首页 > 期刊投稿知识库 > 相机成像原理毕业论文

相机成像原理毕业论文

发布时间:

相机成像原理毕业论文

照相机的成像原理是:

照相机的镜头相当于一个凸透镜,来自物体的光经过照相机的镜头后会聚在胶片上,成倒立、缩小的实像。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。数码相机正是使用了感光器件,将光信号转变为电信号,再经模/数转换后记录于存储卡上的。

和眼睛一样有各种东西 传统相机成像过程:

相机成像原理相机 数码 发展史 组成 成像原理 一、发展史 照相机发展的第一阶段:从1839年至1924年:曝光时间长图像不清晰。其中比较重大的事件有:1861年物理学家马克斯威发明了世界上第一张彩色照片;1866年德国化学家肖特与光学家阿具在蔡司公司发明了钡冕光学玻璃,产生了正光摄影镜头;1888年美国柯达公司生产出了新型感光材料--柔软、可卷绕的“胶卷”;同年,柯达公司发明了世界上第一台安装胶卷的可携式方箱照相机。第二阶段:从1925年至1938年:黑白感光胶片的感光度、分辨率和宽容度不断提高;彩色感光片开始推广。其中比较重大的事件有:1935年,德国出现了埃克萨克图单镜头反光照相机,使调焦和更换镜头更加方便;为了使照相机曝光准确,1938年柯达照相机开始装用硒光电池曝光表。 第三个阶段:从1939至今:小巧化、自动化、电子化。其中比较重大的事件有:1956年,联邦德国首先制成自动控制曝光量的电眼照相机 ;1960年以后,照相机开始采用了电子技术,出现了多种自动曝光形式和电子程序快门;1975年以后,照相机的操作开始实现自动化。 二、数码相机的组成 以前一般相机的基本组成: 1)镜头 镜头使景物成倒象聚焦在胶片上。为使不同位置的被摄物体成象清晰,除镜头本身需要校正。 2)取景器 为了确定被摄景物的范围和便于进行拍摄构图,照相机都应装有取景器。现代照相机的取景器还带有测距、对焦功能。 3)快门和光圈 为了适应亮暗不同的拍摄对象,以期在胶片上获得正确的感光量,必须控制曝光时间的长短和进入镜头光线的强弱。于是照相机必须设置快门以控制曝光时间的长短,并设置光圈通过光孔大小的调节来控制光量。4)输片计数机构 为了准备第二次拍摄,曝光后的胶片需要拉走,本曝光的胶片要拉过来,因此现代照相机需要有输片机构。为了指示胶片已拍摄的张数,就需要有计数机构。5)机身 它既是照相机的暗箱,又是照相机各组成部分的结合体。可用框图表示照相机的最基本组成部分。 当今的数码相机是由镜头、CCD、A/D(模/数转换器)、MPU(微处理器)、内置存储器、LCD(液晶显示器)、PC卡(可移动存储器)和接口(计算机接口、电视机接口)等部分组成,通常它们都安装在数码相机的内部,当然也有一些数码相机的液晶显示器与相机机身分离。 三、成像原理 对胶片相机而言,景物的反射光线经过镜头的会聚,在胶片上形成潜应影,这个潜影是光和胶片上的乳剂产生化学反应的结果。再经过显影和定影处理就形成了影像。数码相机是通过光学系统将影像聚焦在成像元件CCD/ CMOS 上,通过A/D转换器将每个像素上光电信号转变成数码信号,再经DSP处理成数码图像,存储到存储介质当中。 四、总结 相机的了解有助于我们对图像的形成过程的理解,从可以想到控制某些因素来控制图像的各种特征。(补充一下 照相机成像的原理简单的说就是在我们初中物理所学的知识 凸透镜 凹透镜 )

照相机的成像原理是:照相机的镜头相当于一个凸透镜,来自物体的光经过照相机的镜头后会聚在胶片上,成倒立、缩小的实像。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。数码相机正是使用了感光器件,将光信号转变为电信号,再经模/数转换后记录于存储卡上的。和眼睛一样有各种东西 传统相机成像过程:1.经过镜头把景物影象聚焦在胶片上2.胶片上的感光剂随光发生变化3.胶片上受光后变化了的感光剂经显影液显影和定影 形成和景物相反或色彩互补的影象 数码相机成像过程:1.经过镜头光聚焦在CCD或CMOS上2.CCD或CMOS将光转换成电信号3.经处理器加工,记录在相机的内存上4.通过电脑处理和显示器的电光转换,或经打印机打印便形成影象。具体过程: 数码相机是通过光学系统将影像聚焦在成像元件CCD/ CMOS 上,通过A/D转换器将每个像素上光电信号转变成数码信号,再经DSP处理成数码图像,存储到存储介质当中。 光线从镜头进入相机,CCD进行滤色、感光(光电转化),按照一定的排列方式将拍摄物体“分解”成了一个一个的像素点,这些像素点以模拟图像信号的形式转移到“模数转换器”上,转换成数字信号,传送到图像处理器上,处理成真正的图像,之后压缩存储到存储介质中。景物的反射光线经过镜头的会聚,在胶片上形成潜应影,这个潜影是光和胶片上的乳剂产生化学反应的结果。再经过显影和定影处理就形成了影像。摄象头的数码影像和胶片成像原理不同,是经过镜头成像在CCD上,经过CCD的光电转换,生成视频信号,再经过显示屏电光转换,才生成图像。编辑于 2018-03-30查看全部23个回答基恩士中国_智能工业相机_视觉系统资料免费下载根据照相机相关内容为您推荐工业相机KEYENCE视觉系统,智能工业相机,高速大容量智能型,精密识别文字可快速启动长期运用,解决机器视觉的多种问题。更多详情立即咨询基恩士中国有限公司广告什么牌子的体视显微镜好?选择这款体视显微镜,点击获取详情厂家直销双目显微镜立体显微镜体视显微镜7180倍实体显微镜¥750 元工厂直销45B11双目体视显微镜、45倍体视显微镜、立体光学显微镜¥1100 元XTL体视显微镜¥2680 元供应SZ系列连续变倍体视显微镜双目体式显微镜单目体式显微镜¥3250 元体视显微镜¥1299 元1688广告更多专家照相机的成像原理专家1对1在线解答问题5分钟内响应 | 万名专业答主马上提问最美的花火 咨询一个电子数码问题,并发表了好评lanqiuwangzi 咨询一个电子数码问题,并发表了好评garlic 咨询一个电子数码问题,并发表了好评188****8493 咨询一个电子数码问题,并发表了好评篮球大图 咨询一个电子数码问题,并发表了好评动物乐园 咨询一个电子数码问题,并发表了好评AKA 咨询一个电子数码问题,并发表了好评3条评论生命中的唯一00716查看全部3条评论— 你看完啦,以下内容更有趣 —五镜头相机高性价比航测相机,易用高效低成本赛尔五镜头专注航测,为五镜头相机用户提供一站式解决方案。产品操作简单易上手五镜头相机广告2021-11-25照相机的成像原理是什么?7赞·1播放照相机的工作原理?相机其实就是利用了凸透镜的成像原理。一个凸透镜,设焦距为f(凸透镜能汇聚光线,光线汇聚的一点叫做焦点,焦点到凸透镜中心的距离就是焦距),物距(物体到凸透镜中心的距离)为u,那么,当u>2f时,在凸透镜的另一边,放置一个不透明物体,物理学上称之为光屏,就能在光屏上得到一个与实物相同的像,但这个像是倒立并且缩小的。 相机就是这样的原理。传统相机前面会有一个凸透镜,就是我们说的镜头,这个凸透镜起到上面所说的作用。凸透镜的后面是暗室,暗室中放底片,底片上涂有感光物质。底片在暗室中,由于密封无光,所以不感光。当按下快门的一瞬间,快门打开,光经过凸透镜后进入暗室,在底片上成一个倒立缩小的像。快门开合的速度很快,最快的达到二千分之一秒完成。专业相机还可以控制快门开合的时间,让底片曝光久一点,达到自己想要的效果。 由于照相机用的凸透镜焦距比较小,所以总能使被拍照物体在二倍焦距以外,底片上总能形成一个倒立缩小的像。 傻瓜相机、数码相机和专业相机又有不同之处。傻瓜机只有一个凸透镜,并且不能调曝光时间,什么都不用设置,名副其实是傻瓜都能用的相机。但这样的话就拍摄不出专业效果。 数码相机与传统相机的不同之处是,把底片换成了ccd。ccd是一种电子元件,当有光照射在上面时就能转换成电信号,当镜头把物体成像在ccd上面时,ccd就转换成电信号,一按快门就是把当前的相片保存下来。 专业相机一般也用底片,但其专业之处是在快门、光圈和镜头上。专业相机可控制快门的开合时间,使底片曝光久一点或少一点。光圈是控制外面的光进入暗室的强度,当外界光很强的时候,如果用傻瓜机拍摄,就会令相片很亮,以致看不清,但专业相机可以控制光圈使底片曝光强度减低。专业相机的镜头并不是单单的一个凸透镜,而是一组凸透镜,可以控制这些凸透镜的距离来调整焦距,总能使底片上的像最清晰。也可以在镜头上安装广角镜、滤色镜的仪器,广角镜使拍摄的范围更广,滤色镜使相片的颜色更好。例如,拍摄一张风景画,你想让底片中的绿色多一点,能有更浓烈的色彩效果,就在镜头上安装一个绿色的滤色镜,使更多的绿色光通过镜头。 上面所说的小孔成像不能应用于相机上也是不对的。由于光的直线传播,如果在一个不透明物体上戳一个孔,比这个孔大的物体反射的光就不能水平通过这个孔,而是物体上部的光往下穿过小孔,下部的光往上穿过小孔,在另一边放置一个光屏,就能得到一个倒立的像。所以,小孔在一定程度上也可以充当凸透镜。 这些就是用小孔成像原理拍摄出来的相片。17赞·2,918浏览2019-08-19照相机的成像原理是什么1、取景:光线(影像)通过镜头,投射到45度安放的反光镜上,折射到机顶的五菱镜,再通过五菱镜的两次折射,投射到取景目镜。拍摄者即通过目镜看到了与实物一样的正立的影像。 2、拍摄:摄者按下快门,反光镜向上翻起,打开镜头通向胶片(或CCD或CMOS)的光通路,反光镜同时将通向五菱镜的光路遮挡,防止杂光反向通过目镜进入相机影响成像。此时光圈收缩到预设值,快门打开,影像记录介质记录影像,快门关闭,光圈回到最大,反光镜回位,准备下一次的取景、拍摄。 单反相机中,胶片单反和数码单反的原理相同,仅是记录影像的介质不同。当然因为记录的介质不同了,其结构也有了较大的区别。 上述仅仅描述了单反相机的光线轨迹,还有一些如光圈的动作、快门的控制、闪光灯的控制、测光及曝光的组合、测距调焦等等,无法在此一一描述。 有双反相机。就如国产的海鸥4A、4B等就是,以前人们俗称的“方镜箱”就是。 双反相机采用两个镜头,上下安置,一般上面镜头取景,下面镜头拍摄。因其未装置五菱镜,故摄者取景时看到的影像是上下、左右颠倒的,取景时的操作会感到不方便。 另外,由于双反相机用两个镜头分开取景和拍摄,故会产生一个“视差”问题,即摄者看到的影像范围,并非是拍摄记录到范围。而单反相机就比较彻底的解决了这个问题,因其通过一个镜头完成取景、拍摄,基本做到了“所见即所得”,也是单反得到了飞速发展的其中一个原因。 还有一种叫“旁轴”的相机,其通过机身上一个专用的取景窗取景,镜头记录影像。因其也不是通过一个镜头完成取景和拍摄,即同样存在“视差”的问题。 这样可以么?5赞·83浏览2020-05-07照相机的成像原理 — 找答案,就来「问一问」3064位专家解答5分钟内响应 | 万名专业答主照相机成像的原理是什么 越简单越好 通俗易懂一点1.照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。光圈通过口径大小来控制进光量的大小,快门通过开启速度控制曝光时间长短,两者结合来控制曝光。胶卷上涂着一层感光物质在感光的情况下通过卤化银(感光胶片的主要成分)的光化学反应产生明暗变化来记录影像,经过显影、定影后成为底片,用底片洗印就得到相片。 2.数码相机只是把感光胶片换成了感光元件CCD或CMOS, 光线透过镜头投射到感光元件表层,光线被感光元件表层上滤镜分解成不同的色光; 色光被各滤镜相对应的感光单元感知,并产生不同强度的模拟电流信号,再由感光元件的电路将这些信号收集起来; 模拟信号通过数模转换器转换成为数字信号,再由影像处理器对这些信号进行处理,然后再被传输到存储卡上保存起来。13赞·951浏览2016-08-17数码相机成像原理是什么?照相机的成像原理是什么?501浏览2020-02-12高光谱成像相机_OptTrace品牌_M300高光谱_1.4nm分辨率opttrace.com广告高光谱成像设备技术,植物表型平台-谷丰光电根据文中提到的成像原理为您推荐点击咨询了解更多详情咨询greenpheno.com广告正在加载照相机的成像原理是:照相机的镜头相当于一个凸透镜,来自物体的光经过照相机的镜头后会聚在胶片上,成倒立、缩小的实像。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。数码相机正是使用了感光器件,将光信号转变为电信号,再经模/数转换后记录于存储卡上的。和眼睛一样有各种东西 传统相机成像过程:1.经过镜头把景物影象聚焦在胶片上2.胶片上的感光剂随光发生变化3.胶片上受光后变化了的感光剂经显影液显影和定影 形成和景物相反或色彩互补的影象 数码相机成像过程:1.经过镜头光聚焦在CCD或CMOS上2.CCD或CMOS将光转换成电信号3.经处理器加工,记录在相机的内存上4.通过电脑处理和显示器的电光转换,或经打印机打印便形成影象。具体过程: 数码相机是通过光学系统将影像聚焦在成像元件CCD/ CMOS 上,通过A/D转换器将每个像素上光电信号转变成数码信号,再经DSP处理成数码图像,存储到存储介质当中。 光线从镜头进入相机,CCD进行滤色、感光(光电转化),按照一定的排列方式将拍摄物体“分解”成了一个一个的像素点,这些像素点以模拟图像信号的形式转移到“模数转换器”上,转换成数字信号,传送到图像处理器上,处理成真正的图像,之后压缩存储到存储介质中。景物的反射光线经过镜头的会聚,在胶片上形成潜应影,这个潜影是光和胶片上的乳剂产生化学反应的结果。再经过显影和定影处理就形成了影像。摄象头的数码影像和胶片成像原理不同,是经过镜头成像在CCD上,经过CCD的光电转换,生成视频信号,再经过显示屏电光转换,才生成图像。编辑于 2018-03-30查看全部23个回答基恩士中国_智能工业相机_视觉系统资料免费下载根据照相机相关内容为您推荐工业相机KEYENCE视觉系统,智能工业相机,高速大容量智能型,精密识别文字可快速启动长期运用,解决机器视觉的多种问题。更多详情立即咨询基恩士中国有限公司广告什么牌子的体视显微镜好?选择这款体视显微镜,点击获取详情厂家直销双目显微镜立体显微镜体视显微镜7180倍实体显微镜¥750 元工厂直销45B11双目体视显微镜、45倍体视显微镜、立体光学显微镜¥1100 元XTL体视显微镜¥2680 元供应SZ系列连续变倍体视显微镜双目体式显微镜单目体式显微镜¥3250 元体视显微镜¥1299 元1688广告更多专家照相机的成像原理专家1对1在线解答问题5分钟内响应 | 万名专业答主马上提问最美的花火 咨询一个电子数码问题,并发表了好评lanqiuwangzi 咨询一个电子数码问题,并发表了好评garlic 咨询一个电子数码问题,并发表了好评188****8493 咨询一个电子数码问题,并发表了好评篮球大图 咨询一个电子数码问题,并发表了好评动物乐园 咨询一个电子数码问题,并发表了好评AKA 咨询一个电子数码问题,并发表了好评3条评论生命中的唯一00716查看全部3条评论— 你看完啦,以下内容更有趣 —五镜头相机高性价比航测相机,易用高效低成本赛尔五镜头专注航测,为五镜头相机用户提供一站式解决方案。产品操作简单易上手五镜头相机广告2021-11-25照相机的成像原理是什么?7赞·1播放照相机的工作原理?相机其实就是利用了凸透镜的成像原理。一个凸透镜,设焦距为f(凸透镜能汇聚光线,光线汇聚的一点叫做焦点,焦点到凸透镜中心的距离就是焦距),物距(物体到凸透镜中心的距离)为u,那么,当u>2f时,在凸透镜的另一边,放置一个不透明物体,物理学上称之为光屏,就能在光屏上得到一个与实物相同的像,但这个像是倒立并且缩小的。 相机就是这样的原理。传统相机前面会有一个凸透镜,就是我们说的镜头,这个凸透镜起到上面所说的作用。凸透镜的后面是暗室,暗室中放底片,底片上涂有感光物质。底片在暗室中,由于密封无光,所以不感光。当按下快门的一瞬间,快门打开,光经过凸透镜后进入暗室,在底片上成一个倒立缩小的像。快门开合的速度很快,最快的达到二千分之一秒完成。专业相机还可以控制快门开合的时间,让底片曝光久一点,达到自己想要的效果。 由于照相机用的凸透镜焦距比较小,所以总能使被拍照物体在二倍焦距以外,底片上总能形成一个倒立缩小的像。 傻瓜相机、数码相机和专业相机又有不同之处。傻瓜机只有一个凸透镜,并且不能调曝光时间,什么都不用设置,名副其实是傻瓜都能用的相机。但这样的话就拍摄不出专业效果。 数码相机与传统相机的不同之处是,把底片换成了ccd。ccd是一种电子元件,当有光照射在上面时就能转换成电信号,当镜头把物体成像在ccd上面时,ccd就转换成电信号,一按快门就是把当前的相片保存下来。 专业相机一般也用底片,但其专业之处是在快门、光圈和镜头上。专业相机可控制快门的开合时间,使底片曝光久一点或少一点。光圈是控制外面的光进入暗室的强度,当外界光很强的时候,如果用傻瓜机拍摄,就会令相片很亮,以致看不清,但专业相机可以控制光圈使底片曝光强度减低。专业相机的镜头并不是单单的一个凸透镜,而是一组凸透镜,可以控制这些凸透镜的距离来调整焦距,总能使底片上的像最清晰。也可以在镜头上安装广角镜、滤色镜的仪器,广角镜使拍摄的范围更广,滤色镜使相片的颜色更好。例如,拍摄一张风景画,你想让底片中的绿色多一点,能有更浓烈的色彩效果,就在镜头上安装一个绿色的滤色镜,使更多的绿色光通过镜头。 上面所说的小孔成像不能应用于相机上也是不对的。由于光的直线传播,如果在一个不透明物体上戳一个孔,比这个孔大的物体反射的光就不能水平通过这个孔,而是物体上部的光往下穿过小孔,下部的光往上穿过小孔,在另一边放置一个光屏,就能得到一个倒立的像。所以,小孔在一定程度上也可以充当凸透镜。 这些就是用小孔成像原理拍摄出来的相片。17赞·2,918浏览2019-08-19照相机的成像原理是什么1、取景:光线(影像)通过镜头,投射到45度安放的反光镜上,折射到机顶的五菱镜,再通过五菱镜的两次折射,投射到取景目镜。拍摄者即通过目镜看到了与实物一样的正立的影像。 2、拍摄:摄者按下快门,反光镜向上翻起,打开镜头通向胶片(或CCD或CMOS)的光通路,反光镜同时将通向五菱镜的光路遮挡,防止杂光反向通过目镜进入相机影响成像。此时光圈收缩到预设值,快门打开,影像记录介质记录影像,快门关闭,光圈回到最大,反光镜回位,准备下一次的取景、拍摄。 单反相机中,胶片单反和数码单反的原理相同,仅是记录影像的介质不同。当然因为记录的介质不同了,其结构也有了较大的区别。 上述仅仅描述了单反相机的光线轨迹,还有一些如光圈的动作、快门的控制、闪光灯的控制、测光及曝光的组合、测距调焦等等,无法在此一一描述。 有双反相机。就如国产的海鸥4A、4B等就是,以前人们俗称的“方镜箱”就是。 双反相机采用两个镜头,上下安置,一般上面镜头取景,下面镜头拍摄。因其未装置五菱镜,故摄者取景时看到的影像是上下、左右颠倒的,取景时的操作会感到不方便。 另外,由于双反相机用两个镜头分开取景和拍摄,故会产生一个“视差”问题,即摄者看到的影像范围,并非是拍摄记录到范围。而单反相机就比较彻底的解决了这个问题,因其通过一个镜头完成取景、拍摄,基本做到了“所见即所得”,也是单反得到了飞速发展的其中一个原因。 还有一种叫“旁轴”的相机,其通过机身上一个专用的取景窗取景,镜头记录影像。因其也不是通过一个镜头完成取景和拍摄,即同样存在“视差”的问题。 这样可以么?5赞·83浏览2020-05-07照相机的成像原理 — 找答案,就来「问一问」3064位专家解答5分钟内响应 | 万名专业答主照相机成像的原理是什么 越简单越好 通俗易懂一点1.照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。光圈通过口径大小来控制进光量的大小,快门通过开启速度控制曝光时间长短,两者结合来控制曝光。胶卷上涂着一层感光物质在感光的情况下通过卤化银(感光胶片的主要成分)的光化学反应产生明暗变化来记录影像,经过显影、定影后成为底片,用底片洗印就得到相片。 2.数码相机只是把感光胶片换成了感光元件CCD或CMOS, 光线透过镜头投射到感光元件表层,光线被感光元件表层上滤镜分解成不同的色光; 色光被各滤镜相对应的感光单元感知,并产生不同强度的模拟电流信号,再由感光元件的电路将这些信号收集起来; 模拟信号通过数模转换器转换成为数字信号,再由影像处理器对这些信号进行处理,然后再被传输到存储卡上保存起来。13赞·951浏览2016-08-17数码相机成像原理是什么?照相机的成像原理是什么?501浏览2020-02-12高光谱成像相机_OptTrace品牌_M300高光谱_1.4nm分辨率opttrace.com广告高光谱成像设备技术,植物表型平台-谷丰光电根据文中提到的成像原理为您推荐点击咨询了解更多详情咨询greenpheno.com广告正在加载

医学影像成像原理的认识论文

医学影像学论文

随着社会的快速发展,人们对医学技术的要求标准也越来越高,影像诊断技术作为现代医学领域中的一门重要学科,必须随着社会的发展而不断的更新完善。以下内容是我为您精心整理的医学影像学论文,欢迎参考!

医学影像技术学实验教学改革

【摘要】

医学影像技术学是医学领域中的一门重要的基础性学科,同时也是一门较强的实践性学科。但是由于教育条件的限制,现在很多高校的医学影像技术学教学手段都还停留于单纯的理论授课方式,对于学生的实践能力培养不够全面。基于此,本文我们的主要研究重点就是关于医学影像技术学的改革问题,了解当前教学模式中存在的主要问题,从而有针对性的提出具体的解决措施,以有效的提高医学影像技术学的教学效果。

【关键词】 医学影像技术学;实验教学;改革创新;分析研究

随着社会的快速发展,人们对医学技术的要求标准也越来越高,影像诊断技术作为现代医学领域中的一门重要学科,必须随着社会的发展而不断的更新完善。在这样的严酷现实之下,我们对医学影像技术学的实验教学模式提出了更高的标准,教学模式必须要打破传统的常规模式,向着更加科学化、数字化和信息化的方向发展。

一、医学影像实验教学的特殊性

医学影像技术学是一门基础性的医学科目,其在医学领域中具有着重要的地位,对于学生将来更好的适应岗位需求具有着决定性的作用。总的来说,医学影像实验教学的特殊性主要表现在以下几个方面:

1.实践应用性强。

他是一门实践性非常强的学科,单纯的理论学习并不能够让学生充分的掌握技术的要求,必须要通过有效的实验课程,让学生将理论知识与实际操作相结合,提高动手能力和临床工作能力。

2.新技术推广应用快、广。

医学影像技术学是医学中的新兴学科,它的发展速度非常的快,科研究的领域与空间十分的广,每当有新的技术手段被应用到临床医疗之中的时候,实验教学都必须要紧跟其步伐,避免出现于临床脱节的现象。

3.和其他学科联系较多。

医学影像学技术是其他多种临床疾病诊断的重要依据,它与其他的学科之间存在很多的联系。因此对于医学影像学的实验教学不仅要让学生学会操作的技能,而且还要学会应对各种疾病检查的方法。

二、当前医学影像技术学实验教学模式存在的主要问题

医学影像技术学有其独特的特殊性,因此对此的学习也应该具有针对性。但是就当前医学院校的教学实际来看,很多的学校在这一学科的教学模式上还存在着很多的不足,归纳来看主要可以归结为以下几个方面:

1.实验大纲与实验教材相对滞后。

近年来,随着医学影像技术的飞速发展,很多的技术和设备都发生了巨大的变化,但是目前国内的高校使用书籍中并没有一些新技术、新理论的内容,对于医学影像技术学方面的实验指导也非常的少,涉及的新技术方面非常的窄,甚至一些教材中仍然沿用已经淘汰的技术教材,这对于学生的学习产生了很大的负面影响。

2.实验课学时相对较短。

医学影像技术学是一门实践性非常强的学科,对于他的学习主要应该采用实验教学的方式,但是由于受传统教学模式的影响,当前很多高校对于这门课程的教学模式采用的还是纯理论授课的方式,对于实验教学的课时安排的相对较少,这使很多学生虽然学到了理论知识,但却不能够切实的应用到实际之中,造成他们的岗位适应能力差。

3.实验教学手段单一落后。

以往我们的医学影像技术学实验课主要是在实验室进行的,但是由于实验室的教学条件有限,能够联系的实验内容也就不充足,一般只能够进行一些基础性的实验实践,对于当前临床医学中常用的大型数字化的设备认识不足。

三、医学影像技术学实验教学改革的措施

随着社会的发展进步,人们对医疗水平的要求越来越高,医学影像技术学作为医疗诊断方式中的重要方式其在医疗领域中的应用越来越广,总的来说,根据当前的教学实际,进行医学影像技术学实验教学改革的措施主要可以分为以下几点:

1.学习实践活动多样化,注重在训练中学习医学影像技术。

医学影像技术的学习不是纯理论的,实验教学也具有着非常重要的地位。因此今后教学改革的方向之一就是要加强实践教学的改革,不断的引进先进的设备技术,充实教育资源,让学生能够及时的了解最新的技术手段,从而有效的提高实际操作技能。

2.注重人才的'引进,加强实验教学人员队伍建设。

师资能力的不足是当前影像教学效果的主要原因之一,原来一名实验教学需要带一个班级的学生,这大大的增加了教师的工作量,也弱化了对学生的时时指导强度。通过人才引进培养的方式,加强实验教学人员的队伍建设,提高实际的教学人数可以大大的改善教学的环境,让学生更加充分的享受教师资源。

3.健全实验教学教材和资料库。

随着一系列的改革发展,我们要根据技术发展的实际,不断的将最新的医学影像技术编撰到教材用书之中,让学生及时的了解当前的技术形式,从而更好的掌握技术能力。同时我们也要逐步的完善资料库,保证每一个学生都有充足的资料来源。

结语

综上所述,医学影像学实验教学有其独特的特殊性,这决定了它需要不断的进行发展,根据当前各医学高校的实际教学情况,结合临床实际需求和医学影像技术的新进展,不断的进行实验教学改革,为学生走上临床工作岗位打下坚实的基础。

参考文献:

[1]汪百真,俞曼华,张俊祥,曹明娜.医学影像检查技术学实验课程的改革与创新[J].蚌埠医学院学报,2013,07:919-921.

[2]王惠方,梁长华,杨瑞民,陈杰,岳巍,刘儒鹏.医学影像诊断学实验教学模式改革[J].中国医药指南,2013,21:774-775.

[3]邱建峰,谢晋东,王晓燕,王鹏程,侯庆峰.医学影像物理学(医学影像成像理论)教学与实验改革的探讨[J].中国医学物理学杂志,2008,03:700-702.

[4]陈晓光,任伯绪,柯茜茜,陈奕.医学影像技术学实验教学的改革与实践[J].中国高等医学教育,2011,11:55-56+69.

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

1.1 图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

1.2 图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

1.3 图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

2.1 数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

2.2 提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

2.3 加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

2.4 实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

摇头机摄像头的结构原理毕业论文

景物通过镜头( LENS )生成的光学图像投射到图像传感器(SENSOR)表面,然后转为电信号,经过 A/D (模数转换)转换后变成数字图像信号,再送到数字信号处理芯片( DSP )中加工处理,再通过数据总线传输到手机中的System LSI进行处理,最后通过LCD就可以看到图像了。 CCD结构一般分为三层:LENS、分色滤光片、感光层(sensor) 第一层“LENS” CAMERA的成像关键在于SENSOR,为了扩大CCD的采光率必须扩大单一像素的受光面积,在提高采光率的同时会导致画面质量下降。LENS就是相当于在SENSOR前面增加一副眼镜,SENSOR的采光率不是由SENSOR的开口面积决定而是由LENS的表面积决定。 第二层“分色滤色片” 目前分色滤色片有两种分色方法: A. RGB原色分色法,就是三原色分色法,几乎所有的人类眼镜可以识别的颜色都可以通过R、G、B来组成,RGB就是通过这三个通道的颜色调节而成。 B. CMKY补色分色法,由四个通道的颜色配合而成,分别是青(C)、洋红(M)、黄(Y)、黑(K),但是调节出来的颜色不如RGB的颜色多。 第三层“感光层(SENSOR)” CCD的第三层是SENSOR,SENSOR主要是将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片(DSP),将影像还原。 光是一种波,可见光只是整个光波中的一段。Lens就是一个能够截止不可见光波,而让可见光通过的带通滤波器。一般CAMERA的镜头结构是由几片透镜组成,分忧塑胶透镜(PLASTIC)和玻璃透镜(GLASS),如1G3P、2G2P、4G等。 3)SENSOR(图像传感器) 图像传感器(SENSOR)是一种半导体芯片,器表面包含有几十万到几百万的光电二极管。光电二极管收到光照射时,就会产生电荷。 目前SENSOR类型有两种: CCD(Charge Couple Device),电荷耦合器件 CMOS(Complementary Metal Oxide Semiconductor),互补金属氧化物半导体 CCD/CMOS的差异 >> A. 总体比较 CCD的优点是灵敏度高,噪音小,信噪比大。但是生产工艺复杂、成本高、功耗高。 CMOS的优点是集成度高(将AADC与讯号处理器整合,可以大幅缩小体积)、功耗低、成本低。但是噪音比较大、灵敏度较低、对光源要求高。 B. 成像效果 在相同像素下CCD的成像往往通透性、明锐性都很好,色彩还原、曝光可以保证基本正确。 CMOS的产品往往通透性一般,对事物的色彩还原能力偏弱,曝光也都不太好。 在采用CMOS为感光元器件的产品中,通过采用影像光源自动增益补强技术,自动亮度、白平衡控制技术,色饱和度、对比度、边缘增强以及伽马矫正等影像控制技术,完全可以达到与CCD蛇形头相媲美的效果。 C. 功耗比较 CCD功耗比较高,为使电荷传输顺畅,噪声降低,需要高压查干山传输效果;另外由于CCD无法ADC和讯号处理器,导致需要使用3~4租电源。 CMOS功耗比较低,不到CCD的1/3,CMOS影像传感器将每一像素的电荷转换成电压,读取前就将其放大,利用3.3V的电源即可驱动,只需要一组电源。 使用技巧>> 使用摄像头,尤其是采用CMOS 芯片的产品时就更应该注重技巧: A. 不要在逆光环境下使用(这点CCD 同),尤其不要直接指向太阳,否则“ 放大镜烧蚂蚁”的惨剧就会发生在您的摄像头上。 B. 环境光线不要太弱,否则直接影响成像质量。克服这种困难有两种办法,一是加强周围亮度,二是选择要求最小照明度小的产品,现在有些摄像头已经可以达到5lux 。 C. 要注意的是合理使用镜头变焦,不要小瞧这点,通过正确的调整,摄像头也同样可以拥有拍摄芯片的功能。 A/D转换器即ADC(Analog DigitalConverter 模拟数字转换器) ADC的两个重要指标是转换速度和量化精度,由于CAMERA SYSTEM中高分辨率图像的像素量庞大,因此对速度转换器的要求很高。同事量化精度对应的ADC转换器将每一个像素的亮度和色彩值量化为若干等级,这个登记就是CAMERA的色彩深度。由于CMOS已经具备数字化传输接口,所以不需要A/D 数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信息参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。 DSP结构框架: 1)ISP(image signal processor)镜像信号处理器 2)JPEG encoder(JPEG图像解码器) 3)USB device controller(USB设备控制器) 1)图像压缩方式 JPEG:(joint photographic expert group) 静态图像压缩方式。一种有损图像的压缩方式。压缩比越大,图像质量也就越差。当图像精度要求不高存储空间有限是,可以选择这种格式。目前大部分数码相机都使用JPEG格式。 2)图像噪音 指的是图像中的杂点干扰。表现为图像中有固定的彩色杂点。 3)视角 与人的眼睛成像是想同的原理,简单说就是成像范围。 4)白平衡处理技术(AWB) 定义:要求在不同色温环境下,照白色的物体,屏幕中的图像应也是白色的。(在不同的环境光照下,人类的眼睛可以把一些“白”色的物体都看成白色,是因为人眼进行了修正。但是SENSOR没有这种功能,因此需要对SENSOR输出的信号进行一定的修正,这就是白平衡处理技术)。 色温表示光谱成分,光的颜色。色温低表示长波光成分多。 当色温改变时,光源中三基色(红绿蓝)的比例会发生变化,需要调节三基色的比例来达到彩色平衡,这就是白平衡调节。 图像传感器的图像数据被读取后,系统将对其针对江头的边缘畸变的运算修正,然后经过坏像素处理后被系统送进去进行白平衡处理。 5)电源 摄像头内部需要两种工作电压:3.3V和2.5V,因此好的摄像头内部电源也是保证摄像头稳定工作的一个因素。 6)色彩深度 反映对色彩的识别能力和成像的色彩表现能力,就是用多少二进制数字来记录三种原色。实际上就是A/D转换器的量化精度,是指将信号分成多少个等级,常用色彩位数(bit)表示。彩色深度越高,获得的影像色彩就月艳丽动人。 非专业的SENSOR一般是24位,专业型SENSOR至少是36位的。 7)输出/输入接口(IO) 串行接口(RS232/422):传输速率慢,为115kbit/s; 并行接口(PP):速度可达到1Mbit/s 红外接口(IrDA):速率也是115kbit/s,一般笔记本电脑有此接口 通用串行总线USB:即插即用的接口标准,支持热插拔。USB1.1速率可达12Mbit/s,USB2.0可达480Mbit/s; IEEE1394(火线)接口(亦称ilink):其传输速率可达100M~400Mbit/s 8)图像格式(image Format/ Color space) RGB24,I420是目前最常用的两种图像格式。 RGB24:表示R、G、B三种颜色各8bit,最多可表现为256级浓淡,从而可以再现256*256*256中颜色。 I420:YUV格式之一。 其他格式有:RGB565,RGB444,YUV4:2:2等。 9)分辨率(Resolution) 我们厂看到的分辨率都以乘法形式表现的,比如1024*768,其中“1024”表示屏幕上水平方向显示的点数,“768”表示垂直方向的点数。显而易见,所谓分辨率就是画面的解析度,由多少像素构成。数值越大,图像也就越清晰。分辨率不仅与显示尺寸有关,还要受显像管点距、视频带宽等因素影响。 SXGA(1280*1024) 又称130万像素 UXGA (1600*1280)又称200万像素 最大点阵2048*1536    又称300万像素

摄像头工作原理里面专有名词或者其他相关东西,可能会在后期补充。一,成像原理景物=>光学图像=>电学信号=>数字图像信号=>PC显示景物通过镜头产生光学图像;光学图像再同学半导体的图像传感器生成电学信号;电学信号由A/D转换器转化为数字图像信号;数字图像信号经由DSP处理,在USB连接下在PC上显示出来。二,DCP结构框架[ ] ISP(Image Signal Processor)[ ] JEPG encoder[ ] USB device controller三,两种图像传感器1. CCD(Charge Coupled Device) 电荷耦合组件,用于录像或者图像扫描;灵敏度高,噪声小,信噪比大,但成本高,生产工艺复杂,功耗高。2. CMOS(Complementary Metal-Cxide Semiconductor)附加金属氧化物半导体组件,是低端视频设备;集成度高,功耗低(不到CCD的1/3),成本低,但是噪声大,灵敏度低,对光源要求高。

视频监控摄像头怎样组成和工作原理。

基于DSP的图象处理系统设计摘要:文章提出一种基于丁工公司数字信号处理芯片TMS32OC6211的将模拟视频进行数字化处理的设计方案,其中视频解码模块完成复合视频信号的数字化。该平台使用p日工L工ps公司的专用视频输入处理芯片SAA71llA和「工「O存储器及CpLD实现了高速连续的视频帧数据采集,满足了后继图像处理的需要。关键词:数字信号处理芯片(OSp);视频采集1引言数字信号处理(Digit滋51罗alproeessing)是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。数字信号处理的实现方法有多种,但专用的DSP芯片以其信号处理速度快、可重复性好、成本低、性能优越得到首肯。2系统功能概述本文提出一种基于TI公司数字信号处理芯片TMS320C6211的将模拟视频进行数字化处理的设计方案,其中视频解码模块完成复合视频信号的数字化。该系统具有接口方便、编程方便、精度高、稳定性好、集成方便的优点。本系统采用TI公司C6000系列DSP中的TMS320C6211作为系统的cPu。图像数据通过外部设备采集并输出模拟图像信号。这些信号经视频解码芯片转换为数字信号;再经FIFO输人DSP进行图像的增强、分割、特征提取和数据压缩等;系统的控制逻辑由CpLD(ComplexP。『amm曲Ie肠giCDeviee)控制器实现。系统结构如图l所示。3系统硬件设计3.1视频解码芯片模拟视频信号中不仅包含图像信号,还包含行同步、行消隐、场同步、场消隐等信号。视频解码的目的就是将复合视频、YC分量等模拟视频信号进行AD转换以获取图像的数字信号,同时提取其中的同步和时钟信号。PhihPs公司的视频解码芯片SAA7111A,支持对NTSC和PAL制视频信号的自动转换,自动进行50/6OH:场频的检测,可对NTS(认PAL、sEcAM制式视频信号的亮度和色度进行处理。它拥有4路模拟输人、4路复合视频(cvBs)或2路YC或一路YC和2路CvBs输人。可设置CvBS或YC通道为静态增益控制或自动增益控制(AGC)。拥有2路亮度和色度梳状滤波器,可对亮度、对比度、光圈和饱和度进行控制。可支持以下输出格式:4:2:2(16位)、4:2:2(CCIR6ol8位)、4:1:l(12位)YUV格式或8:8:8(24位)、5:6:5(l6位)RGB格式。这种多格式的数据总线形式为设计者提供了灵活的选择空间。系统中采集的图像信号采用PhihPs公司的SAA71IA完成A用转换,如图2所示。SAA71]A允许四路模拟视频输入,具有两个模拟处理通道,支持四路CVBS模拟信号或二路Y/C模拟信号或二二路CVBS信一号和一路Y汉二信号。SAA7llA对摄像头输人的标准PAL格式的模拟图像信号进行A/D转换,然后输出符合CCIR601格式的4:2:2的16位YUv数据到FIFO。其中亮度信号Y为8位、色度信号C:和Cl)合为8位数据。3.2HFO存储器模块F’IF()采用IDT公司的IDT72VZ15LB芯片,FIFO的深度为512x18bit,支持STANDARD(标准)和Fw衅(FirstwordFall一Through,首字直接通过)两种工作模式。按照CCIR601格式,Yuv图像分辨率为720x576象素,当按行输出时,SAA7一IA输出数据流大小为:720x16=1440卜I因为DSP通过32位的SBSRAM接日与FlI;()通信,故YUV数据写人FIFO时需要在FIFO之间实现乒乓切换。这时一行720x16bit的数据在两片FIFO中存储变为360x32bit,两片FIF()行r以满足上述要求。FIFO的初始化及时序由CP[力实现,FIFO连接见图3。3.3DsP图像处理模块TMS320C6211是Tl公司发布的面l台]视拓!处理领域的新款高速数字处理芯片,适用于移动通信基站、图像监控、雷达系统等对速度要求高和高度智能化的应用领域。存储空间分两部分:运行过程的临时数据存在SDRAM中;系统程序则固化在FLASH存储器中。Flash存储器具有在线重写人功能。这对系统启动程序的修改和升级都带来了很大的方便。TMS320C6211DSP的高速性能主要体现在以下方面:①TMS320C62ll的存储空间最大可扩展到1CB,完全可以满足各种图像处理系统所需的内存空间,而且其最高时钟可达167Mllz,峰值性能可达1333MIPS(百万条指令/秒)。②并行处理结构。TMS32OC62ll芯片内有8个并行处理单元,分为相同的两组,并行结构大大提高芯片的性能。③芯片体系采用veloc,rrI结构。vel。八rJ’l是一种高性能的甚长指令字(VIJW)结构,单指令字字长为32hit,8个指令组成一个指令包,总宇长为256bit。即每秒钟可以执行8条指令。Velo‘、、『rl结构大大提高了DSP芯片的性能④采用流水线操作实现高速度、高效率。TMS32OC62川只有石-流水线充分发挥作用的情况下,才能达到最高的峰值性能。与其他系列DSP相比,优势在于简化了流水线的控制以消除流水线互锁,并增加流水线的深度来消除传统流水线的取指、数据访问和乘法操作上的瓶颈。本系统DSP主要完成从FIFO读出数据的处理以及压缩等。数据处理由自行编写的算法实现,数据压缩算法采用JpEG(JointphotoGraphieEx-pertGroup)标准。当摄像头采集速度为每秒25帧图像时,它留给DSP处理的时间最多为每帧40ms。如果考虑系统有一定的延时以及处理后图像的存储时间,那么DSP处理一幅图像时间不能超过30ms。按照C6211的处理速度,在30ms内可以处理4OM(0.03x1333MIPS)条指令。DSP读出FIFO中的行数据并存人SDRAM,一帧图像有576行,在最后一行时会收到系统的帧中断,这时SDRAM中的图像数据总共有1440x576=sloKB。让C62一l用36M条指令周期的时间处理810KB的数据显然绰绰有余。粗略的计算过程如下:系统采用快速DCT(离散余弦变换),每sx8矩阵需要11次乘法、29次加法,因此一帧图像的FDCT,共需要(11+29)x720x576xZ/64=518400个指令周期;对于量化模块,每8xs矩阵需要64个量化指令周期,一帧需要64x720x576xZ/64=829440个指令周期;对于编码部分,假设编码后非0元素占25%,对每8xs矩阵进行219一zag扫描、编码估计需要120个指令周期,则共需120x720x576xZ/64=1555200个指令周期。按以上计算,在系统中进行JPEC编码大约需要2903040个指令周期,耗时19.3536ms(TMS320C62lll作在15OMHz时)。可以看出,实际需要的指令远小于36M条,而时间也远小于3Oms,DSP完全可以实时处理从FI-FO传过来的数据。3.4利用DSP芯片进行图像压缩如图4所示,图像数据通过FO接口送人数字信号处理板,由DSP芯片中的DMA控制器负责将数据放人输人缓冲区中,DSP对缓冲的图像数据进行压缩后,通过HPl接口将压缩数据送出。4总结图像采集系统的关键在于如何对大容量的信息进行暂存、压缩和传输等问题进行处理。本系统主要是解决这三个难题。在图像信息暂存方面充分利用DSP存储空间的可扩展性,保证系统可暂存的信息量足够大;信息压缩是DSP最擅长做的事情,可以在很短的时间内完成大量的信息压缩工作。该平台使用专用视频输人处理芯片SAA7lll和FIFO存储器及CPLD实现高速连续的视频帧采集,满足后继图像处理的需要。该平台既可以作为视频图像采集使用,也可以进行视频压缩、匹配等图像处理算法验证工作。参考文献【1ITexasInstruments,TMS32oC6000pe即he司5ReferenceGuide,2002.12.[2】PhiliPsSe二eonduetors,SAA7llADatasheet,1998.5.[3」TexasInstruments,TMS32OC6000CPUandInstrUetionSetRefereneeGuide,2000.10.I41TexasInstruments,TMS32OC6211Digtalsi即习ProeeSSorDataSheet,2003名-【51TexasInstrumentS,TMS320C6000TeehnicalBrie〔1999.2.[6llnte红atedDeviceTeehnolo留,Inc于IFOApPBook.飞9999.【7〕雄伟,DSP芯片的原理与开发应用(第二版)【M」.北京:电子工业出版社,200住【8」李方慧等,TMS32OC600ODSps原理与应用(第二版)四1.北京:电子工业出版社,2003.1.[0]刘松强,数字信号处理系统及其应用[M〕.北京:清华大学出版社,19%.〔10]彭启徐,李玉柏.DSP技术四】.成都:电子科技大学出版社,1997.

基于核磁共振成像原理的研究论文

也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。像PET和SPET一样,用于成像的磁共振信号直接来自于物体本身,也可以说,磁共振成像也是一种发射断层成像。但与PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。这一点也使磁共振成像技术更加安全。从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。对比其它成像技术(如CT 超声 PET等)磁共振成像方式更加多样,成像原理更加复杂,所得到信息也更加丰富。因此磁共振成像成为医学影像中一个热门的研究方向。核磁共振成像原理:原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。优点:1.MRI对人体没有损伤;2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位;3.能诊断心脏病变,CT因扫描速度慢而难以胜任;4.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;3.对胃肠道的病变不如内窥镜检查;4.体内留有金属物品者不宜接受MRI。5. 危重病人不能做6.妊娠3个月内的7.带有心脏起搏器的核磁共振检查的注意事项由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。编辑词条开放分类:医疗、医学影像参考资料:1.医学影像技术贡献者:wtrecamel、yo不动、waterone83、袖吞乾坤小武侯、dairui725本词条在以下词条中被提及:海洛因、肌肉萎缩性脊髓侧索硬化症、原发性肝癌“MRI”在英汉词典中的解释(来源:百度词典):MRIabbr.1. = Magnetic Resonance Imaging 【医】磁共振造影2. = Machine Readable Information 【电脑】机读信息

MRI

MRI 核磁共振成像技术作为二十世纪医学影像成像领域最重要的进展之一,在医学临床诊断中的应用日益广泛,因此研究磁共振成像及其图像处理方法具有很广泛的现实意义。

论文对MRI医学成像和图像处理方法的几个主要方面进行了相关研究。主要涉及三个子课题:基于化学位移的扩展两点Dixon水和脂肪分离算法研究,该算法同时包含特定成像脉冲序列设计和图像后处理;

基于非线性滤波的图像增强、去噪以及高分辨率图像重建算法研究;基于整数小波变换和改进零树编码的医学图像渐进无损压缩算法研究。

在文章中,作者首先系统回顾了MRI 磁共振成像的物理学基本原理,并在此基础上对基于化学位移的扩展两点Dixon水和脂肪分离算法进行了研究,提出使用低通滤波代替多项式拟合迭代进行两维相位去卷绕,改进算法能够降低分离处理的计算复杂度和改善了水和脂肪的分离结果。

为改善MRI医学图像质量,论文对线性增强算法和非线性滤波外推图像增强算法进行研究分析,指出整幅图像增强时导致马太效应的原因所在。

进而提出一种新的剪切策略包络阈值剪切策略改进非线性滤波算法,使得改进后的算法在外推新的高频分量进行图像增强时显著优于原有算法。运用改进的非线性滤波算法结合低通滤波对医学图像进行去噪处理,能有效消除高频噪声同时尽可能保留有用高频信号。

最后将改进的非线性滤波方法应用于高分辨率图像重建,获得了比线性插值更为理想的高分辨率重建图像。

论文对整数小波变换和 EZW零树编码算法做了简单回顾,研究了EZW零树编码策略应用于无损图像压缩时的缺点,提出基于整数小波变换和改进零树编码的医学图像渐进无损压缩框架。

对医学图像的无损压缩实验取得了较高的压缩比,有损渐进解码恢复时,较低的码率得到了较好的图像信噪比,同时良好的渐进解码特性,能够满足远程医疗等基于信道传输的图像解压缩应用。

核磁共振的原理是什么

计算机组成原理论文3000字

计算机系统结构是计算机专业本科生的一门专业必修课程。课程的目标是提高学生从系统和总体结构的层次来理解和研究计算机系统的能力。下面是我给大家推荐的计算机系统结构论文范文,希望大家喜欢!

《计算机系统结构教学探索》

摘要:计算机系统结构是计算机专业的一门专业基础课,本文根据计算机结构的课程特点,从教学方法、教学手段、实践环节方面,提出以学生为主体,利用多媒体教学等手段来提高学生的学习兴趣和主动性,从而提高了学习效果。

关键词:计算机系统结构动画演示法联系比较法实践环节

0 引言

计算机系统结构是计算机专业本科生的一门专业必修课程。课程的目标是提高学生从系统和总体结构的层次来理解和研究计算机系统的能力,帮助学生建立整机系统的概念;使学生掌握计算机系统结构的基本知识,原理和性能评价的方法,了解计算机系统的最新发展。使学生领会系统结构设计的思想和方法、提高分析和解决问题的能力。但是在教学中一直存在教学内容中原理和概念较多,综合性强,比较抽象,难学难懂,实验的硬件条件缺乏,学生学习兴趣等不高问题。笔者在多年的教学过程中,不断吸取其它高校的教学经验,对计算机系统结构教学进行改进和总结。

1 课程的内容和特点

1.1 课程内容

计算机系统结构课程本科教学时长安排为50学时,实验为22学时。根据国内外其它院校的教学思路,结合对计算机人才知识结构的要求,课程内容包括概论;指令系统;输入输出系统;存储体系;流水线技术;并行处理机;多处理机和课程实习。重点讲授内容为存储体系和指令级并行技术,存储系统是体系结构设计中的瓶颈问题,是系统成败的关键;指令级并行技术为计算机体系结构中的经典问题流水线、并行性等设计。而对并行计算机,多处理机只作简单介绍。从而突出了基本知识,注意和先修课程内容的贯通。

1.2 课程特点

(1)综合性强。计算机系统结构开设在第7学期,先修课程有:汇编语言程序设计、数据结构、计算机组成原理、操作系统、编译原理等课程。教学中要求学生综合应用各课程知识,教学难度较大。(2)理论性强。内容抽象复杂,概念多,学生感到学习难度大,教学处理不好的话,学生的学习积极性不高。(3)缺乏实验环境,学生无法获得对计算机系统结构性能改进的直观认识。由于大多数高校硬件条件不满足,故许多高校在开设这门重要课程时,仅仅停留在理论讲授上,相应的实践教学是空白,学生面对枯燥理论,学习兴趣缺乏,不利于提高教学质量。

2 教学的探讨

根据本课程的特点,教学大纲的要求,从培养学生能力的目标出发,明确目标,积极引导学生,采取动画演示、联系比较、启发式教学法,加强实践教学,提高了学生学习的兴趣和主动性,从而有效地提升了教学效果。

2.1 明确学生的认识

要想提高学生的学习的主动性,首先要让学生明确该课程的重要性。一部分学生认为该课程与计算机组成原理,操作系统等课程存在一定的重叠,认为只是前面知识的重复。另一部分学生由于面临就业和考研压力,只求通过考试而忽略能力的培养。针对第一部分在学习本课程时阐明该课程与其它课程的关系和区别。计算机组成原理从硬件系统方面来解释计算机各组成部分的工作原理。而计算机系统结构跨越了硬件和软件层次,让学生理解计算机系统结构的基本原理,这样编程时才能考虑更周全,编写更加高效的程序。针对第二部分学生让其认识到学习不只是为了考试,我们不仅要提高程序和系统的开发设计能力,还应提高从总体的架构去分析和解决问题的能力。

2.2 明确教学目标

计算机系统结构就是通过采用不同的软硬件技术设计高性价比的计算机系统,面临硬件性能达到极限,我们主要从存储系统、指令系统、指令并行性来分析和评价计算机系统设计,使学生理解计算机性能的提高的方法。例如, 提高CPU计算速度可以采用方法: 一种是提高处理器的主频;第二种方法是提高指令执行的并行度,当前CPU中都采用超标量超流水线技术,流水线结构其实就是一种提高并行度的方法。CPU不像以前通过提升主频来提升速度,因为硬件速度的提高是有限的,最大只能是光速,所以CPU还通过多核的技术来提升速度。这样,学生在学习时运用所学的知识来分析,有利于培养他们发现问题、分析问题、解决问题的能力。

2.3 采取合理的教学方法和教学手段

(1)动画演示。教学中采用大量的动画来系统解析教学内容,包括系统的结构、工作的原理、工作流程以及一些算法等,把以往抽象、枯燥的解说变为形象生动的动画动态展示和讲解。这些动画动态的把讲解内容展现在学生面前,突出知识的核心思想和关键知识点,容易理解和提升学习的兴趣。(2)联系比较法。把本课程中的一些概念、策略和思想与现实生活中的事例进行联系比较,如与生产流水线相联系。目的是使学生更好地理解和掌握教学内容,抓住关键思想,联系实际,从而提高了教学效果。(3)启发式教学法。由于高年级学生都有很好的自学能力,在教学中积极地根据学习的内容提出一些问题,让学生通过查阅资料,讨论学习某个问题。如RISC和CISC相比较,在理论上RISC处理器占有优势,但在实际微处理器中主要是CISC处理器;计算机处理器的发展提高到一定的主频后,主要过多核设计来提升CPU性能等。极大地提高了学生的学习的兴趣和积极性。

2.4 加强实践教学

国内外高校计算机系统结构的实验一般分为偏重软件的程序员角度和偏重硬件设计人员角度。计算机科学专业开设的实验课程一般偏重软件人员,强调从程序员的角度去了解整个计算机系统如何运行,为程序的优化,可靠性的保证等提供基础知识,实验课程一般用高级程序语言和模拟器实现。而计算机工程专业开设的实验课程一般偏重硬件,强调从硬件设计人员的角度如何设计和实现整个处理器系统,实验课程要求用相关的硬件描述语言实现系统,在FPGA上测试验证。①我们是偏重于软件的,为了让学生应用流水线技术,尝试改进流水线性能的新技术,提高学生对现代计算机系统的认识,引进了DLX虚拟处理器实验。利用DLX虚拟处理器可以进行处理器指令系统的设计,流水线的设计与实现、并行处理的设计与实现等带有新一代处理器思想和技术的实验。从而充分调动学生的能动性,提高了学生的学习兴趣,以及分析问题、解决问题的能力。

3 结束语

本课程具有内容综合性强、理论多、难度大等特点,教师对课程明确教学目标和定位的基础上,重视教学方法和多媒体手段,加强了实践教学,积极引导学生,提高了学生对本课程的兴趣,达到了较好的教学效果。

点击下页还有更多>>>计算机系统结构论文范文

组成原理课程设计论文

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。接下来我为你带来组成原理课程设计论文,希望对你有帮助。

一、 实验名称:运算器实验

二、 实验目的:

1.学习数据处理部件的工作方式控制。 2. 学习机器语言程序的运行过程。

三、 实验原理:

CP226实验仪的运算器由一片CPLD实现,包括8种运算功能。运算时先将数据写到寄存器A和寄存器W中,根据选择的运算方式系统产生运算结果送到直通门D。

实验箱上可以向DBUS送数据的寄存器有:直通门D、左移门L、右移门R、程序计数器PC、中断向量寄存器IA、外部输入寄存器IN和堆栈寄存器ST。它们由138译码器的

四、 实验内容:

1. 计算37H+56H后左移一位的值送OUT输出。 2. 把36H取反同54H相与的值送人R1寄存器。

五、 实验步骤:

实验内容(一):

1. 关闭电源。用8位扁平线把J2和J1连接。

2. 用不同颜色的导线分别把K0和AEN、K1和WEN、K2和S0、K3和S1、K4和S2、

K6和X0、K7和X1、K8和X2、K9和OUT连接。 3. K15~K0全部放在1位,K23 ~K16放0位。

4. 注视仪器,打开电源,手不要远离电源开关,随时准备关闭电源,注意各数码管、

发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。 5. 设置实验箱进入手动模式。

6. 设置K0=0,K8K7K6=000,K23 ~K16=0011 0111。 7. 按下STEP键,在A寄存器中存入37。 8. 设置K0=1,K1=0,K23 ~K16=0101 0110。 9. 按下STEP键,在W寄存器中存入56。

10. 设置K0=1,K1=1,K8K7K6=110,K4K3K2=000。 11. 按下STEP键,L寄存器显示1A。 12. 设置K9=0,其他保持不变。

13. 按下STEP键,OUT寄存器显示1A。 14. 关闭实验箱电源。

实验内容(二):

1. 基本与实验内容(一)的前5个步骤相同(去掉连接OUT寄存器的导线)。 2. 连接K10和SA,K11和SB,K12和RWR。

3. 设置K0=0,K8K7K6=000,K23~K16=0011 0110。 4. 按下STEP键,A寄存器显示36。 5. 设置K8K7K6=100,K4K3K2=110。 6. 按下STEP键,A寄存器显示9C。

7. 设置K1K0=01,K8K7K6=000,K4K3K2=111,K23~K16=0100 0101。 8. 按下STEP键,W寄存器显示45。

9. 设置K1K0=11,K8K7K6=100,,4K3K2=011,K10K11=10,K12=0。 10. 按下STEP键,D寄存器和R1寄存器显示40。 11. 关闭实验箱电源。

六、 实验结论:

实现数据处理部件的工作方式控制和机器语言程序的运行过程。

七、 体会:

通过本次试验,我对运算器实验了解更深了并进一步巩固了第一周所学的内容。

八、 思考题:

如何计算3456H+12EFH的值? 答:

通过CP226实验仪,把S2S1S0设置为100,可以使用带进位加法运算。由于是四位16进制,可以把它拆开,从个位开始计算,一位一位向上计算通过带进位加法器,即算(64H*64H+64H*10H*3H+64H*3H+10H*9H+8h)+(64H*10H*4H+64H*8H+10H*4H+7H)

【实验环境】

1. Windows 2000 或 Windows XP

2. QuartusII、GW48-PK2或DE2-115计算机组成原理教学实验系统一台,排线若干。

【实验目的】

1、熟悉原理图和VHDL语言的编写。2、验证全加器功能。

【实验原理】

设计一个一位全加器,能完成两个二进制位的加法操作,考虑每种情况下的进位信号,完成8组数据的操作。

【实验步骤】

1.1建立工程项目

1.1.4  原理图设计

新建项目后,就可以绘制原理图程序了。下面以一位全加器如图1-12所示为例,讲解原理图的编辑输入的方法与具体步骤。

图1-12 一位全加器原理图

(1)执行菜单“File”→“New…”,或在工具栏中单击图标,弹出如图1-13所示的“New”对话框。在此对话框的“Design Files”项中选择“Block Diagram/Schematic File”,在单击“OK”按钮,QuartusⅡ10.0的主窗口进入如图1-14所示的原理图工作环境界面。

图1-13 “New”对话框

(2)在如图1-14所示的原理图工作环境界面中单击图标或在原理图编辑区的空白处双击鼠标或在原理图编辑区的空白处右键单击在弹出的菜单中选择“Insert”中的任意一个,弹出如图1-15所示的元件输入对话框,在“Name”栏中直接输入所需元件名或在“Libraries: ”的相关库中找到合适的元件,再单击“OK”按钮,然后在原理图编辑区中单击鼠标左键,即可将元件调入原理图编辑区中。为了输入如图1-12所示的原理图,应分别调入and2、xor2、or3、input、output。对于相同的器件,可通过复制来完成。例如3个and2门,器操作方法是,调入一个and2门后,在该器件上单击鼠标右键,在弹出的菜单中选择“Copy”命令将其复制,然后在合适的位置上右键,在弹出的菜单中选择“Paste”命令将其粘帖即可。1

图1-14 原理图工作环境界面

图1-15 元件输入对话框

如果元件放置好后,需要改元件的位置时,对于单个器件而言,在该器件上按住鼠标左键,拖到合适的位置后再松开鼠标左键即可;对于多个器件而言,应该按下鼠标左键框选需要移动的所有器件,然后将光标移动到选择的器件上,待光标变成可移动的“十”字光标,此时按住鼠标左键将其拖到合适的位置即可。

如果要删除元件时,应先将元件选中,然后按“Del”键或右键在弹出的菜单中选择“Del”。

如果要旋转元件时,应先将元件选中,然后右键在弹出的菜单中可选“Filp Horizontal”(水平翻转)、“Filp Vertical”(垂直翻转)、“Rotate by Degrees”(逆时针方向旋转,可选90°、180°、270°)等命令。

(3)将光标指向元件的引脚上,光标变成“十”字形状,按下鼠标左键并拖动,就会有导线引出,连接到另一端的元件上后,松开鼠标左键,即可绘制好一根导线,按此方法绘制好全部导线,如图1-16所示。

2

图1-16 导入元件和绘制导线(注意:用鼠标拖出的导线只能最多转一个弯)

图1-17 修改引脚名对话框

(4)双击或右键单击“pin_name”输入引脚,将弹出如图1-17所示的对话框。在此对话框的“Gerneral”页的“Pin name(s) ”项中输入引脚名,如:S,然后单击“确定”按钮,即可将“pin_name”输入引脚名改为“S”。按此方法依次修改其他引脚。修改后如图1-16所示。

(5)执行菜单命令“File”→ “Save…”,或在工具栏中单击

名并单击“保存”按钮即可(此时最好不要更改存储路径)。

图标,弹出“Save AS”对话框,在此对话框中输入文件

2.1 顶层VHDL文件设计

2.1.1  创建工程和编辑设计文件

首先建立工作库,以便设计工程项目的存储。任何一项设计都是一项工程(Project),都必须首先为此工程建立一个放置与此工程相关的所有文件的文件夹,此文件夹将被EDA软件默认为工作库(Work Library)。

在建立了文件夹后就可以将设计文件通过QuartusII的文本编辑器编辑并存盘,详细步骤如下:

1、新建一个文件夹。利用资源管理器,新建一个文件夹,如:e : eda 。注意,文件夹名不能用中文。

2、输入源程序。打开QuartusII,选择菜单“File”“New”,在New窗中的“Device Design Files”中选择编译文件的语言类型,这里选“VHDL Files”(如图2-1所示)。然后在VHDL文本编译窗中键入VHDL程序(如图2-2所示)。3

图2-1 选择编辑文件的语言类型

图2-2编辑输入设计文件(顶层设计文件ADD1.VHD)

图2-3利用“New Preject Wizard”创建工程

一、 实验目的与要求

(1) 掌握Cache 控制器的原理及其设计方法。

(2) 熟悉CPLD 应用设计及EDA 软件的使用。

二、 实验设备

PC 机一台,TD-CM3+或TD-CMX 实验系统一套。

三、 实验原理

本实验采用的地址变换是直接映象方式,这种变换方式简单而直接,硬件实 现很简单,访问速度也比较快,但是块的冲突率比较高。其主要原则是:主存中一块只能映象到Cache 的一个特定的块中。

假设主存的块号为B,Cache 的块号为b,则它们之间的映象关系可以表示 为:b = B mod Cb

其中,Cb 是Cache 的块容量。设主存的块容量为Mb,区容量为Me,则直接 映象方法的关系如图2-2-1 所示。把主存按Cache 的大小分成区,一般主存容量为Cache 容量的整数倍,主存每一个分区内的块数与Cache 的总块数相等。直接映象方式只能把主存各个区中相对块号相同的那些块映象到Cache 中同一块号的那个特定块中。例如,主存的块0 只能映象到Cache 的块0 中,主存的块1 只能映象到Cache 的块1 中,同样,主存区1 中的块Cb(在区1 中的相对块号是0)

也只能映象到 Cache 的块0 中。根据上面给出的地址映象规则,整个Cache 地址与主存地址的低位部分是完全相同的。

直接映象方式的地址变换过程如图2-2-2 所示,主存地址中的块号B 与Cache 地址中的块号b 是完全相同的。同样,主存地址中的块内地址W 与Cache 地址中的块内地址w 也是完全相同的,主存地址比Cache 地址长出来的部分称为区号E。

1

在程序执行过程中,当要访问 Cache 时,为了实现主存块号到Cache 块号的变换,需要有一个存放主存区号的小容量存储器,这个存储器的容量与Cache 的块数相等,字长为主存地址中区号E 的.长度,另外再加一个有效位。

在主存地址到Cache 地址的变换过程中,首先用主存地址中的块号去访问区号存储器(按地址访问)。把读出来的区号与主存地址中的区号E 进行比较,根据比较结果和与区号在同一存储字中的有效位情况作出处理。如果区号比较结果相等,有效位为‘1’,则Cache 命中,表示要访问的那一块已经装入到Cache 中了,这时Cache 地址(与主存地址的低位部分完全相同)是正确的。用这个Cache 地址去访问Cache,把读出来的数据送往CPU。其他情况均为Cache没有命中,或称为Cache 失效,表示要访问的那个块还没有装入到Cache 中,这时,要用主存地址去访问主存储器,先把该地址所在的块读到Cache 中,然后CPU 从Cache 中读取该地址中的数据。

本实验要在CPLD 中实现Cache 及其地址变换逻辑(也叫Cache 控制器),采用直接相联地址变换,只考虑CPU 从Cache 读数据,不考虑CPU 从主存中读数据和写回数据的情况,Cache和CPU 以及存储器的关系如图2-2-3 所示。

Cache 控制器顶层模块如图2-2-4 所示,主存地址为A7A0,共8 位,区号E 取3 位,这样Cache 地址还剩5 位,所以Cache 容量为32 个单元,块号B 取3 位,那么Cache 分为8 块,块内地址W 取2 位,则每块为4 个单元。图2-2-4 中,WCT 为写Cache 块表信号,CLR 为系统总清零信号,A7A0 为CPU 访问内存的地址,M 为Cache 失效信号,CA4CA0 为Cache 地址,

2

MD7MD0 为主存送Cache 的数据,D7D0 为Cache 送CPU 数据,T2 为系统时钟, RD 为CPU 访问内存读信号,LA1 和LA0 为块内地址。

在 QuartusII 软件中先实现一个8 位的存储单元(见例程中的MemCell.bdf),然后用 这个8位的存储单元来构成一个32 X 8 位的Cache(见例程中的CacheMem.bdf),这样就实现了Cache的存储体。

再实现一个4 位的存储单元(见例程中的TableCell.bdf),然后用这个4 位的存储单

来构成一个8 X 4 位的区表存储器,用来存放区号和有效位(见例程中的CacheTable.bdf),在这个文件中,还实现了一个区号比较器,如果主存地址的区号E 和区表中相应单元中的区号相等,且有效位为1,则Cache 命中,否则Cache 失效,标志为M,M 为0 时表示Cache 失效。

当Cache 命中时,就将Cache 存储体中相应单元的数据送往CPU,这个过程比较简单。 当Cache 失效时,就将主存中相应块中的数据读出写入Cache 中,这样Cache 控制器就要产生访问主存储器的地址和主存储器的读信号,由于每块占四个单元,所以需要连续访问四次主存,这就需要一个低地址发生器,即一个2 位计数器(见例程中的Counter.vhd),将低2 位和CPU 给出的高6 位地址组合起来,形成访问主存储器的地址。M 就可以做为主存的读信号,这样,在时钟的控制下,就可以将主存中相应的块写入到Cache 的相应块中,

最后再修改区表(见例程中的(CacheCtrl.bdf)。

四、 实验步骤

1、实验接线:

3

2、实验步骤:

(1) 使用Quartus II 软件编辑实现相应的逻辑并进行编译,直到编译通过,Cache 控

器在EPM1270 芯片中对应的引脚如图2-2-5 所示,框外文字表示I/O 号,框内文字表示该引脚的含义(本实验例程见‘安装路径Cpld CacheCtrlCacheCtrl.qpf’工程)

(2) 关闭实验系统电源,按图2-2-6 连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。

(3) 打开实验系统电源,将生成的POF 文件下载到EMP1270 中去,CPLD 单元介绍见实验1.2。

(4) 将时序与操作台单元的开关KK3 置为‘运行’档,CLR 信号由CON 单元的CLR 模拟给出,按动CON 单元的CLR 按钮,清空区表。

(5) 预先往主存写入数据:联机软件提供了机器程序下载功能,以代替手动读写主存,机器程序以指定的格式写入到以TXT 为后缀的文件中。

  • 索引序列
  • 相机成像原理毕业论文
  • 医学影像成像原理的认识论文
  • 摇头机摄像头的结构原理毕业论文
  • 基于核磁共振成像原理的研究论文
  • 计算机组成原理论文3000字
  • 返回顶部