首页 > 期刊投稿知识库 > 毕业论文被批一无是处

毕业论文被批一无是处

发布时间:

毕业论文被批一无是处

我们答辩的时候基本都很紧张的。很多同学也被老师说得面红耳赤。最后论文成绩都可以的。别担心。

请他吃个饭,好好聊聊,要么淘宝上让别人做咯

我国国民教育规定本科生在理论课程通过后需要用所学的理论知识去完成与实践相结合的一次总结。当然是由指导老师安排课题与计划,在指导老师的指点下完成论文后必须经过论文答辩。

没问题老师都是纸老虎 毕竟相处四年肯定不会刻意为难你的

写的毕业论文被批与专业无关

这个没关系的 我们就是无机化学专业 做的有机方向 毕业论文只要通过盲审 答辩一般没问题

不可以。论文选题一定要与本专业相关,哪怕相关度不高也可以,但是坚决不能抛弃本专业的东西而去选择其他专业的论文方向。基于你这种情况,可以选择本专业与其他专业相交叉的领域,或进行创新性的搭建学科之间的领域融合。

这个得问辅导你论文的老师啊,如果已经成文的话,可以考虑把你偏了的内容改改,只要和管理学相关老师应该会同意

写的硕士毕业论文被批与专业无关

一般来说研究生写的都是与自己相关的论。,至于自己与自己专业无关的论文也可以写,只是说发表的话对自己未来评职称的帮助意义不大。

绝对不可以,明文规定,看看培养方案就知道了但可以选交叉学科的

不可以的。答辩的论文,必须与本专业相关的啊。

海森堡毕业论文被批

海森堡模型出自SurveyWiki|调研百科跳转到: 导航, 搜索海森堡模型是物理学中用来研究磁性系统的相变与临界点的一个统计力学的模型。其中磁性系统中的自旋必须应用量子力学。原始的易辛模型的一个 d 维晶格中( d 可以是1、2或3),每一个晶格点上有一个自旋\sigma_i \in \{ \pm 1\}表示一个微观的磁矩,而磁矩只可以是朝上或下的两个值。 由于量子力学的缘故,两个相邻的磁矩在同向或反向可得到最低的能量,在此假设下,系统的哈密顿算符可以写成 \hat H = -J \sum_{j =1}^{N} \sigma_j \sigma_{j+1} - h \sum_{j =1}^{N} \sigma_j 对一个 N 个晶格点的一维晶格,取周期边界条件 \sigma_{N+1} = \sigma_1 。海森堡模型是比易辛模型更实际的模型,对自旋用量子力学来处理,把原本易辛模型中自旋用自旋算符(若自旋1/2即庖利矩阵)来表示,即考虑了自旋的 xyz 三个分量,各个分量的偶合强度分别为 J_xJ_yJ_z。这麽一来,一维海森堡模型的哈密顿算符就写成 \hat H = -\frac{1}{2} \sum_{j=1}^{N} (J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z - h\sigma_j^{z}) 其中 h 为外加磁场的大小,取周期边界条件,若自旋1/2则自旋矩阵为 \sigma^x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \sigma^y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \sigma^z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix} 哈密顿算符由张量积得出,维度为2^N。经由计算配分函数可以研究此系统的热力学性质。被广泛研究海森堡模型类型的模型是XXZ海森堡模型,也就是 J = J_x = J_y \neq J_z = \Delta 的情形。一维自旋-1/2的海森堡模型可利用Bethe ansatz严格求解。

1922年6月,在德国哥廷根“玻尔节”上,量子理论创始人玻尔作了7次著名演讲,简明地阐述了原子结构理论。在听众中,有一位专程从慕尼黑赶来的二年级大学生,他就是沃纳?海森堡。在演讲后的问题讨论中,海森堡对玻尔的一些观点提出了异议。这位大学生的发言,引起了玻尔的注意。当讨论结束时,玻尔邀请他一道出去散步,并仔细地交谈了量子理论的有关问题。他们在哥廷根郊外谈论了好几个小时,仍各持己见。尽管如此,玻尔诚恳待人的作风深深地打动了海森堡的心。而海森堡的聪明才智也给玻尔留下了深刻的印象,他向海森堡发出了去哥本哈根作学术访问的邀请。海森堡后来回忆说,这是他所能记起的“关于近代原子理论的物理问题和哲学问题的第一次全面彻底的讨论,而且它对我后来的事业肯定起了决定性的作用”。

海森堡一生在理论物理学上作出了重要成就,而他最大的贡献无疑是创建矩阵力学。在这之前,他在关于流体力学、反常塞曼效应、分子模型以及色散理论等方面做了大量研究工作。这些工作为他创立矩阵力学作了准备。尤其是与玻恩的合作,使他感受到建立新量子理论的迫切性。

玻恩原来是研究晶体点阵动力学的,1921年到哥廷根大学任理论物理学教授后开始原子理论的研究工作。他让他的学生学点量子物理并想同索末菲展开竞争。哥廷根的著名数学家希尔伯特主张数学家和物理学家结合起来研究物理学,他和玻恩联合组织了“物质结构”讨论班。此外,在玻恩周围还有各种讨论班,如“初学者讨论班”、“晚上讨论班”、“原子力学Ⅰ编写组”等,学术气氛非常浓。为了繁荣科学,玻恩还常邀请各国著名学者来访讲学。这大大开扩了学生们的眼界。玻恩对学生亲切不拘小节。在课余,他常和学生一起散步、野餐、演奏乐曲。玻恩在他主持的讨论班上鼓励提问和批评。因此,在玻恩周围常聚集着一大批有才能的学生,海森堡就是其中一个。

如果说海森堡在索末菲那里受到关于玻尔理论的严格训练,那么他在玻恩那里更多的是学到对玻尔理论的怀疑。当玻恩学派对玻尔理论的正确性表示怀疑时,索末菲学派还相信只要附加上普朗克、玻尔和索末菲提出的量子条件,牛顿力学还可以解决原子领域的问题。海森堡认为玻恩比波尔更加坚信要有一套完整的数学上统一的量子理论,而不是在牛顿力学、量子条件和光量子假设之间的徘徊与调和。

1922年,玻恩和他当时的助手泡利一起深入讨论了把微扰论应用于原子理论的问题,发展了微扰论能量表示的一般方法。1923年,玻恩和海森堡合作把微扰论用于氦原子,虽然理论结果在定性方面与实验一致,但定量方面差距很大。这使他们坚信,物理学的基础必须进行根本的变革。

1924年,在哥廷根讨论班上玻恩曾强调,把量子论的困难单单归诸辐射与力学体系之间的相互作用是不正确的。他认为力学必须加以改造,必须用某种量子力学来代替才能提供理解原子现象的基础。玻恩甚至在1924年的一篇论文中首次把期待中的新理论称作“量子力学”。这时玻恩对他自己所期望的新理论已有了一些模糊的领悟。而海森堡则找到了描述这种理论的数学方法。

海森堡在哥廷根虽然只是一个有奖学金的研究人员,但实际是玻思的助教。他与玻恩密切合作,力图从符号意义上的力学模型出发,建立一种新的力学。一年后他以一篇题为《关于量子论的形式规律在反常塞曼效应问题上的更改》的论文取得大学授课资格,成为无薪讲师。同年9月,海森堡作为领取“洛克菲勒奖学金”的研究人员来到丹麦的哥本哈根,而他的矩阵力学之类的创造性工作,事实上也是在哥本哈根生根发芽的。

海森堡在哥本哈根主要与荷兰物理学家克拉姆斯一起工作。克拉姆斯从1916年起担任玻尔的助手,在发展量子理论方面帮助玻尔做了不少工作。他多才多艺,不仅会5种外语,而且还会拉大提琴,在工作之余常在海森堡的钢琴伴奏下演奏。而他在学习上又对学生要求得极为严格。1924年初,主要根据当时到哥本哈根来工作的美国物理学家斯莱特提出的思想,玻尔、克拉姆斯和斯莱特一起发表了一种对后来影响较大的理论,亦称BKS理论。这个理论的中心思想是:给每个原子引进一组能产生虚拟辐射场的虚振子,而每一个这种虚振于具有一个跃迁频率(即原子的跃迁频率)。这就把不连续的原子过程与连续的辐射场联系起来了,从而可以利用对应原理,采取类似于经典理论的方法来处理量子论的色散问题。克拉姆斯利用这种思想导出了他的色散公式。

如果说克拉姆斯的色散理论实际上摧毁了电子轨道概念的基础,那么可以说海森堡更倾向于放弃电子轨道模型,用正确的数学公式来表示玻尔的对应原理。他和克拉姆斯一起用玻恩的方法研究色散问题,并合作写了一篇论文《关于原子对辐射的散射》。

1925年4月海森堡回到哥廷根。他想进一步在上述工作的基础上解决氢原子谱线强度问题,但在数学上遇到了很大困难。于是,他转而想从根本上解决问题,即找出一个与经典运动方程对应的,在逻辑上内在一致的电子在氢原子中的运动方程。但根据经典力学,这个方程应当描述电子在原子中运动的轨迹,可是原子太小了,电子轨道既看不见,也摸不着,也就是说是不可观察的。那么,如何从实验上来检验所得方程的正确性呢?

正当海森堡百思不得其解的时候,他得了枯草热病。这是由于某种有毒花粉引起的一种过敏症,需要到海边去治疗。当他在北海的赫尔兰岛上休养时,突然从爱因斯坦创立相对论的过程中得到启发。爱因斯坦认为物体的绝对速度和两个不同地点所发生事件的绝对同时性等概念是没有意义的,因为这些概念在实际上是不可观察的。于是海森堡认为,既然玻尔原理中确定半径和转动周期的电子轨道是不可观察的,同样也没有意义。人们在实验中能观察到的只是光谱线的频率和强度。

于是,海森堡从玻尔对应原理出发,“设法建立起一个理论的量子力学,它与经典力学相类似,而在这种量子力学中,只有可观察量之间的关系出现。”他在玻尔的频率条件和克拉姆斯的色散理论中看到了可以这样做的迹象。根据玻尔的频率条件,可以用电子的特征振幅来表示原子中各电子间的相互作用。运用克拉姆斯的量子色散理论,从经典运动方程出发,可以得出一个仅仅以可观测量为基础的量子力学运动方程。这个方程的解在理论上应当能给出原子系统完全确定的频率和能量值,并且也能给出完全确定的量子论的跃迁几率。

经过几天紧张的计算,他用得出的方程处理了一个较简单的非谐振子的量子力学系统和绕核作圆周运动的电子的情况,都获得了成功。

当他最后算完的时候,已是凌晨三点多钟了。此时他十分兴奋,睡意全无,奔出室外,攀上一座海边的岩塔,一直等到旭日东升。他后来回忆当时的心情时说:“最初,我深为惊奇,我感到,通过原于现象的表面,我正在窥测着一个奇妙的内部世界,而对自然界如此慷慨地层现在我面前的丰富的数学结构,使我感到眼花缭乱。”

海森堡在赫尔兰岛上住了一个多星期,终于写成了《关于运动学和动力学的量子论重新解释》一文。他发现量子力学量与经典力学量的不同之处在于:量子力学不遵守一般乘法的交换律,它们是不可对易的,即AB≠BA。从他所得出的方程出发,可以自然地得出符合量子条件的解,而不必像玻尔那样附加几条假说。他知道,“这个十分明显但又错综复杂的物理学问题,只能通过对数学方法的更透彻的研究来解决”。而他的理论在数学处理上只是处于开始阶段,仅能应用于一些简单的例子。所以,他对自己的论文并没十分的把握,犹豫着不敢立即送去发表。

经过反复思考,海森堡于7月9日把写完的那篇论文寄给他最严格的评论家泡利,并说:“我冒昧地直接把我的论文手稿寄给您,因为我相信,至少在批判的即否定的方面,它包含了一些真正的物理学。同时我很抱歉,因为我必须要求您在二至三天内把稿寄还我。我必须要么在我留在这里的最后几天内完成它,要么把它付之一炬。”

泡利热情支持海森堡理论,并表示,“我向海森堡的勇敢假定致敬”。正是由于泡利的鼓励和支持,这才使海森堡下定决心,将论文送给他的老师玻恩审阅。

玻恩看到海森堡的论文后,很快就深刻地认识到他的学生这一工作的重大意义。这时由于海森堡又到哥本哈根去了,他就一方面将海森堡具有划时代意义的论文推荐到《物理学记事》杂志发表,另一方面又与学生约尔丹合作,试图在数学上进一步把海森堡的思想发展成一门系统的量子力学理论。

玻恩经过一个星期的苦苦思索,突然想到,如果将玻尔每个定态的能级横写一次,再竖写一次,就会得出一个矩阵。其中,对角位置对应于状态,非对角位置则对应于跃迁。于是,海森堡的那些可观察量就可以用这些列阵来表示,而这些列阵不就是矩阵吗!这种矩阵的运算方法正好与海森堡所得出的运算法则一致。真是“踏破铁鞋无觅处,得来全不费功夫”,数学家早就为物理学准备好了数学工具,只看哪一位物理学家能捷足先登了。由长期在数学之都哥廷根工作,对数学深感兴趣的玻恩来摘取胜利之果,倒也合情合理,并非偶然。

玻恩为这个发现而激动,他立即和约尔丹投入紧张的计算,只用了几天时间,就写出了一篇论文《关于量子力学》。在这篇论文中,他们阐明了矩阵运算法则,应用对应原理,从经典的哈密顿正则方程出发,把矩阵形式应用到海森堡的理论中,得到了一个相当于海森堡量子条件的矩阵方程。根据这个方程,可以进一步导出能量守恒定律和玻尔的频率定则,并成功地应用到了谐振子和非谐振子的量子力学系统。

次年2月,他们又与海森堡合作,以三人名义共同发表了著名的《关于量子力学Ⅱ》一文,把按海森堡途径发展的量子力学推广到任意多个自由度的体系上,完成了对非简单体系及一大类简单体系的微扰理论,导出了动量和角动量守恒定律、选择定则和强度公式。最后,还把该理论用到黑体空腔的本征振动的统计问题上。

这篇论文在矩阵形式下大大发挥了海森堡的最初想法,终于使矩阵形式的量子力学形成了一个完整的体系。它是以微观客体的粒子图象为基础而建立起来的新力学体系,由于它运用了矩阵数学形式,所以又称为矩阵力学。

不久,泡利首先将这种新力学应用于氢原子光谱,算出了氢原子的定态能值,结果与玻尔的结论完全相符,从而证实了新理论的正确性。接着,物理学家们又用量子力学处理过去许多使人感到困惑的原子问题,也都获得了成功。于是,哥廷根的这个胜利成果很快就在物理学界传播开了。爱因斯坦风趣地称,“海森堡生了一个大量子蛋”。剑桥、柏林、哥本哈根都纷纷邀请海森堡去讲他的新量子力学。

在以后的岁月里,海森堡继续在量子力学的道路上探索,取得了累累硕果。他建立的“测不准关系”成为量子力学的重要原理之一,并因此于1932年荣获诺贝尔物理奖。由于海森堡的上述重大贡献,他被公认为量子力学的创始人之一。

矩阵力学被看作是用定量的关系来代替定性的对应原理的一个成功尝试。在创立这一理论的过程中,海森堡借助了一条重要的方法论原则,即可观察性原则。这个原则要求,在理论上应该抛弃那些实际上不可观测的量,而直接采用可观测的量。

海森堡有幸师从索末菲、玻恩、玻尔这样一些当代第一流的物理学家。他后来回忆说,他从索末菲那里学了物理学,从玻恩那里学了数学,从玻尔那里学了哲学。但他决不盲从,他敢于怀疑,敢于批判,常常向老师提出尖锐的问题,与他们展开深刻的讨论。他的名言是:“科学扎根于讨论。”在解决新的物理学问题时,他敢于创新。他创立矩阵力学,作出科学上的伟大贡献,正是源于这种科学探索精神。他曾说:“在每一个崭新的认识阶段,我们永远应该以哥伦布为榜样,他勇于离开他已熟悉的世界,怀着近乎狂热的希望到大洋彼岸找到了新大陆。”

粘不上,系统说是有什么广告,所以发不上哈密顿算符由张量积得出,维度为2N。经由计算配分函数可以研究此系统的热力学性质。 被广泛研究海森堡模型类型的模型是XXZ海森堡模型,也就是 的情形。 一维自旋-1/2的海森堡模型可利用Bethe ansatz严格求解。详细内容给你用百度Hi发过了呀O(∩_∩)O

应试的,你导师也是为了你好啊,好好写一份在交上去

论文答辩都是被批的吗

毕业答辩只要准备充分都能过。答辩过程中答辩者要让导师对论文比较满意,自身能够在答辩上让评审老师感到言之有物、契合论点。

凡是参加毕业论文答辩的学生,要具备一定的条件,这些条件是:

1、必须是已修完高等学校规定的全部课程的应届毕业生和符合有关规定,并经过校方批准同意的上一届学生。

2、学员所学课程必须是全部考试、考查及格,实行学分制的学校,学员必须获得学校准许毕业的学分。

毕业论文答辩技巧

答辩前最重要的,就是和评委老师换位思考、将心比心!像你这样的辣鸡,老师见得太多了,你滑了多少水老师一个眼神就能看破。看破不说破,是他们对自己学术底线最大的和解。

再说你四年本/三年硕/五年博都熬过来了,如果在最后关头卡住你,一方面你自己很痛苦,另一方面老师一想到明年还要再看你答辩一次,他们其实更痛苦。因此,老师内心都是慈悲为怀,抱着放生的心态来听答辩的,大家大可不必紧张。

毕业答辩一般都能过。

答辩过程中答辩者要让导师对论文比较中意,自身能够在答辩上让评审老师感到言之有物、契合论点。只要你熟悉你论题的专业知识,没什么难的,真的就像走了个过场。

态度一定要谦虚,即使答辩老师说你的论文有问题,你也不能顶嘴,一定要说,不好意思,是我没有把问题搞清楚,下来我会努力改正的。态度一定要谦虚!

相关信息:

如果你是本科生,只要你心态好,不怕被导师们挑刺,挺好过的,但是你要记得答辩时间准时,拿的东西无误。一般都给过的,反正本科没听过论文答辩不过的没毕业的。

还有论文格式要正确,图表格式一致,排版,致谢要全,但不能成哀悼词。这些都会扣分,导师也会问问题,不会没关系,有的导师好,会帮你答的,但实验啊,数据等,讲的时候不要照着ppt读,会扣分,所以最好是ppt简洁,你说的多。

毕业论文和答辩非常容易过,学校要保证学校的毕业率,所以,只要很少的一部分人,的确太差的,才会让推迟毕业,其他的老师都会很宽松的让你过去。

如果应付式完成任务的你,得的分数也不会太高,拿到优秀毕业生的称号的概率,就跟你不能毕业的概率一样低,只要少数人能得到,但是对于毕业而言完全没有影响,所以,放宽心,论文格式、查重没问题基本就可以通过了。

毕业答辩只要准备充分都能过。答辩过程中答辩者要让导师对论文比较满意,自身能够在答辩上让评审老师感到言之有物、契合论点。

凡是参加毕业论文答辩的学生,要具备一定的条件,这些条件是:

1、必须是已修完高等学校规定的全部课程的应届毕业生和符合有关规定,并经过校方批准同意的上一届学生。

2、学员所学课程必须是全部考试、考查及格,实行学分制的学校,学员必须获得学校准许毕业的学分。

3、学员所写的毕业论文必须经过导师指导并有指导老师签署同意参加答辩的意见。

扩展资料:

毕业论文答辩注意事项:

论文答辩注意事项有对答辩内容充分了解、毕业论文要图表穿插、语速要适中、目光要不断移动、要使用体态语辅助、要注意控制时间。论文答辩时,把握这些技巧可以更顺利的通过。

虽然毕业论文答辩同其它答辩一样以口语为主,但适当的体态语运用会辅助答辩,可以使答辩效果更好。特别是手势语言的恰当运用会显得自信、有力、不容辩驳。

参考资料来源:百度百科-毕业论文答辩

  • 索引序列
  • 毕业论文被批一无是处
  • 写的毕业论文被批与专业无关
  • 写的硕士毕业论文被批与专业无关
  • 海森堡毕业论文被批
  • 论文答辩都是被批的吗
  • 返回顶部