首页 > 期刊投稿知识库 > 膨润土在水泥中的添加量研究论文

膨润土在水泥中的添加量研究论文

发布时间:

膨润土在水泥中的添加量研究论文

利用膨润土上的润滑性,粘结密封性,增稠性及胶凝性制成泥浆,用于各种土壤作业的衬壁防渗,如隔墙建造,灌浆、沉箱、打桩、土地防渗、水泥及混凝土施工添加剂,固体水利运输,污水处理及隧道盾构润滑等。用膨润土防渗层铺河道,可把有限的水引向远方。膨润土防水层可用天然钠基膨润土粉直接铺,也可以用膨润土与当地土搅拌夯实,也可以将膨润土夹在两层织物之间形成防水(渗)毯(板),快速修建起储水池、储水窑、输水渠。膨润土可做防水材料,如瓦楞纸板装膨润土的防水板、两层无纺布中间夹膨润土的防水毡和一层无纺布一层塑料板中间夹膨润土的双重防水板,该材料已在地铁、大坝底部、垃圾填埋场地下工程中大量使用。膨润土具有高度的水密性和自身修补复原的功能,其防水有密实性(钠膨润土在水压状态下形成横隔膜,厚度约5mm时,相当于100倍的30cm厚度粘土的密实度)、自保水性能好(钠膨润土和水反应时,具有l3-l6倍的膨胀力,因此能修补2mm以内混凝土表面的裂纹)和具有永久的防水性能(钠膨润土不会发生老化或腐蚀现象)等特性。膨润土对人体无害,具有极佳的环保性能。施工简便。不需要加热和粘贴,不受气温影响。同时,施工工期短,和其他防水材料比较,施工相对比软简单。只用钉子和垫圈。施工后不需要特别的检查,如果发现防水缺陷也容易维修。这个可以吧!

膨润土注浆材料在北京地铁五号线注浆工程中的应用有哪些呢,下面中达咨询招投标老师为你解答以供参考。1 工程概况北京地铁五号线 04 标段包括一个车站和一个区间工程, 即天坛东门站—磁器口站区间和磁器口车站, 总长度 1 175.19 m, 其中区间施工范围长 995.19m, 车站施工范围长 180 m。区间工程主要包括隧道及其所含的联络通道、迂回风道、泵房、人防防护段、施工横通道、竖井、与规划七号线的联络线节点等土建工程。天坛东门至磁器口区间隧道分左右两线, 采用矿山法施工, 工程防水采用复合式衬砌结构, 全外包防水模式, 不考虑引排二衬外的地下水, 防水层设在初支喷射混凝土与二衬混凝土之间。根据模板台车的长度, 以每 9 m 长隧道为一段, 依次浇筑; 同时,每段内设不少于 9 根的回填注浆管, 注浆管直径 25mm。隧道结构完成后, 最初施工方采用传统的水泥浆回填, 但由于水泥浆含水量大、易收缩, 完成注浆后对混凝土裂缝和施工缝处的渗漏没有起到明显的改善作用, 不得不再次钻孔进行化学注浆, 因此大大增加了施工成本。在此情况下, 施工方最终选择用膨润土注浆粉(Bentogrout)进行注浆。2 膨润土注浆材料介绍膨润土的主要成分为钠基蒙脱石, 它是一种由微观片状晶体结构组成的矿物; 片状晶体通常小于 2μm 且呈胶状, 它们能够吸收水分子, 从而使得分子间距加大、膨润土颗粒膨胀; 一旦膨润土颗粒吸水后,分子内电荷达到饱和即会阻止水分子通过, 这就保证了膨润土具有极低的透水性, 使之具有优良的防水屏障作用。在国外, 数十年来膨润土防水材料被广泛应用于地下建筑防水工程。钠基膨润土浆液作为一种堵漏用注浆材料, 在水合作用下, 一般可以膨胀到干燥时体积的 10~15 倍,防水功能能够得到保证; 其使用成本也低于聚氨酯等其它化学注浆材料; 注浆时不需要对结构进行过多开凿, 对已完工建筑的堵漏操作相对简单; 一旦注浆完成, 膨润土浆液将凝结在一起, 并会保持一定的柔韧性。膨润土浆液具有如下特点:1) 膨润土浆液注浆后会保持柔性, 不会由于地质沉降和振动引起混凝土开裂而出现裂缝, 同时它还不受冻融循环的影响。2) 膨润土浆液注浆后可以形成一层稠密的薄膜,具有良好的胶凝强度和粘着性, 使得浆液稳定地附着在结构的表面, 适用于石砌或混凝土结构裂缝以及内墙湿迹部位的渗漏水封堵。3) 膨润土注浆可以通过遇水逐渐膨胀的特性, 进行自我修补、封堵混凝土日后可能产生的裂缝。4) 膨润土浆液不会产生热量, 不会被微生物腐蚀, 用于填充大而空的区域。5) 膨润土浆液主要是由惰性的天然材料组成, 因此它的使用寿命可与建筑结构本身等同。3 膨润土注浆材料施工工艺1) 加水搅拌将每袋 22.6 kg 的膨润土注浆粉 (Bentogrout) 加入 53 L 清水中, 搅拌 3~5 min, 直至浆液中没有粉块且浆液均匀为止。搅拌时, 可以直接用木棒在桶中搅拌, 也可以使用专业的设备进行搅拌, 搅拌均匀后方可开始注浆。2) 安装注浆嘴及送浆软管送浆软管应选择适当的长度, 太短会造成施工速度过慢, 而太长则会损失过多注浆压力。注浆嘴可以根据现场注浆管内径的尺寸, 自行焊接制作。准备完毕后, 将送浆软管两头分别连接注浆泵与注浆嘴, 注浆嘴要尽量深入地插入注浆管中, 并务必使两头连接牢固。3) 注浆施工将注浆嘴插入注浆管内并固定牢固后, 以 0.6~0.8 MPa 的压力泵送浆液至注浆管内, 直至浆液从邻近的注浆管中流出(或注浆压力保持 0.8 MPa 而不回落时)停止注浆。膨润土浆液注浆不要求过高的注浆压力, 注浆泵的工作压力在 0.6~0.8 MPa 即可满足注浆要求, 但要注意注浆泵需满足泵送较为粘稠浆液的要求。在立面注浆时, 应按照由低到高的顺序对注浆管进行注浆。每根注浆管完成注浆后, 应慢慢将注浆嘴拔出, 并使用塞子将注浆管堵严, 防止浆液外漏。接着将注浆嘴移至下一根注浆管, 重复以上的步骤。注浆中断超过 45 min 时, 需要及时用清水清洗注浆泵,以防止浆液凝固影响下次注浆质量。一定范围内的注浆管全部注浆完成后, 移动注浆泵等施工设备至下一区域中, 并重复以上三个步骤继续注浆。4 结语膨润土浆液注浆施工完成后, 隧道混凝土结构施工缝及裂缝处的湿迹逐日缩小, 最终使混凝土表面完全干燥。膨润土浆液注浆把回填注浆与堵漏注浆合二为一, 简化了施工步骤, 缩短了施工时间, 降低了施工费用, 是继膨润土防水毯之后膨润土防水材料在地下防水工程中的又一次技术革新。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

膨润土毕业论文

2006年[1] 郑玉婴,傅明连,王灿耀等. Kevlar纤维表面改性对PA6/Kevlar纤维复合材料非等温结晶与熔融行为的影响. 航空材料学报,2006,26(1):88-90(EI收录);航空学会[2] 郑玉婴,傅明连,王灿耀等. Kevlar纤维表面改性对PA6/KF复合材料等温结晶行为的影响. 高分子材料科学与工程,2006,22(1):151-153(EI收录);中国石油化工集团公司技术开发中心主办[3] 郑玉婴,傅明连,王灿耀等. Kevlar纤维表面改性对PA6/KF复合材料力学性能与破坏形态的影响. 高分子材料科学与工程,2006,22(1):154-157(EI收录);[4] 郑玉婴,王灿耀,傅明连. 尼龙6/Kevlar纤维复合材料非等温结晶行为及熔融特性的研究. 高分子材料科学与工程,2006,22(2):126-129(EI收录);[5] 郑玉婴,吴文士. 水杨醛缩氨基硫脲合钴(Ⅱ)的晶体结构及其荧光性质. 分子科学学报,2006,22(1):41-46;[6] 郑玉婴,王灿耀,吴章宏等. 聚酯废弃物改性植物油沥青粘结剂的红外研究. 光谱学与光谱分析,2006,26(7):1221-1225(SCI收录)。[7] Zheng Y. Y., Cai W.L., Fu M. L., et al.. Rare-earth stearates as thermal stabilizers for rigid Poly(vinyl chloride). JOURNAL OF RARE EARTHS,2005,23(2):172-177(SCI收录);2005年[8] 郑玉婴,王灿耀,傅明连等. Kevlar纤维的聚丙二醇及丁烯二醇改性研究. 光谱学与光谱分析,2005,25(3):402-404(SCI收录);[9] 郑玉婴,傅明连,王灿耀等. Kevlar纤维表面接枝改性及其稳定化. 光谱学与光谱分析,2005,25(11):1810-1812(SCI收录);膨润土有机改性的FTIR和XRD 研究[10] 郑玉婴,王灿耀,傅明连等. Kevlar纤维增强尼龙6复合材料的界面结晶效应. 高分子材料科学与工程,2005,21(6):142-145(EI收录);[11] 郑玉婴,张汉辉,蔡伟龙,傅明连等. 有机膨润土制备及性能表征. 光谱学与光谱分析,2005, 25(1):62-64(SCI收录);[12] 郑玉婴,王灿耀,傅明连.. 硬聚氯乙烯/蒙脱土纳米复合材料的制备与性能. 高分子材料科学与工程,2005,21(5),2005,21(5):293-296(EI收录);[13] 郑玉婴,彭超,孙瑞卿等. 膨润土的短碳链季铵盐改性研究. 光谱学与光谱分析,2005,25(10):1603-1605(SCI收录);[14] 郑玉婴,王灿耀,许小平等. 提高淀粉耐水性能的研究. 应用化学,2005,22(10):1108-1111;[15] 郑玉婴,吴章宏,王灿耀等. 高强度铸造用植物油沥青粘结剂. 铸造技术,2005,26(10):883-886(EI收录)。2004年[16] 郑玉婴,傅明连,王灿耀等. 有机高性能Kevlar纤维表面改性研究. 光谱学与光谱分析,2004,24(4):418-420(SCI收录);中国光学学会[17] 郑玉婴,吴文士. N,N-亚水杨基喹哪啶酰肼合锰的晶体结构和非线性光学性质. 分子科学学报,2004,20(3):47-55;[18] 郑玉婴,蔡伟龙,傅明连等. 硬脂酸稀土对PVC热稳定性的作用机理.光谱学与光谱分析,2004,24(12):1533-1536(SCI收录);[19]郑玉婴,吴文士.Schiff碱水杨醛缩氨基硫脲合钴的合成及其结构表征.大环化学和超分子化学研究进展,西北大学出版社,2004,8,402-409.[20]蔡伟龙,傅明连,王灿耀,郑玉婴*.改进复分解法与一步法制备硬脂酸稀土PVC热稳定剂. 福州大学学报,2004,32(5):627-631[21] 郑玉婴,彭超.PVC-U/蒙脱土纳米复合管材的研制.工程塑料应用,2004,32(1):38-40.2003年[22]郑玉婴,王良恩,蔡伟龙.PVC稀土热稳定剂结构分析.福州大学学报,2003,31(3):364-367.[23] 郑玉婴,蔡伟龙,王良恩.硬脂酸稀土PVC热稳定剂的合成.福州大学学报,2003,31(2):230-233.[24] 郑玉婴,王良恩,蔡伟龙.粉状聚丙烯增韧增强研究.工程塑料应用,2003,31(2):12-15.1998—2001年[25] 郑玉婴, 江琳沁, 赵剑曦等. Pluronic嵌段共聚物F127和P123胶束对萘、蒽、芘的增溶. 高等学校化学学报,2001,22(4):617-621(SCI收录);[26] 郑玉婴, 江琳沁, 赵剑曦. 苯及其衍生物在Pluronic嵌段共聚物胶束水溶液中增溶. 环境科学学报,2001,21(6):689-694;中国科学院生态环境研究中心主办[27] 郑玉婴, 赵剑曦, 郑欧等. Gemini阳离子表面活性剂在水溶液中胶团化行为的温度效应与焓/熵补偿. 化学学报,2001,59(5):690-695(SCI收录);[28]郑玉婴. TPR鞋用材料. 福州大学学报,2001,29(2):112- 115;[29]郑玉婴,赵剑曦,林翠英.PluronicF68胶束水溶液对稠环芳烃的增溶.精细化工,2001,18(7):373-375(EI收录)[30]郑玉婴, 翁祖华. 甲基丙烯酸固相接枝聚丙烯的研究. 福州大学学报,2001,29(3):105-108;[31]郑玉婴. ABS阻燃抗静电体系的研究. 福州大学学报, 2000, 28(4): 95-98;[32]郑玉婴. 聚乙烯单丝专用色母料的研究. 福州大学学报, 1998,26(6):114-118;[33]郑玉婴. 粉煤灰玻璃微珠在聚丙烯塑料中的应用. 福州大学学报1998,26(2): 87-90;

(五)护壁泥浆的拌制1、护壁泥浆要用优质泥浆,保持桩孔不坍、不缩,尤其对较厚的填土及淤泥质土要采用优质泥浆。2、在钻进时,由于旋挖钻机为静态泥浆无循环钻进,且成孔速度快,护壁泥皮薄,据地质勘查资料知本场区存在较厚的软塑性粘土层和粉砂地层,易造成缩孔和塌孔的事故,因而钻进时对泥浆性能要求较高。为了满足施工要求,在制作泥浆时,应注意以下几点:(1)膨润土必须充分水化搅拌,保证浆体均匀一致。造浆后应静置24小时之后方可使用,保证膨润土的充分水化,泥浆各项指标符合要求。(2)泥浆絮凝或沉淀过多时,泥浆必须用空压机送风反复搅动,符合要求后才可送入孔内使用,否则势必会造成孔内沉渣过多或其它孔内事故。(3)为了保证安全连续正常施工确保成孔速度、成孔质量及灌注成桩质量,开孔前泥浆总量应达到设计方量的1.5倍左右方可开钻,质检员、技术员要随时观察泥浆性能的变化,及时检测泥浆的性能,不符合设计要求的泥浆禁止送入孔内,钻进时及时足量补充孔内泥浆,防止孔内泥浆落差太大,即泥浆液面深度低于护筒进浆口30cm以下,而造成孔壁坍塌。尤其不允许浆面落到护筒底以下。在雨天施工时,应注意泥浆性能的变化,及时根据实际情况调整泥浆原料的配比。钻机因故停钻时(如机械故障、修理钻具等),要及时向孔内补充泥浆,保持泥浆高度,以保证孔内安全。二次清孔时沉淀池泥浆容量要大,保证清孔时孔内大量泥沙的有效沉淀,使二次清孔达到设计要求,禁止孔内泥浆低于护筒溢浆口。比重 粘度(S) 含砂量(%)1.05~1.20 16~22 ≤4(4)施工中做好现场泥浆配置、排污、更换工作,设专人进行泥浆管理,保持泥浆比重在1.05~1.20之间。随时跟踪、检查循环池内泥浆比重、粘度,确保钻进需要。泥浆指标如表: (5)对于固相含量过高,比重、粘度超过规定值,不宜稀释处理的废浆应及时排运出场外处理。(6)当地下水位较高时,为保证钻孔过程不坍孔、缩孔,必须保证孔内水头,且要将泥浆比重调大。在钻进过程中,要及时补浆,确保钻进过程中的水头高度。(7)在泥浆池边设好防护安全栏。(8)为了保护环境,钻孔泥浆经沉淀处理合格后将钻渣运往指定地点。(六)钻孔1、准备好以上工作后,请监理工程师现场检查,钻机开始钻进施工。2、由施工经验丰富的同志担任机班长,负责成孔钻进设备的操作,并对机长进行钻进注意事项交底,强调机长对地质状况进行掌握,要求将地质剖面图和柱状图悬挂在操作室,掌握每根桩的地质情况,根据实测深度并对照地层埋深,判断钻进进度,在地层变化处附近,捞取钻渣样品与地质资料核实,以精确控制换层时的钻进参数,确保成孔质量。3、开钻时应慢速钻进,待导向部位或钻头全部进入地层后,方可加速钻进。但是对于加夹层(粉砂层)钻进时,需要调整泥浆比重到1.2左右,并且采取慢速钻进的方法进行施工。4、旋挖机钻进过程中,钻杆要保持垂直状态,严格控制垂直度在规范允许范围之内。5、钻机钻进过程中应采用减压钻进,即钻机的主吊钩始终要承受的钻压不超过钻具重力之和(扣除浮力)的80%。6、要安排专人定时检查孔内泥浆水头高度,发现不足并及时足量补充。钻孔内泥浆水头高度应不低于护筒排浆孔下30cm,并高于地下水位2米。7、合理控制起钻和下钻时速度,避免激动压力和抽吸力对孔壁的影响。 8、在提钻头除土或因故停钻时,应保持孔内具有规定的水位和要求的泥浆相对密度和粘度。处理孔内事故因故停钻,必须将钻头提出孔外。对于地质状况发生大的变化,旋挖钻机不能钻进时,及时更换小钻头试钻,如果还是不能继续钻进,需要换旋转钻机或冲击钻时,立即派人24小时内调用钻机进场,确保孔壁不坍塌,或发生其他以外情况。9、做好钻孔施工记录,记录必须与实际工序同步,真实、齐全、整洁。孔深、钻速、换层特别是持力层应记录清楚。(七)成孔检测及清孔1、钻孔达到设计标高后,对孔深、孔径进行检查,符合规范要求后方可清孔,准备下钢筋笼。孔深采用测绳进行测量,测绳必须经常进行校正、修订,以保证测量准确。孔径采取下探孔器的方法进行检查,探孔器直径为钢筋笼直径+0.1m,探孔器的长度为设计直径的4~6倍。成孔深度和孔径不小于设计值,泥浆比重、含砂率及粘度由试验人员在现场进行测定,泥浆比重为1.05~1.20g/cm3以内,含砂率小于4%,粘度为16~22s,以上均符合要求后,并经监理工程师验收合格后,才允许钻机移位,并准备清孔、下钢筋笼。2、清孔可采用抽浆方法,在清孔排渣时,必须保证孔内水头高度,防止塌孔。清孔后孔底沉渣厚度不大于100mm,合格后在孔底提出泥浆式样进行性能指标试验,试验结果必须符合相关技术标准要求。钻孔桩成桩检测标准序号 项 目 允 许 偏 差1 孔 径 不小于设计孔径2 孔 深 不小于设计孔深3 孔位中心偏差 不大于50mm4 倾 斜 度 不大于1%5 灌注混凝土前孔底沉渣厚度 不大于设计要求(八)钢筋笼制作、安装1、钢筋笼所用钢筋规格、材质及各项性能指标均应符合设计及规范要求,有出厂证明或检验报告单。原材料进场堆放在钢筋底部衬垫枕木上,确保钢筋堆放离地面高30cm,保证底部排水畅通。钢筋放置过程中,需采用彩条布遮盖防雨防尘。现场施焊的焊缝应按规范要求并抽检试验。 2、设专用胎架和施工平台,按照设计图纸将钢筋笼按要求分段制作,加强箍筋间距按≤2m设置。3、钢筋加工严格按照设计图纸和相关技术规范的要求执行,主筋在制作前必须整直,整直后钢筋弯曲度应不大于长度的1%,并不得有局部弯折。主筋一般应尽量用整根钢筋,分段后的钢筋笼主筋接头应互相错开,接头长度内,同一根钢筋不得有两个接头,配置在接头长度内的受力钢筋,其接头截面积占总截面积百分率小于50%(接头长度为35d)。4、成型钢筋笼吊放、运输、安装,应采取预防变形措施,不得产生运输变形。为防止钢筋笼在吊装、运输、安装过程中变形,对钢筋笼加强筋处进行交叉加固,加固方式采取在钢筋笼内加十字撑的方式,并焊接牢固,当钢筋笼安装就位后将其拆除。钢筋笼分节起吊连接时,采用25t或35t汽车吊机大小钩配合起吊,并将吊点处采用扁担加固并起吊,以防止钢筋笼变形。5、按顺序逐节垂直下放钢筋笼,上下节钢筋笼各主筋应对准校正,节段间在孔口采用帮条焊接方式对称施焊,焊接长度满足规范要求。下钢筋笼时间要尽量缩短,并每隔2米在同一截面上按90度对称安置4个钢筋保护筋。6、桩基检测声测管采用Ф51mm热轧无缝钢管,壁厚3mm。安装声测管钢筋笼的要求将声测管伸入桩底部并用薄钢板堵焊,每隔2m用5号铁丝将声测管绑扎在主筋上及在加强钢筋上焊钢筋环固定,将声测管分节焊接,焊缝牢固、饱满,确保声测管不漏水、不泌水。将声测管内灌满水后,将上部用薄钢板堵焊,以防止钻孔泥浆或混凝土砂浆进入声测管而影响桩基检测。声测管焊接时,必须采用小焊条,防止将声测管焊破漏水。7、钢筋笼起吊时,吊点应拴牢并布置合理,使笼子吊起后处于自然铅垂状态,并无明显变形,下吊钢筋笼骨架过程中,不要碰撞孔壁,要采取措施让其沿孔中心垂直插入。在钢筋笼外侧焊设计图纸上的定位钢筋,以保证保护层的厚度。吊放钢筋骨架入桩孔时,均匀下落,保证钢筋笼居中。钢筋笼下到标高后,要检查钢筋笼顶部的中心偏差,使之<5cm,待全部入孔经确认符合要求后,将钢筋笼进行固定,避免下沉和灌注混凝土时上浮。8、钢筋骨架制安精度要求见下表:钻孔桩钢筋骨架制作安装标准序号 项 目 允 许 偏 差1 钢筋骨架在承台内埋置长度 ±100mm2 钢筋骨架直径 ±20mm3 钢筋间距 ±0.5d(d为钢筋直径)4 加劲筋间距 ±20mm5 箍筋间距或螺距 ±20mm6 钢筋骨架垂直线 1%(九)下导管、二次清孔1、下导管混凝土灌注导管采用快速卡口垂直提升导管。导管使用前进行试拼、水密承压和接头抗拉试验、长度测量、标码等工作,进行水密试验的试压压力不应小于6kg/cm2。导管内壁应光滑平顺,连接紧直,使用一段时间后,应检查其水密性。导管下孔时,必须加密封圈并抹黄油,保证密封,孔内导管必须丈量准确,满足孔深要求,下端出口处应距孔底20-40cm。吊装时,导管位于井孔中央,避免挂碰钢筋笼,并在灌注前进行升降试验。坚持实行导管使用的检查鉴证制度。提升导管时要掌握每次的提升高度,保证埋入深度2~6m,以免混凝土“洗澡”。卸下的导管要及时冲刷干净,绝不允许在连接处和丝扣处有水泥砂浆残留,并按一定编号放置。2、二次清孔导管就位后,立即进行第二次清孔,清孔采取气举反循环进行清孔,清孔后沉渣必须小于100mm才允许灌注混凝土。清孔时要适当转动和升降导管,以利于孔底边部钻渣清出,并注意空压机的送气量,以满足清出沉渣的要求。取泥浆样测试合格,并经监理共同检测孔底沉渣达标后应立即灌注混凝土,若等待时间过厂则在灌注混凝土前重新测定孔底沉淤厚度。(十)混凝土水下灌注1、桩身混凝土采用商品混凝土、砼搅拌车直接送入仓的方法施工。采用导管法进行水下灌注。2、灌注混凝土前应将灌注机具如储料斗、溜槽、漏斗等准备好。3、水下混凝土灌注必须保证良好的和易性,坍落度18cm~20cm,混凝土到达现场后,现场试验室值班技术员在现在再做坍落度试验。4、采用罐车运输混凝土至现场,直接倒入导管内进行灌注,混凝土接近桩顶时,改用吊斗倾倒以提高漏斗高度。5、灌注时要求首批混凝土方量应能满足导管首次埋置深度≥1m和填充导管底部的需要,具体首批混凝土计算见下式:所需混凝土数量可参考公式: V≥ (H1+H2) + h1式中:V-首斗混凝土方量(m3); D-桩孔直径(m); H1-桩孔底至导管底端间距,一般为0.4m;H2-初次导管埋深m,取1.0m; d-导管内径m; H-灌注混凝土时孔深度m; h1-桩孔内混凝土达到埋置深度H2时导管内部混凝土柱平衡导管外;根据公式HWr1=h1r2计算,其中r1为泥浆的比重,取1.1;r2为混凝土的比重,取2.4,h1按最大孔深度H计算,即考虑最不利情况。 桩径最大孔深度H布置及V的计算序号 直径(m) 最大孔深的墩位 最大孔深(m) h1(m) 导管直径(m) 首斗砼方量V(m3)1 1.0 Z154 57.5 25.7 0.28 2.72 1.25 Z171 53.0 23.7 0.28 3.23 1.5 Z140 53.5 23.9 0.28 4.06、混凝土通过砼搅拌车运送到作业地点后,用汽车起重机配合灌注。为了保证混凝土灌注顺利进行,施工中作好下列工作:(1)灌注水下混凝土前,探测孔底沉淀物厚度,如不能满足要求,则要利用导管按反循环法进行再次清孔。(2)砍球前准备足够的混凝土储备量,保证砍球后导管的埋置深度大于1m以上。(3)砍球前,导管距孔底的高度适当,一般取20~40cm。(4)灌注过程中,注意观察导管内混凝土面下降和孔内水位升降情况,及时测量孔内混凝土面高度。(5)导管埋置深度适当,保证埋置深度不大于6m ,且不小于2m。导管提升缓慢,不挂钢筋笼。(6)混凝土灌注到达钢筋笼底部以下约1m时,适当放慢灌注速度,减小混凝土的冲击力,防止钢筋笼上浮。当混凝土上升到钢筋笼底部以上4m左右时,提升导管,使其底口高于钢筋笼底部2m以上,可恢复正常灌注速度。(7)灌注作业连续进行,不得中途停顿,保证整桩在混凝土初凝期内灌注完成。(8)发现问题,及时分析原因,果断采取措施,避免发生断桩事故。(9)混凝土灌注至桩顶以后,超出设计桩顶30~50cm,然后及时将已离析的混合物及水泥浆等清除干净。(10)每桩按照规范要求取试件2~4组,当桩身混凝土达到其设计强度的70%后,检测桩身混凝土的质量。(11)钻孔桩质量控制标准见下表:钻孔灌注桩实测项目项 次 检 查 项 目 规定值或允许偏差值1 混凝土强度(Mpa) 在合格标准内2 桩 位(mm) 群 桩 100 排 架 桩 503 倾 斜 度 1%4 沉淀厚度(mm) 摩 擦 桩 符合设计要求及施工规范 支 承 桩 5 钢筋骨架标高(mm) ±50(十一)桩头处理及检测待桩基混凝土的强度达到设计强度时,处理桩头混凝土至设计标高,对每根桩都进行小应变检测或超声波检测。(十二)钻孔灌注桩施工的注意事项1、钻孔前熟悉图纸,弄清地质情况,根据地质情况确定钻孔的方案方法,对于地质结构为砂层的地层,施工时一定要调整泥浆比重,尽量保证在1.20左右,以使泥浆护壁可以起到保护孔壁的作用。2、钻孔前检查确认孔位地下是否有管线,光缆或其他物体。3、桩轴线的控制:钻机就位施钻时,将钻机底盘调成水平状态,开第一钻时,小心使锥尖对准设计中心,盖上封口板,卡上推钳,试转数圈,用全站仪监控钻杆垂直度,满足要求后,正式开钻,钻进过程中,随时有全站仪监控,保证倾斜度<1/100。4、碰到岩层无法钻进时,需要更换为回旋钻机或冲孔钻机进行施工。在开孔前就配备回旋钻机或冲孔钻机以备急用,以缩短钻孔的停放时间,避免坍孔或缩孔情况发生。5、旋挖钻机在钻进过程中,需要加长钻杆或依据地层更换钻头,在此间歇时间内,需要特别注意孔内情况,以防孔内坍孔。6、在钻孔时,钻机必须配置两套钻头以备更换,在钻进至粉砂层或砂层时,需要特别注意泥浆比重、孔内外水头差等,确保钻进安全、有效的进行。7、在桩基施工时,第一根桩基和第二根计划开钻的桩基要错开,需要跳开相邻桩位的桩基,待对角方向的桩基完毕后才开始施工相邻位置的桩基。8、在终孔和清孔后,应对成孔的孔位、孔深、孔形、孔径、垂直度、泥浆比重、孔底沉淀厚度等进行检验,要求满足设计规定。9、在桩基灌注过程中,必须配备一台砂石泵,如由于灌注过程中发生堵管、气阻或导管提离混凝土面,立即用砂石泵抽出已灌注混凝土,重新清孔后再进行灌注。10、对混凝土的强度、级配、坍落度及混凝土的流动性进行检查。混凝土拌合物应有良好的和易性,在运输和灌注过程中应无显著离析、泌水现象,混凝土保证有足够的初凝时间。灌注时应保持足够的流动性,其坍落度宜为180~200mm。混凝土拌和物中宜掺用外加剂、粉煤灰等材料;首批混凝土拌和物下落后,混凝土应连续灌注。11、必须对每根桩做好相应的施工记录,并按规定留取混凝土试验件,做出试压结果。将上述资料整理好,提交有关部门检查、验收。12、在所有的钻孔灌注桩完成以后,必须对施工场地进行清理,所有的钻渣和泥浆必须清理干净。(十三)钻孔及水下混凝土灌注过程中异常事故及处理办法1、坍孔原因分析:①护筒埋置过浅,周围封填不密漏水;②操作不当,如提升钻头或掏渣筒倾倒,或放钢筋骨架时碰撞孔壁;泥浆稠度小,起不到护壁作用;③泥浆水位高度不够,对孔壁压力小;向孔内加水时流速过大,直接冲刷孔壁;④在松软砂层中钻进,进尺太快。预防及处理措施:坍孔部位不深时,可改用深埋护筒,将护筒周围回填土,夯实,重新钻孔;轻度坍孔,可加大泥浆相对密度和提高水位;严重坍孔,用粘土泥膏投入,待孔壁稳定后采用低速钻进;汛期水位变化过大时,应采取升高护筒,增加水头或用虹吸管等措施保证水头相对稳定;提升钻头,下放钢筋管架应保持垂直,尽量不要碰撞孔壁;在松软砂层钻进时,应控制进尺速度,并用较好泥浆护壁。2、钻孔偏斜原因分析:①桩架不稳、钻杆导架不垂直,钻机磨耗,部件松动;②土层软硬不匀,致使钻头受力不均;③钻孔中遇有较大孤石、探头石;④扩孔较大处,钻头摆动偏向一方;⑤钻杆弯曲,接头不正。预防及处理措施:检查、纠正桩架,使之垂直安置稳固,并对导架进行水平与垂直校正和对钻孔设备加以检修;偏斜过大时,填入土石(砂或砾石)重新钻进,控制钻速;如有探头石,宜用用冲孔机低速将石打碎,倾斜基岩时,可用混凝土填平,待其凝固后再钻。3、卡钻原因分析:①孔内出现梅花孔、探头石、缩孔等未及时处理;②钻头被坍孔落下的石块或误落入孔内的大工具卡住;③入孔较深的钢护筒倾斜或下端被钻头撞击严重变形。预防及处理措施:对于向下能活动的上卡,可用上下提升法,即上、下提动钻头,并配以将钻杆左右拔移、旋转;卡钻后不宜强提,只宜轻提,经提不动时,可用小冲击钻锥冲或用冲、吸的方法将钻锥周围的钻渣松动后再提出;施工中注意保持护筒垂直,防止倾斜;钻头尺寸应统一,下钻应控制钻进速度,不要过快。4、扩孔及缩孔原因分析:①扩孔是因孔壁坍塌或钻机摆过大所致;②缩孔原因是钻锥磨损过甚,焊补不及时或因地层中有软塑土,遇水膨胀后使孔径缩小。预防及处理措施:注意采取防止坍孔和防止钻锥摆过大的措施;注意及时焊补钻锥,并在软塑地层采用失水率小的优质泥浆护壁;已发生缩孔时,宜在该处用钻锥上下反复扫孔以扩大孔径。5、沉碴厚度超标原因分析:清孔泥浆含砂率大、胶体率太小、比重过大。预防及处理措施:控制清孔后泥浆比重小于1.20,保证泥浆的粘度、含沙量、胶体率等满足规范要求,并进行二次清孔,直到满足设计要求。6、水下混凝土灌注时导管进水原因分析:首批混凝土储量不足,或导管底口距孔底间距过大,混凝土下落后不能埋住导管底口以致泥水从底口进入。预防及处理措施:将导管和钢筋笼提出,将散落在孔底的混凝土拌合物用空气吸泥机或抓斗清除,重新灌注。7、导管卡管原因分析:①初灌时隔水栓卡管,或由于混凝土本身的原因如坍落度过小、流动性差、粗骨料过大、拌合物不均匀产生离析、导管接缝处漏水、大雨中运混凝土未加遮盖使混凝土中的水泥浆被冲走,粗骨料集中造成堵塞;②机械发生故障和其他原因使混凝土在导管内停留时间过长,或灌注时间持续过长,最初灌注的混凝土已经初凝,增大了管内混凝土的下落阻力,混凝土堵在管内。预防及处理措施:准备备用机械、掺入缓凝剂,做好配合比,改善混凝土的性能。拔管、吸渣重灌。8、钢筋笼上浮原因分析:导管埋深控制不好。固定钢筋笼的撑杆刚度不够。预防及处理措施:控制导管底口的位置及埋深,在混凝土接近钢筋笼底口时,加大导管埋深,并减缓灌注过程;加强撑杆,增加钢管支撑。

水下灌注桩施工工程中的若干问题(清孔、泥浆护壁、防止钢筋笼上浮、坍孔、断桩)的研究我来帮你吧Q我

无机及分析化学 基础课 6 3 520 无机化学 基础课 4 1 140 基础化学实验 实验课 8 5 550 无机化学实验 实验课 8 5 280 物理化学实验 实验课 4 1 96 二、近五年实践性教学 课程名称、类别 时间(天 年) 学生届数 总人数 指导本科生毕业论文 100 4 11 大学生科技创新项目 100 1 2 毕业生工业实习 15 1 32 三、近几年发表的教学相关论文和出版的教材 1.刘永红.提高教师素质是推动素质教育的关键.华中农业大学学报(社科版),2006,2:110~112 2.刘永红,董元彦.全面的实验室教育.华中农业大学学报(社科版),2004,5:113~114 3.刘汉兰,董元彦,李学刚,刘永红.农林院校多层次化学实验教学模式的研究与实践.华中农业大学学报(社科版),2000,(增总2):92~93 4.左贤云,张方钰,刘永红.基础化学实验课程改革思考与实践.2000,( 增总2):96~98 5.董元彦,王运,张方钰,胡先文,张新萍,刘永红.创建精品课程提高无机及分析化学课程教学质量.河北师范大学学报(教育科学版),2006,8:272~273 6.陈浩,文利柏,岳霞丽,刘永红,江洪,廖水姣.修订《基础化学实验》大纲的体会几大纲特点.中国教育理论研究,2004,51:39 7.王运,钱美珍,文利柏,刘永红,陆冬莲.改革实验考核体系,提高实验教学质量.高等理科教育,2007.8 8.《基础化学实验》,面向21世纪课程教材,科学出版社, 2005年,参编 9.学习指导》,科学出版社,2006年,参编 10.《无机化学实验》,校内教材,2004年编印 11.《学习指导》,中国农业大学出版社。2008,参编 四、近五年获得的奖励 时间 奖项名称 授予单位 署名次序 2007 青年教师讲课竞赛优胜奖 华中农业大学 个人获奖 2005 教学质量三等奖 华中农业大学 个人获奖 五、近几年参与的学术研究课题 1.土壤表面电化学特征及其化学表现的研究,国家自然科学基金重大项目子项目,1999.1~2002.12,主要完成人(第三) 2. 铁铝氧化物与粘土矿物交互作用及其对红壤理化性质的影响,国家自然科学基金,2004.1~2007.12,主要参与人(第四) 3.磺酰脲类农药对藻类的生长效应研究,湖北省自然科学基金面上项目,2006.1~2007.12,主要参与人(第二) 4.盾壳霉所产抗水稻白叶枯病菌活性物质的结构鉴定及性质研究,华中农业大学科技创新基金,2007.1~2008.12,主要参与人(第二) 5. 不同电荷性质土壤上转Bt基因作物的根际效应及Bt蛋白残留,教育部,2006.1~2008.12,参与者 6.土壤和矿物对苏云金芽孢杆菌杀虫蛋白的吸附机理与影响因素,国家自然科学基金,2007.1~2009.12,参与者 7.土壤腐殖质与粘粒矿物相互作用机制及其表面性质的研究,国家自然科学基金,2007.1~2009.12,主要参与人(第二) 8. 利用改性活化磷矿粉钝化农田土壤重金属的研究与应用,863项目,2007.5~2010.10,主要参与人(第五) 六、近几年发表的学术论文 1.朱端卫,刘永红,尹业平.一种测定水合氧化物吸附硼热效应的新方法.华中农业大学学报,1999,18(2):143~146。 2.吴金明,刘永红,李学垣,董元彦,凌婉婷.我国几种地带性土壤无机胶体的表面电荷特性.土壤学报,2002,39(2):177~183。 3.刘永红,吴金明,董元彦,李学垣.土壤表面电荷测定的两种方法之比较.土壤学报,2003,40(5):745~749。 4.雷红军,刘永红,朱端卫,尹业平,后德家.双温度计法测定几种矿物与硼反应的热效应.土壤学报,2004,41(2):305~309。 5.谭文峰,刘永红,吴金明,胡钧、汪颖.应用原子力显微镜研究Pb2+在黑云母表面吸附的形貌.土壤学报,2004,41(6):976~977。 6.刘永红,盛利飞,董元彦,韦明元,鲁云.土壤和土壤矿物对氯磺隆的吸附.华中农业大学学报,2005,24(1):39~42 7.刘永红,叶发兵,岳霞丽,董元彦.铁氧化物的合成及其表征.化学与生物工程,2006,23(7):10~12 8.刘永红,岳霞丽,叶发兵,董元彦.Zn2+对铁氧化物吸附苄嘧磺隆的影响.安全与环境学报,2006,6(4):20~22 9.刘永红,叶发兵,岳霞丽,董元彦.pH及Zn2+对土壤和铁、铝氧化物吸附苄嘧磺隆的影响.环境与污染防治,2006,28(9):649~651 10.刘永红,叶发兵,岳霞丽,董元彦.铁、铝氧化物和土壤对吸附苄嘧磺隆的吸附.环境化学,2006,25(6):714~717 11.刘永红,董元彦,岳霞丽,李爱华.Zn2+在铁氧化物和土壤中的吸附.湖北农业科学,2006,45(6):734~736 12.刘永红,岳霞丽,叶发兵,董元彦.土壤及铁铝氧化吸附氯磺隆和苄嘧磺隆动力学研究.环境科学与技术,2007,30(1):1~2(13) 13.Yue XL, Yu XQ, Liu YH, Dong YY. Effect of bensulfuron-methyl on growth of chlorella pyrenoidosa. Agricultural Sciences in China,2007,6(3):316~321 14、刘永红,万信标,李爱华,董元彦.膨润土的改性及其对水体中Zn2+的净化.化学与生物工程,2007,24(3):34~35 15、刘永红,董元彦,叶发兵,岳霞丽,李爱华.苄嘧磺隆在土壤和黏土矿物中的吸附动力学研究.生态环境,2007,16(4):1103-1107 16、刘永红 等.土壤重金属污染及其修复技术研究进展.中国土壤学会11届代表大会论文集,北京,2008 联系方式: 湖北省武汉市洪山区狮子山街1号(华中农业大学理学院化学系)。

论文研究混泥土外加剂的意义

改善混凝土性能。

由于有了高效减水剂,大流动度混凝土、自密实混凝土、高强混凝土得到应用,由于有了增稠剂,水下混凝土的性能得以改善,由于有了缓凝剂,水泥的凝结时间得以延长,才有可能减少坍落度损失,延长施工操作时间,由于有了防冻剂,溶液冰点得以降低,或者冰晶结构变形不致造成冻害。才可能在负温下进行施工等。

扩展资料:

注意事项:

要注意水泥的品种及其矿物成份,特别是用硬石膏作调凝剂的水泥,以及骨料和水含碱量较高的材料,对外加剂的适应性较差,必须先做试验。否则 ,会发生碱,集料反应。

使用液体外加剂 ,注意将产品中带入的水分从拌合水中扣除 ,保持设定的水灰比。

掺用外加剂的混凝土,均需延长搅拌时间和加强养护 。

选用质量可靠的外加剂,混凝土外加剂是一种特殊产品,在混凝土中通常用量很少,但作用明显,因此产品质量特别重要。不允许有任何质量误差 ,否则一旦发生混凝土工程事故,后果不堪设想。

参考资料来源:百度百科-混凝土外加剂

混凝土过干时,需要加外加剂和少许水进行调整。调整后的混凝土应立即浇筑,时间过长,混凝土又会变干,而且更干(因为此时原先外加剂的作用已经发挥完毕,新加的外加剂对坍落度损失没有多大贡献,只是再释放出一些多余水,这时坍落度损失会加剧)。因此多在混凝土浇筑前在加外加剂进行调整,调完后赶快打。

混凝土外加剂:简称外加剂。在拌制混凝土过程中掺入用以改善混凝土性能的物质。掺量一般不大于水泥质量的5%。按主要功能分为四类:(1)改善混凝土拌合物流变性能的外加剂,包括各种减水剂、引气剂和泵送剂等;(2)调节混凝土凝结时间、硬化性能的外加剂,包括缓凝剂、早强剂和速凝剂等;(3)改善混凝土耐久性的外加剂,包括引气剂、防水剂和阻锈剂等;(4)改善混凝土其他性能的外加剂,包括加气剂、膨胀剂、防冻剂、着色剂、防水剂和泵送剂等。

外加剂是个大概念,范围太广。现在商混所用都是缓凝高效减水剂。顾名思义,延缓混凝土凝结时间和减水混凝土用水量,降低水灰比。延缓时间是便于施工,提高其工作性能,降低水灰比是降低成本,提高工作性能和提高强度。

关于水泥混凝土的研究发展论文

水泥混凝土路面断板原因及预防措施初探论文

摘要:本文结合工程实践,分析了水泥混凝土路面面板破坏的原因,并提出了防治水泥混凝土路面裂缝形成的工程措施。

关键词:水泥混疑土路面;破坏;成因;防治措施

随着水泥混凝土路面的使用到中后期容易逐步出现部分破坏,如开裂、断板、沉陷、错台等。为了进一步提高其质量,下面重点将水泥混凝土路面裂缝和胀、缩缝带来的病害做一研究。

1 水泥混凝土路面破坏的原因

第一,路面表面所出现的裂缝。主要原因是荷载应力、温度变化致使混凝土自身收缩产生的应力、以及混凝土面板与基层间强大的摩阻力超过了混凝土面板的抗拉强度而引起的。

第二,早期表面裂缝与早期断板。早期表面裂缝原因是由于混凝土表面早期过快失水干缩而引起的末完全断裂的表面性裂缝,大多发生在混凝土路面摊铺成型初期,裂缝规律不很明显。早期断板产生的原因较为复杂,主要发生混凝土路面成型初期,断裂规律比较明显,大多为横向裂缝,一般会贯通板底部。裂缝和胀、缩缝原因是预留胀缝不合理,填缝材料性能较差或收缩缝和切缝后,雨雪水通过缝隙灌入缝内,造成混凝土板底部冲刷发生病害。个别地段由于路基填料土质不均匀,湿度大,膨胀土、冻胀、排水设施不良等造成路基稳定性不足,产生沉陷,路面在受荷载时底部产生过大的弯拉应力,导致混凝土路面破坏。

第三,温度的应力变化是裂缝和胀、缩缝病害形成的另一种原因。4m*5m混凝土板块在夏天3 0℃~4 0℃的气温条件下,地表温度达到6 0℃左右时,由于板块内温度应力的作用,使其发生四角的翘曲,板块发生盆状变形,四周的板块填缝材料被扰动。这样的长期高温天气,昼夜温差的变化,板块也在不断发生变化。在盆状变形状态下重载车通过时发生翘板性跳动,将填缝材料压出,遇雨天进入雨水,会出现混凝土板底部冲刷发生卿浆病害。

第四,在水泥混凝土路面使用期内,嵌缝材料主要受到拉伸和翦切两种作用。嵌缝料的拉伸是指水泥混凝土路面板温度下降引起的板收缩而导致了按缝的张开。剪切是指汽车行驶经过接缝时,受荷载板与相邻的未受荷载板的竖向位移差也导致了接缝的张开。当路面和填缝材料发生重度损坏,板下垫层长时间受水的冻融侵害和高速重载的作用,形成一种活水冲刷,由于冲刷的反复作用,将混凝土板下灰土从板缝挪出,即出现卿浆,灰土卿浆后在重载车的反复作用下将粒料磨成泥浆逐渐唧出,板下出现掏空,掏空到一定面积后4mx5m的板块出现跳板现象或重载车通过时发生断裂,严重时会影响行车。

2 水泥混疑土路面裂缝和胀、缩缝的预防措施

为避免裂缝产生,应严格按设计、施工、验收规范组织精心施工。

2.1 位置缝

2.1.1 混凝土路面施工缝应尽可能设置于构造物处,当不能避免时,应保证施工缝接缝处两侧面板混凝土的振捣密实,并有足够的间隔时间,以形成强度。

2.1.2 当与原有混凝土路面相接时,应采用机械将原路面连接缝处切割整齐,并清除表面浮尘及松动石子,用水将连接缝处清洗干净。

2.1.3 水泥混凝土路面为刚性路面,纵横缝应及时填充材料,填料应与板的粘结力强,适应混凝土面板的`收缩。如氯丁橡胶、沥青玛蹄脂等。加强养护管理,防止渗水,避免杂物进入缝内。

2.2 施工缝

2.2.1 避免高温作业,温度宜控制在35度以下,注意昼夜温差,并掺减水剂等外加剂以保持应有水份。

2.2.2 避免大风天气施工,防止表面水份丧失过快。

2.2.3 水泥混凝土终凝后即覆盖稻草等并充分洒水养护或大面积喷洒养护剂,防止水份丧失过快,产生干缩裂缝。养护时间由水泥混凝土强度增长情况而定,一般应在半个月至20天左右,并不得少于七天。

2.2.4 控制水泥混凝土搅拌质量和速度,做试验段,求取施工参考值并借鉴其它已完成公路的施工控制。

2.2.5 加强施工自检,严格控制基层平整度,使其符合规范要求。

2.2.6 清除基层表面积水,严禁洒用生水。

2.2.7 做软弱基础处理专项设计,薄弱部位可用钢筋网补强并加强碾压质量。

2.2.8 计算水泥用量,控制水泥含量合理范围,参考其它路面,做试验段取得充分的科学数据。

2.2.9 为满足混凝土路面重载交通的强度要求,可根据规范采用钢纤维混凝土路面等特殊路面型式,以提高路面混凝土的强度,达到设计要求。

2.2.10 注意水泥质量,实现设计目的,完成设计意图。

2.2.11 注意混凝土配合比的实际选用值要结合施工现场求得。

2.3 材料缝

2.3.1 利用同一厂家同一标号的水泥。

2.3.2 使用同一性能的钢筋,纵、横向钢筋直径尽可能保持一致。

2.3.3 严格控制材料购进渠道,必须通过实验来严把质量关,不合格材料一定要清除出场。

2.3.4 使用合格水泥,使用免检产品,使用名优水泥。

2.3.5 注意水泥混凝土的初凝时间,搅拌站距摊铺现场距离不能过远,保证运输过程中的规范性。

2.4 选择合格的原材料。

选用强度高、收缩性小、耐磨性强、安垒性好的水泥,可减少混凝土成型早期的收缩变形,提高混凝土的抗弯拉强度。

粗集料选用反击破生产的连续级配碎石,最大粒径不大于31.5mm(方孔筛),针状片含量不大于15%。碎石宜采用强度高、抗温差能力强的非活性骨料,以防止碱性骨料产生混凝土裂缝及强度下降等不良现象。

选择合理的混凝土配合比。混凝土配合比是混合料的灵魂,必须满足强度,耐久性,经济性的要求。施工中混凝土配合比的强度以大干设计强度的10%-15%为宜,水灰比0.4-0.48为宜,塌落度1.8-2.0cm为宜,含砂率30%~35%为宜,混凝土24h弯拉强度应不低于3.0MPa。集料含水量应根据实测值及时准确调整。为确保水泥、集料、水的准确用量,混凝土配料应采用电子自动计量。

2.5 做好施工工艺的控制。

水泥混凝土路面施工时,由于浇筑混凝土水分的蒸发,体积在收工后改缩,会将路面板拉断。为防止路面裂缝、断板,控制切缝时间十分关键。根据我们的经验:在平均气温7摄氏度左右时,养护时间花10天切缝比较合理:在平均气温14摄氏度左右时,养护时间在7天切缝比较合理。在平均气温20摄氏度左右时,养护时间在3天切缝比较合理。水泥混凝士路面分格切缝时要尽量花4mx5m之间分格,以减轻温度应力对板块的破坏。

选择适宜的摊铺时间。为避免温差应力造成开裂断板,必须选择日照温度不高,风力不大,且温度变化不大的时间段进行摊铺。

为防止板边裂缝,混凝土面板纵、横向自由边缘部分应增加补强钢筋,正确安装传力杆。边缘钢筋一般选用2根12号-16号的钢筋,布置在板的下部,距面板底部一般为板厚的1/4,并不小于5cm,间距10cm,钢筋两端应向上弯起,钢筋保护层应不小于5c m。传力杆应与道路中心线平行、传力杆应按设计要求,使用高塑料套管和涂沥青隔层。

加强混凝土面板早期养护。宜采用麻袋或草帘覆盖,酒水进行湿润方法养护,确保养生时期混凝土板面始终湿润,养生时间不少于14天。养生期间加强交通管制,严禁车辆通行。

为阻止缝内灌水,填缝料应选用与混凝土板壁粘结力强、回弹性好、能适应混凝土板的胀缩,不溶于水和不渗水、高温不溢出、低温时不脆裂和耐久性好的材料填充。接缝板应选用能适应混凝土面板膨胀收缩,施工时不变形、耐久性良好的材料。

综上所述,水泥混凝土路面的裂缝和胀、缩缝原因是多方面的,但只要我们从原材料、混凝土配合比、施工工艺水平等各个方面上严格把关,采用综合的防治措施,水泥混凝土路面的裂缝与断板是可以有效控制及避免的。

绿色高性能混凝土建筑材料可持续发展的设想 多年来,关于混凝土材料的研究和对其发展方向的制定,过于偏重于使其达到某种或综合的优良性能这一基本原则上,而对其耐久性重视程度不够。90 年代初高性能混凝土概念提出后,促使人们加强了对混凝土材料的施工性和耐久性的研究,而绿色高性能混凝土则是将单纯的材料性能的获得与建筑材料的可持续发展综合考虑时的必然方向。1 绿色高性能混凝土 高性能混凝土应该具有下列某些或多项优良性能: (1) 优良的施工性:能在正常施工条件下保证混凝土结构的密实性和均匀性,并尽量降低振动噪音和振实能耗; (2) 强度高:尽量减少肥梁胖柱,并要考虑到建筑的美学效果和结构挠度以及功能等方面的要求; (3)耐久性优良:如抗冻性、抗渗性、抗冲击性、抗水砂冲刷性等; (4) 具有某些特殊功能:如超早强、低脆性、高耐磨性、吸声、自呼吸性等。尽管在开发应用高性能混凝土的过程中,一般都要使用高性能外加剂和性能优良的掺合料,在一定程度上可以起到节约水泥从而节约资源和能源、保护环境的作用,但高性能混凝土的提出者及研究开发者都很少从环境保护、节约资源和能源的高度来认识这一问题,过分强调在任何工程中都使用高强混凝土,无凝是对宝贵而有限的地球资源和能源的浪费。 最早提出绿色高性能混凝土概念的是中国工程院院士吴中伟教授。简要地说,符合以下条件的高性能混凝土才真正能称得上是绿色高性能混凝土: (1) 所使用的水泥必须为绿色水泥,砂石料的开采应以十分有序且不过分破坏环境为前提; (2) 最大限量地节约水泥用量,从而减少水泥生产中的“副产品”———CO2 、SO2 和NOx 等气体,以保护环境; (3) 更多地掺加经加工处理的工农业废渣,如磨细矿渣、优质粉煤灰、硅灰和稻壳灰等作为活性掺合料,以节约水泥保护环境,并改善混凝土耐久性; (4) 大量应用以工业废液,尤其是黑色纸浆废液为原料改性制造的减水剂,以及在此基础上研制的其它复合外加剂,帮助其它工业消化处理难以处治的液体排放物; (5) 集中搅拌混凝土,消除现场搅拌混凝土所产生的废料、粉尘和废水,并加强对废料、废水的循环使用; (6) 发挥高性能混凝土的优势,通过提高强度,减小结构截面积或结构体积,减少混凝土用量,从而节约水泥和砂、石的用量;通过改善施工性能来减小浇筑密实能耗,降低噪音;通过大幅度提高混凝土耐久性,延长结构物的使用寿命,进一步节约维修和重建费用,减少对自然资源无节制的使用; (7) 对大量拆除废弃的混凝土进行循环利用,发展再生混凝土。2 绿色高性能混凝土的原材料 尽管绿色高性能混凝土是一种相对节能的建筑材料,但随着世界水泥年产量和混凝土浇筑量的不断增加,它对资源、能源和环境所产生的影响是非常惊人的。据估算,生产1t 水泥熟料所排放的CO2 约为1t ,同时还要排放SO2 、NOx 等有害气体,CO2 的大量排放直接导致“温室效应”,而SO2 、NOx 等气体的排放则会引起“酸雨”现象,由于收尘设施不佳,水泥生产还排放出大量粉尘,水泥厂一直被看作环境污染源;水泥工业也是耗煤、耗电大户,水泥的大量生产和应用还将导致地球矿产资源的匮乏和生态平衡的破坏。因此,混凝土能否长期作为最主要的建筑材料,不仅要求其具备在耐久性、施工性和强度等方面的高性能,而且最关键之处在于其绿色“含量”是否高。水泥虽然只占混凝土所有原材料质量的10 %~20 % ,但水泥工业生产中所消耗的能量是最多的,几乎占混凝土能耗的50 %~60 %;混凝土从原材料生产加工到浇筑成型的整个过程中,水泥工业是排放粉尘和有害气体的最大的污染源。 因而,发展绿色高性能混凝土的首要条件是生产和使用节能型、环境污染少的绿色水泥。“绿色”型水泥生产是将资源利用率和二次能源回收率均提高到最高水平,并能够循环利用其它工业的废渣和废料;技术装备上更强化了环境保护的技术和措施;产品除了全面实行质量管理体系外,还真正实行全面环境保护的保证体系;粉尘、废渣和废气等的排放几乎接近于零,真正做到不但自身实现零污染,无公害,又因循环利用其它工业的废料、废渣,而帮助其它工业进行三废消化,最大限度地改善环境。3 开发研制和应用绿色高性能混凝土尚需进行的工作 绿色高性能混凝土从原材料到具体工程应用涉及到的部门和环节很多。实现水泥生产“绿色化”一个环节是不够的,必须同时开展如下工作: 第一、要加强混凝土科研开发、标准制定、工程设计和施工人员等的环保节能意识,加大“绿色”概念的宣传力度,引起混凝土工程领域各环节的高度重视。 第二、工程设计人员应更新传统的混凝土设计方法,敢于在重大工程中掺用活性混合材料和加大掺量;施工人员要提高质量意识,严格施工,加大活性混合材掺量对混凝土各项性能所产生的益处已众所周知,但未被工程界充分重视。比如,对粉煤灰的应用问题,尽管科研工作者早就着手大掺量粉煤灰混凝土的研究,但目前即使在商品混凝土中粉煤灰的实际掺量一般也只有15 %左右,很少超过20 %。有人曾研究过粉煤灰替代率为35 %~50 %的低强度等级混凝土(14MPa)的性能,认为可大量用于道路的路基,大掺量粉煤灰混凝土,尤其适合于大体积混凝土工程和海工混凝土工程。再如针对混凝土材料的耐久性,人们并没有象所期望的那样加大活性混合材的用量,控制某些种类防冻剂和早强剂的掺量,或者重视低碱水泥的使用,以致范围广泛的混凝土工程碱集料破坏现象仍很严重。 第三,研究对工业废渣行之有效的加工方法、加工设备,以期充分利用其活性;在工业废渣利用方面,还要坚持贯彻优质优用的原则,即超细磨矿渣和优质粉煤灰主要用于配制高强度混凝土,而配制中低强度等级混凝土一般仍应采用普通细度矿渣或低等级粉煤灰。 第四,开发适合于掺活性混合材混凝土的高性能外加剂,以解决掺混合材对混凝土性能产生的某些负面效应,同时还可避免过分提倡混合材超细磨所引起的能耗问题。通过掺用合适的高效减水剂和引气剂,可配制出各种性能相当优异的混凝土。对于大掺量普通细度活性混合材的混凝土,通过掺加有效的激发剂,有望改善其早期强度,但应严格限制激发剂中C1 和SO2的含量,或禁止使用这类激发剂,以免引起钢筋锈蚀或碱集料反应。 第五,研究一种或多种活性混合材和外加剂与水泥矿物成分的超叠加效应,以便针对具体材料提出最佳设计方案。 第六,对纸浆黑色废液进行加工处理,开发以纸浆废液为主要原材料的各种外加剂,并扩大其使用范围,长期以来,黑色纸浆废液一直是导致我国长江、黄河流域以及其它河道水质严重污染的“元凶”。我国大约有9000 多家造纸厂,每年产生的黑色废液大约有30 亿~90 亿t ,绝大多数厂家都把未经处理的废液直接排放到江河中,造成的污染十分惊人———竟占我国所有化工污染的1/ 4 ! 尽管国家已对部分厂家实行了关停并转,但处理纸浆废液的任务仍刻不容缓。利用纸浆废液来制取混凝土减水剂不仅可以节省工业萘的消耗,降低成本,最重要的是可帮助造纸厂处理并循环利用废液,减少其对环境、工农业生产以及人身健康造成的巨大危害。 第七,研究和制定绿色高性能混凝土的质量控制方法、验收标准等,绿色高性能混凝土都要求掺加活性混合材,然而,除硅灰和稻壳灰等外,活性混合材对混凝土强度的贡献主要在后期。如果仍沿用普通混凝土质量控制方法和验收标准,即以28 d 抗压强度来衡量混凝土的质量,则不符合实际情况,势必要造成强度和材料的浪费,也影响绿色高性能混凝土生产者的积极性,使绿色高性能混凝土难以推广,这与混凝土“绿色化”的真正目的是背道而驰的。另外,绿色高性能混凝土要求混凝土具有较为优良的耐久性,但对混凝土质量评定的传统和现行的标准只考虑强度,而对耐久性指标一般不予考虑,希望新标准中增加耐久性指标。 第八,应针对当前城市改造过程中大量拆除旧结构物混凝土,研究出一整套破碎、分级技术,开发再生混凝土,用于浇筑强度要求相对较低的地坪、中低等级混凝土路面、路基等工程。

旧水泥混凝土路面碎石化技术应用的探讨工学论文

摘 要:旧水泥混凝土路面碎石化技术应用,碎石化技术是目前旧水泥混凝土路面维修改造最好的技术之一。

关键词:碎石化技术;施工质量标准;结构组合;使用条件

1 概述

1.1碎石化的定义

水泥混凝土路面碎石化是一种旧水泥混凝土路面破碎处治技术,是对旧水泥混凝土路面大修或改造的重要手段。该技术是将旧水泥混凝土路面的面板,通过专用设备一次性破碎为咬合嵌挤碎块柔性结构,可充分利用旧路残余强度,且保护环境,节约资源。这种结构不仅具有一定的承载力,而且具有有防止或限制反射裂缝发生、发展的作用,破碎后的粒径范围为2~40cm,力学模式趋向于级配碎石。

1.2碎石化技术的主要特点

通过破碎将旧水泥混凝土路面结构强度降低到一定程度,防止反射裂缝的发生,同时能实现结构强度与反射裂缝两者较好的平衡。旧水泥混凝土路面进行碎石化后具有以下特点:碎石化能使原水泥混凝土板块在平面上强度分布均匀;碎石化能保留原水泥混凝土路面的一定强度;碎石化能可以消除原水泥混凝土路面病害;碎石化后的粒径合理,不会产生应力集中现象。

1.3碎石化技术的主要优势

旧水泥混凝土路面碎石化后,可以直接作为新路面结构的基层或底基层,如果旧水泥混凝土路面碎石化后具有较高的强度,能够满足道路承载要求,可作为路面基层直接加铺路面面层,新加铺面层可以是沥青混凝土路面,也可以是水泥混凝土路面。

1.4碎石化技术专用设备及特点

实施碎石化的主要设备为MHB(Multipe-Hed Breaker)多锤头破碎机和Z型压路机。

多锤头破碎机(MHB)由两部分组成,前半部分为柴油发动机动力系统,后半部分为破碎系统,中间备有2排各3对650kg的锤头,两侧各有1对865kg翼锤。每对锤头的'提升高度可以根据需要随意调节,其最大提升高度110cm。

MHB的破碎机理是通过重锤的下落对水泥混凝土板块产生瞬时、点状的冲击作用,其具有以下特点:整幅车道宽度单次多点破碎;锤击功可以方便调节;破碎效率很高;破碎后颗粒组成特性较好;破碎后的表面平整度较高;方便调节,作业灵活。

Z型压路机是一种在钢轮表面带有Z状纹理的振动式压路机,自重不小于10吨,其作用是进一步碾压碎石化后的路面,为加铺提供一个平整的表面。

1.5石化技术的强度形成机理

水泥混凝土路面碎石化后分为表面细粒散层、碎石化层上部和碎石化层下部三个层次。

(1)碎石化后表层约2~5cm,在压实过程中,颗粒被压密,形成嵌挤薄层,通过洒布透层油,具有较高的黏结力,并具有一定的强度和稳定性;

(2)碎石化层上部厚度约10cm,强度主要有:一是来源于内摩阻角,粒径越大则内摩阻角越大;二是来源于预应力,水泥混凝土面板在破碎时,混凝土产生侧向体积膨胀,混凝土颗粒的粒径越小,膨胀趋势越大,产生的预应力越大;

(3)碎石化层下部厚度约10cm,是“裂而不碎、契合良好、联锁咬合”的块体结构,该结构静定且自稳,具体表现形式为各种形式的咬合梁、拱结构,在外力作用下产生咬合嵌挤作用,比普通嵌锁作用更大,提供的强度更高,具有更好的结构稳定特性。

2 MHB碎石化施工质量标准

2.1路面碎石化后的粒径范围要求

水泥混凝土板块一般在20~26cm之间,破碎后顶面粒径较小,下部粒径较大。路面碎石化后的粒径是控制基层强度及新加铺路面不出现早期反射裂缝的关键参数,作为控制碎石化工艺的关键指标,参照国外资料及国内研究成果,碎石化粒径应满足表要求。

2.2路面碎石化后顶面的当量回弹模量和回弹弯沉要求

水泥混凝土路面碎石化后顶面的当量回弹模量是新加铺结构设计的基本参数之一,一般情况下,对于直接加铺沥青混凝土的路面结构,回弹模量平均值宜控制在150~500MPa之间。碎石化后的回弹弯沉与回弹模量之间存在着联系,在将碎石化后的板块及其下结构层视为同种材料构成的情况下,可以参照路面补强公式得到:

Ez=(1000pD/l0)m1m2

式中:p-弯沉测定车的轮胎压力;

D-与弯沉测定车双圆轮迹面积相等的承载直径;

l0-原路面计算弯沉;

m1-用标准轴载汽车在原路面上测得的弯沉值与用承载板在相同压强条件下所测得的回弹变形值之比,即轮板比,一般取1.1;

m2-原路面当量回弹模量扩大系数。

2.3 MHB碎石化施工质量标准及检测频率

为满足直接加铺面层的技术要求,保障加铺层施工质量,根据课题研究和实验路的测试,结合路面设计的规范要求,提出MHB碎石化施工质量标准及检测频率。

碎石化层作为基层直接加铺沥青路面,目前我国技术规范中没有相应规定,本技术指标要求是在参考我国现行技术标准《公路路面基层施工技术规范》(JTJ034-2000)和原技术标准(JTJ034-93)的基础上,结合实验路的实际情况提出的,具体实施中可以灵活掌握。如果碎石化层的表面平整度与上述要求差异较大,在铺筑沥青路面前,必须进行处理。处理措施主要有:

(1)据平整度情况合理合理选择沥青混合撩的型号;

(2)填充级配碎石找平、碾压后洒布热沥青或乳化沥青,再进行压实;

(3)采用其他合适的技术措施进行找平。如果不进行找平,可能会影响沥青路面的平整度,影响路面的使用效果。

3 碎石化后沥青加铺层结构组合

3.1结构组合的原则

研究表明,工程中可能出现的碎石化后颗粒粒径或回弹模量的不同情况,可采用的结构组合原则有:

(1)碎石化施工中应尽量参照推荐的颗粒粒径和回弹模量推荐范围进行破碎,在此范围内时,沥青加铺层要求采用密级配沥青混凝土,并可考虑加铺防水封层;

(2)当碎石化后颗粒粒径稍偏大、回弹模量偏高时,可考虑采用开级配大粒径透水性沥青碎石(简称为LSPM)加防水封层的结构组合方式,其上沥青混凝土仍需采用密级配;

(3)当碎石化后颗粒粒径稍偏小、回弹模量偏低时,要保证加铺层总厚度,可考虑设置FDAC抗疲劳层,以防止疲劳开裂,其他沥青层仍需采用密级配;

(4)回弹模量小于120MPa时需要考虑增设补强层,按照新建路面结构设计。 3.2沥青加铺层四种机构组合方式

(1)作透层、封层后,直接加铺上、中、下面层的密级配沥青混凝土;

(2)加铺LSPM,然后采用两层两面的形式;

(3)加铺抗疲劳层后,再加铺沥青混凝土;

(4)加铺无机结合料稳定类基层,然后加铺沥青面层。

根据研究成果,碎石化后的回弹模量大致可分为5个级别,相应的加铺结构组合形式可按表3标准选取。

4 碎石化技术适用条件和注意问题

4.1碎石化技术的使用条件

4.1.1碎石化的技术条件

碎石化技术是旧水泥混凝土路面重建技术的主要方案之一,国内外研究和工程实践证明,只要旧水泥混凝土路面满足表4所列条件,就可以应用碎石化的技术进行重建改造。其他因素如板块断裂程度、坑洞、接缝损坏、表面裂缝与层状剥落等不是决定应用碎石化技术的必要条件。

4.1.2碎石化的经济条件

碎石化工艺应用与原路面补修存在经济平衡点,这个平衡点可用修补比率来反映,国外算例中修补比率为13%左右,山东的经济平衡点是修补面积为20%~25%时,进行破碎改造更为经济。

4.2直接加铺面层时的技术要求

水泥混凝土路面碎石化后直接加铺沥青面层时,应遵循如下原则:

(1)回弹模量平均值一般在150~500MPa左右,部分原路面水泥混凝土材料较好时,回弹模量会更大,现场测试中出现个别值在600MPa、700MPa的情况,进行上部结构设计时,必须将弯拉指标作为主要设计指标;

(2)等级较高的公路上,碎石化层上的沥青混凝土结构一般不宜小于12cm;

(3)实验段已用于80%(整幅路面)断板的水泥混凝土路面,80%以下断板时使用不会有问题;

(4)上面层必须密级配防水型沥青混合料;

(5)必须完善排水设施;

(6)在碎石化程度较高,测试回弹模量数据较小时,应注意下面层的抗疲劳特性。

4.3碎石化技术应用的注意问题

在满足技术、经济条件要求的前提下,应用MHB进行碎石化前还需要综合考虑以下因素:

(1)水泥混凝土路面基层的破坏程度决定了其碎石化施工的颗粒控制和工艺要求。对于损害严重的水泥混凝土路面,必须判断其基层状态。一般情况下,基层破坏程度越高。破碎后粒径越小。

(2)水泥混凝土路面基层的破坏程度是判断严重病害路面是否可用碎石化工艺的重要标准;当基层严重破坏时,碎石化后板块容易丧失颗粒间的嵌挤作用,导致模量下降,容易导致沥青路面层出现疲劳破坏。此时应用碎石化,应注意提高上部路面结构设计安全性。

(3)排水设施是碎石化的必须辅助工程。完善排水设施是防止碎石化后沥青加铺层再次发生水损坏的重要措施。

这里所有要求,共同构成碎石化技术的应用条件和决策依据,是确定旧水泥混凝土路面能否实施碎石化技术以及能否直接加铺沥青混凝土面层的必要条件。

结语:重点就碎石化使用条件、强度机理、加铺层组合、施工质量标准及检测频率的关键技术进行介绍,为旧水泥混凝土路面改造提供参考依据。

参考文献

[1]水泥混凝土路面碎石化改造技术应用与探讨[J].北京:公路,2004.5.

[2]大碎石沥青混合料柔性基层在老路补强中的应用研究[J].西安:中国公路学报,2004.3.

[3]水泥混凝土路面碎石化中MHB设备应用[J].北京:公路交通科技,2005.3.

[4]旧水泥混凝土路面碎石化后的沥青加铺层设计[J].北京:公路交通科技,2006.2.

[5]国外水泥混凝土路面碎石化技术简介[J].北京:公路,2003.9.

水煤浆添加剂的研究毕业论文

水煤浆气化技术论文篇二 德士古水煤浆气化技术的特点及应用 【摘要】水煤浆气化技术在我国由来已久,近年来,德士古水煤浆气化技术在我国的发展更为的迅速,其技术应用的范围也在不断的扩大,德士古水煤浆气化技术具有很多优点,因此,其应用还有待于进一步开发。本文将从以下几个方面来分析德士古水煤浆气化技术的特点及应用。 【关键词】德士古水煤浆气化技术;特点;应用;分析 中图分类号:X752 文献标识码:A 文章编号: 一、前言 目前,国内水煤浆气化的应用还存在一定的问题,选用何种技术成为了主要的关注点,因此,研究德士古水煤浆气化技术的特点及其在我国的应用具有很深远的现实意义。 二、煤气化原理及发展趋势 1、煤气化的原理 煤的气化反应是指气化剂(空气、水蒸气、富氧空气、工业氧气以及其相应混合物等)与碳质原料之间以及反应产物与原料、反应产物之间的化学反应。在气化炉内,煤炭要经历干燥、热解、气化和燃烧过程。 (一)湿煤中水分蒸发的过程: (二)热解(干馏)是煤受热后自身发生的一系列物理化学变化过程。一般来讲,热解的形式为:煤 煤气(CO2,CO,CH4,H2O,H2,NH3, H2S)+焦油+焦炭 (三)气化与燃烧过程。仅考虑煤的主要元素碳的反应,这些反应如下: a.碳-氧间的反应; b.碳-水蒸气间的反应; c.甲烷生成反应; 需要指出的是,以上所列诸反应为煤气化和燃烧过程的基本化学反应,不同过程可由上述或其中部分反应以串联或平行的方式组合而成。 2、煤气化技术的发展趋势 现代煤炭气化技术发展趋势如下: (一)气化压力向高压发展。气化压力由常压、低压(<1.0MPa)向高压(2.0-8.5MPa) 气化发展,从而提高气化效率、碳转化率和气化炉能力。 (二)气化炉能力向大型化发展。大型化便于实现自动控制和优化操作,降低能耗和操作费用。 (三)气化温度向高温发展。气化温度高,煤中有机物质分解气化,消除或减少环境污染,对煤种适应性广。 (四)不断开发新的气化技术和新型气化炉,提高碳转化率和煤气质量,降低建设投资。目前碳转化率高达98%-99%,煤气中含CO+H2达到80%-90%。 (五)现代煤气化技术与其他先进技术联合应用。 (六)煤气化技术与先进脱硫、除尘技术相结合,实现环境友好,减少污染。 三、国内应用上存在的问题与解决措施 1.存在的问题 (一)气化效率仍然低 当前在国内,在燃烧上多采用单喷嘴直喷的模式,像德士古炉,而华东理工大学则采用多嘴对喷,后者的改进虽然增强了利用的效率,但是其对耐火砖的损坏也相应的加大了。在整个气化装置中,采用单个喷嘴时,其容量受到了限制,这就制约了水煤浆气化的转化效率。当采用多对喷嘴时,喷嘴的寿命也同时受到了考验,在雾化方面的效果仍然不能得到完全的控制。 (二)耐火砖的寿命短 水煤浆中本身存在34%左右的水,它的存在会吸收大量的热,在转化过程中,反应的进行使得化学平衡容易遭受破坏,因此,在设计上安排了耐火砖来作内衬。耐火砖专为改善水煤浆气化而来,所以,好的耐火砖将会对气化产生重要的作用。而在实际转化过程中,耐火砖十分容易损坏,当转化炉的操作温度过高时,它将直接烧坏耐火砖。 (三)煤炭质量的影响在现今的转化中,煤浆的混合制成,也对煤中含灰量和灰熔点有着特定的要求,当煤的质量不能满足水煤浆的合成时,其气化的效果将降低,同时,在进一步的燃烧中,由于可燃物含量的低下使得将要获得热能减少。 四、德士古水煤浆气化技术工艺 水煤浆制气的德士古工艺见图 1: 五、德士古水煤浆气化技术特点 德士古加压水煤浆气化工艺与第一代煤气化工艺相比,主要是提高了气化压力和温度,从而改善了技术经济指标。扩大了煤种的适应范围,该气化炉属于喷流气化,以水煤浆方式进料,其气化压力为2.0~8.5MPa。 主要工艺特点如下: 1、煤种适应性强,主要以烟煤为主,对煤的活性没有严格要求,但对煤的灰熔点有一定要求。 2、水煤浆用泵连续输送,故气化炉操作稳定性好,输送方便并有利于环境改善。 3、碳转化率高达96%以上,排水中无焦油、酚等污染环境的副产物产生,同时煤气中甲烷含量低,是较为理想的合成原料气。 4、气化在加压下进行,气化强度高,设备体积小,布置紧凑而且能耗较低。 5、气化炉内无转动部件,其结构简单、可靠。 6、气体在气化炉内停留时间短,仅为几秒钟,因而气化操作弹性大。 7、气化炉高温下排出之熔渣性能稳定,对环境影响小。 德士古水煤浆气化技术,与无烟煤间歇气化及鲁奇(Lurgi)气化技术相比具有明显的优越性。该法常以灰融点低活性较好的煤质为主,对煤种有较宽的适应性。适宜于作生产合成氨和甲醇的原料气。因而该技术引入我国以后,引起合成氨企业及各界人事的普遍关注。 六、德士古水煤浆气化的应用 目前我国采用该技术的在运行装置有20多家。鲁南化肥厂、上海焦化厂、陕西渭河化肥厂、安徽淮南化工厂和黑龙江浩良河化肥厂是国内使用德士古水煤浆气化炉较早的厂家,德士古水煤浆气化炉的部分应用情况见表 1。 表 1 德士古德士古水煤浆气化的应用状况 七、水煤浆气化工艺前景展望 德士古加压水煤浆气化技术虽然是比较成熟的煤气化技术,但从已投产的水煤浆加压气化装置的运行情况看,由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多。 1、气化炉烧嘴运行周期较短,一般不超过 3 个月,这是造成德士古装置必须有备炉的主要原因; 2、耐火砖使用寿命国产约 1 a,进口约 2 a,导致维修费用较大; 3、单烧嘴制气,操作弹性较低;德士古加压水煤浆气化炉耐火砖的寿命问题仍然是一个难题,对于德士古水煤浆气化炉烧嘴的问题已有一些新的气化炉将单喷嘴改为对置式多喷嘴,可以增加热质传递,并且能提高碳的转化率。目前由兖矿集团有限公司、华东理工大学共同承担的国家高技术研究发展计划(863 计划)重大课题“新型水煤浆气化技术”就是将单喷嘴水煤浆气化炉改为对置式多喷嘴水煤浆气化炉,并配套生产甲醇和联产发电。多喷嘴对置式水煤浆气化技术含水煤浆制备工序、多喷嘴对置式水煤浆气化和煤气初步净化工序、含渣水处理工序。 多喷嘴对置式水煤浆气化技术自动化程度高,全部采用集散控制系统(DCS)控制,特别是氧煤比完全可以投自动串级控制。工业运行证实,该装置具有开车方便、操作灵活、投煤负荷增减自如的特点,操作的方便程度优于引进水煤浆气化装置。多喷嘴对置式水煤浆气化技术已被工程实践证实完全可行,工艺指标也极为先进,对初步的运行结果统计表明:有效气 CO+H2≥82%,碳转化率≥98%。通过工业化规模的气化炉的示范运行,我国在水煤浆气流床气化技术方面将达国际先进水平,具有自主知识产权的大型煤气化技术。 随着机械化采煤的发展,粉煤产率也在增加,利用此项技术可以解决粉煤的利用问题,也可以解决煤炭在洗选过程中产生的大量煤泥,利用水煤浆气化技术联合循环发电也具有广阔前景。今后煤化工的更多机会是发展新型煤化工,即煤制甲醇、煤烯烃、二甲醚和煤制油,煤气化生产甲醇及其下游产品的开发和 IGCC 联合发电也是新型煤化工的一个发展方向。新型煤化工将成为今后煤化工产业的发展主题。 八、结束语 在我国今后的水煤浆气化的发展过程中,可以更加深入的分析德士古水煤浆气化技术,通过充分利用其优势来提高其使用效果,从而提高我国水煤浆气化技术的整体质量水平。 【参考文献】 [1]陈俊峰.煤气化技术的发展现状及研究进展[J].广州化工,2012.40(5):31-33. [2]赵嘉博.刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术.2011.1. [3]高丽. 德士古水煤浆加压气化技术的应用[J]. 煤炭技术,2010,07:161-162. [4]贾小军. 德士古水煤浆气化技术研究及其国产化创新[J]. 中国科技信息,2013,14:115. [5]崔嵬,吕传磊,徐厚斌. 德士古水煤浆加压气化技术的应用及创新[J]. 化肥工业,2000,06:7-8+17-58. 看了“水煤浆气化技术论文”的人还看: 1. 煤气化技术论文 2. 煤气化技术论文(2) 3. 煤炭气化技术论文(2) 4. 洁净煤燃烧技术论文 5. 大气污染控制技术论文

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析1.1煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。1.1.1龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度<1.5 mm薄层时的温度。1.1.2彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价2.1巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》2003.5可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在86.02%~86.51%之间,氢含量在5.41%~5.44%之间,C/H比值<16。⑦灰熔点上高下低。2.2成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。2.2.1成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。2.2.2流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。2.2.3实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。2.3原料煤的应用2.3.1适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。2.3.2用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。2.3.3用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤9.0%的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。2.3.4远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

水煤浆是20世纪70年代兴起的煤基液态燃料,可作为炉窑燃料或合成气原料,具有燃烧稳定、污染排放少等优点。水煤浆是由煤、水和化学添加剂按一定的要求配制成的混合物,具有较好的流动性和稳定性,易于储存,可雾化燃烧,是一种燃烧效率较高和低污染的较廉价的洁净燃料,可代重油缓解石油短缺的能源安全问题。水煤浆是由大约65%的煤、34%的水和1%的添加剂通过物理加工得到的一种低污染、高效率、可管道输送的代油煤基流体燃料。它改变了煤的传统燃烧方式,显示出了巨大的环保节能优势。尤其是近几年来,采用废物资源化的技术路线后,研制成功的环保水煤浆,可以在不增加费用的前提下,大大提高了水煤浆的环保效益。在我国丰富煤炭资料的保障下,水煤浆也已成为替代油、气等能源的最基础、最经济的洁净能源。水煤浆由65%左右的煤,34%的水及少量化学添加剂制成,是一种浆体燃料,可以像油一样泵送、雾化、贮存和稳定燃烧,其热值相当于燃料油的一半,可代替燃料油用于锅炉、电站、工业炉和窑炉,用于代替煤炭燃用,具有燃烧效益高、负荷调整便利、减少环境污染、改善劳动条件和节省用煤等优点。桂林钢厂以水煤浆代煤粉燃烧,折合标准煤约为90公斤/吨材,节煤33%,烟尘排放由732降至240毫克/m3致癌的NOx含量由280.8降至44毫克/m3,使环境和劳动条件得到明显改善。此外,由于燃烧水煤浆工艺性能好,使钢材的烧损率由1.8%下降至1.5%,企业获得较好的经济效益。所以水煤浆技术不仅可用于代油,用于代煤也有节能和环保效益。

  • 索引序列
  • 膨润土在水泥中的添加量研究论文
  • 膨润土毕业论文
  • 论文研究混泥土外加剂的意义
  • 关于水泥混凝土的研究发展论文
  • 水煤浆添加剂的研究毕业论文
  • 返回顶部