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。
在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。
研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。
研究方法:
②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。
④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。
⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。
⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。
研究阶段
⑴准备阶段(2015年4月 2015年5月):
⑵实施过程(2015年6月 2015年1月)
根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。
⑶总结阶段(2015年2月 2015年5月)
在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。
课题研究的现实背景和意义:
从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。
可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。
通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。
审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。
概念界定与理论依据
理论依据 :
在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。
课题的实施方案
研究内容
研究农村小学生审题能力弱的原因。
研究农村小学生数学学习审题能力培养方案。
针对学习内容,研究学生审题的方法。
研究农村小学生数学学习审题习惯的培养。
具体的操作措施
研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。
针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。
研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。
在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。
农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。
研究步骤与方法
第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。
方法的选择:
(1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。
(2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。
(4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。
(5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。
研究预期成果和成果形式
(1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。
(2)课题研究报告一份。
我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功!
论文题目:关于泰勒公式的应用
课题研究意义
在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?
通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述
主要内容
Taylor公式的应用
Taylor公式在计算极限中的应用
对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限:
(1)用洛比达法则时,次数较多,且求导及化简过程较繁;
(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;
(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用
有关一般不等式的证明
针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:
(1)写出比最高阶导数低一阶的Taylor公式;
(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明
针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
有关定积分等式的证明
针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。
证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor
余项作适当处理。
Taylor公式在近似计算中的应用
利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。
研究方法
为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。
进度计划
为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。
随着个人素质的提升,需要使用报告的情况越来越多,报告具有成文事后性的特点。写起报告来就毫无头绪?下面是我整理的硕士论文开题报告,仅供参考,欢迎大家阅读。
课题名称:基于信任管理的WSN安全数据融合算法的研究
一、立论依据
课题来源、选题依据和背景情况、课题研究目的、理论意义和实际应用价值。
1、课题来源。
国家自然科学基金资助项目(60873199)。
2、选题依据。
无线传感器网络具有硬件资源(存储能力、计算能力等)有限,电源容量有限,拓扑结构动态变化,节点众多难于全面管理等特点,这些特点给理论研究人员和工程技术人员提出了大量具有挑战性的研究课题,安全数据融合即为其一。虽然目前的研究已经取得了一些成果,但仍然不能满足应用的需求。无线传感器网络是以数据为中心的网络,如何保证其数据融合的安全性还是一个有待解决的问题。基于此,提出了本课题的研究。
3、背景情况。
微电子技术、计算技术和无线通信等技术的进步,推动了低功耗多功能传感器的快速发展,使其在微小体积内能够集成信息采集、数据处理和无线通信等多种功能。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给数据处理中心或基站。传感器网络被广泛的应用于军事、环境监测和预报、健康护理、智能家居、建筑物状态监控、复杂机械监控、城市交通,以及机场、大型工业园区的安全监测等领域。
传感器网络由大量传感器节点组成,收集的信息量大,存在冗余数据。传感器节点的计算能力、存储能力、通信能量以及携带的能量都十分有限,数据融合就是针对冗余数据进行网内处理,减少数据传输量,是减少能耗地重要技术之一。传感器网络中,将路由技术与数据融合技术结合是一个重要的问题。数据融合可以减少数据量,减轻数据汇聚过程中的网络拥塞,协助路由协议延长网络的生存时间。因而可以数据为中心的路由技术中应用数据融合技术。在战场等非可信环境或对可靠性要求非常高的环境中,数据融合也带来了风险。例如,敌人可以俘获节点获取节点中的所有信息,从而完全控制节点的行为,伪造和篡改数据。传统网络中的安全技术需要大量的存储空间和计算量,不适合能量、计算能力、存储空间都十分有限的传感器网络。因此必须设计适合传感器网络具有较强安全性的数据融合技术。
4、课题研究目的。
通过对无线传感器网络安全数据融合技术的研究,消除传感器中存在的、大量冗余数据,有效节省传感器节点能量消耗,延迟节点和网络的工作寿命,在有节点被捕获成为恶意节点情况下,及时检测恶意节点,消除恶意节点发送的恶意数据对数据融合的不良影响,保障了传感器网络数据融合过程的可靠性,维护传感器网络的正常工作。
5、理论意义。
无线传感器网络安全技术的研究涵盖了非常多的研究领域,安全数据融合技术是其中一个重要研究课题。本文把信任管理机制加入到传感器网络安全数据融合过程中,研究设计一种传感器节点信任值的计算方法,有效识别节点状态,实现可靠的数据融合。
6、实际应用价值。
对于工作在敌方环境中的无线传感器网络,传感器节点容易被地方捕获成为恶意节点,节点内存储的密钥等加密暴露,导致传统的基于加密和认证的无线传感器网络安全措施失效,在这种情况下,本研究可以可以及时识别恶意节点,保证传感器网络数据融合的可靠性,有效减少网络负载,延长网络工作寿命。
二、文献综述
国内外研究现状、发展动态;所阅文献的查阅范围及手段。
1、国内外研究现状、发展动态。
传感器网络与众不同的特点导致传感器网络与传统网络有极大不同。传感器网络的安全数据汇聚是要解决加密传输和数据汇聚的协调问题,实现数据的安全处理和传输。传统有线网络和无线网络的安全技术并不适用于传感器网络,这吸引了众多研究人员研究适合传感器网络的安全技术,并且提出了许多适合传感器网络的安全技术。安全数据融合算法是WSN安全性研究的重要方面,一直以来受到研究人员的重视,并取得了一定的研究成果。目前已有的研究成果如下:
(1)PerrigA等人提出了一种有效的WSN数据加密方法和广播认证方法,为WSN安全性研究作出了基础性工作。
(2)CAMH等人提出了一种基于模式码的能量有效安全数据融合算法,算法用簇头节点通过自定义的模式码的选取来组织传感器节的发送冗余数据实现数据融合,并且使用同态加密体重保证了数据在传输过程中的机密性。改方法对于每类数据类型需要保存和维护一个查找表,一旦查找表信息暴露,该安全方案将会失效。
(3)PrzydatekB等人提出的基于数据统计规律的数据融合算法,算法使用高效的`抽样和迭代的证明来保证有多个恶意节点发送错误数据的情况下,保证基站能够判定查询结果的准确性。但是该方法对于每种聚集函数都需要一个复杂的算法,为证明数据准确性,聚集节点需向基站发送大量参数,能量消耗太大。
(4)MahimkarA等人研究在WSN中使用椭圆曲线密码实现数据加密和安全数据融合。但是在传感器节的十分有限的情况下,使用公钥密码体系使节点能量消耗更加迅速,缩短网络的寿命。
WSN的信任管理是在WSN管理的基础上提出的,主要研究对节点进行信任值评估,借助信任值增强WSN的安全性。传统的基于密码体系的安全机制,主要用来抵抗外部攻击。假如节点被捕获,节点存储的密钥信息将泄漏,使密码体系失效。WSN信任管理作为密码体系的补充可以有效的抵抗这种内部攻击。将信任管理同WSN的安全构架相结合,可以全面提高WSN各项基础支撑技术的安全性和可靠性。
近年来,WSN信任管理受到了越来越多的关注,取得了一定的研究成果。
(1)Ganeriwal等人提出的RFSN是一个较为完整的WSN信任管理系统,该模型使用直接信息和坚决信息来更新节点的信誉,节点根据得到的信誉信息来选择是否和其他节点合作。可以建立仅由可信节点组成的网络环境。
(2)Garth等人中将信任管理用于簇头选举,采取冗余策略和挑战应答手段,尽可能的保证选举出的簇头节点为可信节点。
(3)Krasniewski提出了TIBFIT算法将信任用于WSN容错系统,把信任度作为一个参数融入到数据融合的过程中,提高对感知事件判断的准确率,其提出的信任度计算方法比较的简单。
无线传感器网络需要采取一定的措施来保证网络中数据传输的安全性。就目前的研究来看,对无线传感器网络安全数据融合技术和信任管理机制都取得了一些研究成果,但是如何使用信任管理机制保证安全的数据融合的研究并不多见,许多问题还有待于进一步深入研究。
2、所阅文献的查阅范围及手段。
充分利用校内图书馆资源、网络资源以及一些位于科技前沿的期刊学报。从对文献的学习中掌握足够的理论依据,获得启发以用于研究。
三、研究内容
1、研究构想与思路。
在本项目前期工作基础上建立WSN三级簇结构模型,节点分为普通节点,数据融合节点(免疫节点),簇头节点。在常规加密算法的基础上完成节点身份认证,通过消息认证码或数字水印技术保证传感器节点传送数据的真实性。上级节点保存下级节点的信任值,信任度的计算建立在传送数据的统计分析之上。节点加入网络后先初始化为一定的信任值,每轮数据发送时,接收节点收集数据后,量化数据的分布规律,主要包括单个节点历史数据分布规律和节点间数据差异的分析,确定数据分布模型(如正态分布、beta分布等),建立计算模型以确定节点间的信任值。信任值确定后,数据融合节点将普通节点按照不同的信任度进行分类,选取可信节点传送的数据按查询命令进行数据融合,将结果传送到簇头。簇头同样计算融合节点的信任度,保证数据融合节点的可靠性,计算最终数据查询结果,使用Josang信任模型给出结果的评价。各数据融合节点之间保持通信,通过对比数据的一致性确保簇头节点的可靠。
2、主要研究内容。
(1)设计有效的节点信任值计算方法,网络工作一段时间后,所有正常节点具有较高信任度,异常节点具有较低信任度,可初步判定为恶意节点。
(2)当融合节点或簇头节点发生异常时能及时发现异常,并上报基站。
(3)过滤异常数据和恶意数据,尽量减少因节点被捕获而对感知数据结果造成的影响。
(4)计算最终数据融合结果并且对最终数据融合结果做出评价来反映该结果的的可靠程度,供基站参考。
(5)进行算法的能量分析。
3、拟解决的关键技术。
(1)建立WSN一个簇内数据传送的三层簇结构模型,节点密集部署。
(2)模拟工作过程中节点被捕获成为恶意节点,恶意节点可能发送和真实数据差别较大的数据,也能发送和真实数据差别不大但会影响融合结果的数据。
(3)计算并更新传感器节点的信任值,分析信任值的有效性。
(4)记录各节点传送数据值,并与实际值进行比较,分析融合数据的准确性。测试当有较多节点被捕获时算法的工作效果。
4、拟采取的研究方法。
查阅国内外大量有关无线传感器网络数据融合技术和信任管理技术方面的文献,分析当前无线传感器网络安全领域的发展现状与未来。借鉴在该领域已经取得的研究成果和经验,系统而深入的研究在无线传感器网络数据融合中使用信任管理机制的主要问题。通过对已有的安全数据融合技术进行总结和分析,结合无线传感器网络自身的特点,设计出一种基于信任管理的无线传感器网络安全数据融合算法。
5、技术路线。
本课题尝试使用信任管理机制来保障在无线传感器网络中实现安全的数据融合,在现有的对无线传感器网络安全数据融合技术的研究基础上,与信任管理技术相结合,期望能够对传感器网络安全数据融合提出有效的解决方案。针对课题中的技术难点,通过查阅资料、向导师请教以及与项目组同学讨论的形式来解决。
6、实施方案。
(1)在Windows平台下使用omnet++进行仿真实验。
(2)建立无线传感器网络一个簇内数据传送的三层结构模型,节点密集部署。
(3)模拟无线传感器网络受到攻击时时的数据发送,根据数据统计规律计算和更新节点信任值。
(4)把节点按信任值分类,检测识别恶意节点。
(5)根据节点信任值选择有效数据完成数据融合。
7、可行性分析。
(1)理论知识积累:通过广泛阅读无线传感器网络数据融合技术方面的文献形成了一定量的理论知识储备,为课题的研究奠定基础。
(2)技术积累:熟悉OMNeT++网络仿真软件,具有一定的C++编程能力。
(3)技术合作:研究过程中遇到难以解决的问题时,可以向指导老师请教解决问题的基本思路。对项目相关课题有疑问时,可以向项目组同学请教。对实验平台的建立及使用有疑问时,可以和项目组同学共同讨论解决。
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。
你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
参考资料:百度百科-二重积分
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。
你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。
二重积分计算方法:化为二次积分。
1、直角坐标系中
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为,
由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。
①X型区域
设积分区域是由两条直线x=a,x=b(a
特点:穿过D内部且平行于y轴的直线,与D的边界交点数不多于两点。
如图,对任意取定的x0∈[a,b],过点(x0,0,0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面是以区间 为底,z=f(x0,y)为曲边的曲边梯形。
由于x0的任意性,这一截面的面积为 。
其中y是积分变量在积分过程中视x为常数。上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到:
②Y型区域
积分区域 称为Y型区域。
特点:穿过D内部且平行于x轴的直线,与D的边界交点数不多于两点。
称D为Y型区域,此时可采用先对x,后对y积分的积分次序,将二重定积分化为累次积分:
2、在极坐标中
有许多二重积分仅仅依靠直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为 等形式时,采用极坐标会更方便。
在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,
设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为 ,可得到二重积分在极坐标下的表达式:
扩展资料
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
参考资料:百度百科-二重积分
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备