• 回答数

    6

  • 浏览数

    215

超级飞侠包警长
首页 > 期刊论文 > 量子纠缠学术论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

花开旭航

已采纳

可以的;因为量子纠缠的速度非常快,只要我们掌握一定的科学技术,那么是可以实现瞬间移动的。

223 评论

劳伦斯仿古砖

量子纠缠可以导致瞬间转移。在我国现阶段公布出来的量子科技研究是由生物学家潘建伟组织的量子通讯及结构力学研究,他曾在港大的一次演说中提起过量子纠缠对身体瞬间转移的想象。他觉得,身体瞬间转移最先要具有一台超强劲的电脑可以扫描仪身体的纠缠不清颗粒,可以上传和接受量子科技动能,而且可以将信息内容再次构型的工作能力。量子纠缠,或称量子科技缠结,是一种物理学状况,是1935年由牛顿、波多尔斯基和罗森明确提出的一种波。

简易的说,量子纠缠便是在两种或两个以上颗粒构成系统软件中互相影响的状况,尽管颗粒在区域上很有可能分离,但危害不会改变。纠缠不清是有关物理学基础理论最广为人知的预测分析。它叙述了两种物体相互之间纠缠不清,即使距离遥远距离,一个颗粒的个人行为可能影响到另一个的情况。当在其中一颗被实际操作(例如量子科技精确测量)而情况产生变化,另一颗也会马上出现对应的模式转变。

随着着这种探索与发现的发生,那时候的物理问题已经不能对他们开展表述,当然,也就必须新的专业知识,这个时候,意大利人海洋之灾明确提出了“量子论”,打开了物理的新大门口,根据量子论,大家也发觉原来的物理问题,许多都被刷新了。此外,构成世间的分子和原子逐渐变的更为栩栩如生,各种各样匪夷所思的新状况,也随着物理学的发生,而逐渐一一拥有新的回答。

可是,由于物理学具备可变性,这也致使许多研究者在完成有关研究的情况下,发生了许多的异议见解,自然,关键势力分成两派,一派是适用物理学的,另一派是坚决反对的,牛顿便是反对党的知名人物。除开牛顿,许多生物学家也对量子纠缠有兴趣,比如说,在2015年的情况下,国际性学术期刊《自然》上,发布了一篇有关于量子纠缠的研究毕业论文,来源于西班牙技术性高校的研究人员表明,她们进行了无系统漏洞的贝尔不等式认证实验,这也证实,量子纠缠确实存有。并且在牛顿研究量子纠缠的历程中,牛顿也觉得,量子纠缠是可以让人们完成瞬间移动的,是啥意思呢?简易而言,便是人们可以不会遭受速率的拘束,可以前往一切一个想要去的地区

208 评论

blueberry317

假设一个零自旋中性π介子衰变成一个电子与一个正电子。这两个衰变产物各自朝着相反方向移动。电子移动到区域A,在那里的观察者“爱丽丝”会观测电子沿着某特定轴向的自旋;正电子移动到区域B,在那里的观察者“鲍勃”也会观测正电子沿着同样轴向的自旋。

在测量之前,这两个纠缠粒子共同形成了零自旋的“纠缠态” ,是两个直积态(product state)的叠加,以狄拉克标记表示为

其中,

分别表示粒子的自旋为上旋或下旋。在圆括弧内的第一项表明,电子的自旋为上旋当且仅当正电子的自旋为下旋;第二项表明,电子的自旋为下旋当且仅当正电子的自旋为上旋。两种状况叠加在一起,每一种状况都有可能发生,不能确定到底哪种状况会发生,因此,电子与正电子纠缠在一起,形成纠缠态。

假若不做测量,则无法知道这两个粒子中任何一个粒子的自旋,根据哥本哈根诠释,这性质并不存在。这单态的两个粒子相互反关联,对于两个粒子的自旋分别做测量,假若电子的自旋为上旋,则正电子的自旋为下旋,反之亦然;假若电子的自旋下旋,则正电子自旋为上旋,反之亦然。

量子力学不能预测到底是哪一组数值,但是量子力学可以预言,获得任何一组数值的概率为50%。

粒子沿着不同轴向的自旋彼此之间是不相容可观察量,对于这些不相容可观察量作测量必定不能同时得到明确结果,这是量子力学的一个基础理论。

在经典力学里,这基础理论毫无意义,理论而言,任何粒子性质都可以被测量至任意准确度。贝尔定理意味着一个事实,一个已被实验检试的事实,即对两个不相容可观察量做测量得到的结果不遵守贝尔不等式。因此,基础而言,量子纠缠是个非经典现象。

不确定性原理的维持必须倚赖量子纠缠机制。例如,设想先前的一个零自旋中性π介子衰变案例,两个衰变产物各自朝着相反方向移动,分别测量电子的位置与正电子的动量,假若量子纠缠机制不存在,则可借着守恒定律预测两个粒子各自的位置与动量,这违反了不确定性原理。由于量子纠缠机制,粒子的位置与动量遵守不确定性原理。

由于量子纠缠机制,粒子的位置与动量遵守不确定性原理。

从以相对论性速度移动的两个参考系分别测量两个纠缠粒子的物理性质,尽管在每一个参考系,测量两个粒子的时间顺序不同,获得的实验数据仍旧违反贝尔不等式,仍旧能够可靠地复制出两个纠缠粒子的量子关联。

历史

阿尔伯特·爱因斯坦于 1935 年在与鲍里斯·波多尔斯基和内森·罗森的联合论文中首次讨论了量子力学关于强相关系统的违反直觉的预测。

在这项研究中,三人制定了爱因斯坦-波多尔斯基-罗森悖论(EPR 悖论),这是一个思想实验,试图表明“波函数给出的物理现实的量子力学描述是不完整的”。

然而,三位科学家并没有创造纠缠这个词,也没有概括他们所考虑的状态的特殊性质。

根据 EPR 论文,Erwin Schrödinger用德语给爱因斯坦写了一封信,他在信中使用Verschränkung这个词(他自己翻译为纠缠)“来描述相互作用然后分离的两个粒子之间的相关性,就像在 EPR 实验中一样。”

此后不久,薛定谔发表了一篇定义和讨论“纠缠”概念的开创性论文。

在论文中,他认识到了这个概念的重要性,并表示: “我不会称 [纠缠] 为一种,而是量子力学的特征,强制其完全背离经典思想的一种。” 和爱因斯坦一样,薛定谔也不满意纠缠的概念,因为它似乎违反了相对论中隐含的信息传输速度限制。

爱因斯坦后来著名地嘲笑纠缠为“ spukhafte Fernwirkung ”或“幽灵般的远距离动作”。

EPR 论文引起了物理学家的极大兴趣,这激发了关于量子力学基础的许多讨论(也许最著名的是玻姆对量子力学的解释),但其他已发表的工作相对较少。

尽管引起了兴趣,但直到 1964 年,约翰·斯图尔特·贝尔 (John Stewart Bell)证明了他们的一个关键假设,即局部性原理,应用于 EPR 希望解释的隐藏变量类型时,才发现 EPR 论证中的弱点在数学上是不一致的与量子理论的预测。

具体来说,贝尔证明了一个上限,见于贝尔不等式,关于在任何服从局部实在论的理论中可以产生的相关强度,并表明量子理论预测某些纠缠系统会违反这个极限。

他的不平等是实验可测试的,并且已经有不少相关的实验,开始的开创性工作斯图尔特·弗里德曼和约翰·克劳泽在1972年和阿兰·阿斯佩在1982年的实验中早期的实验突破是由于卡尔·科赫;

谁已经在 1967 年提出了一种装置,其中从钙原子连续发射的两个光子被证明是纠缠的——这是可见光纠缠的第一个例子。

这两个光子以比经典预测更高的概率通过径向定位的平行偏振器,但与量子力学计算在定量上具有相关性。他还表明,相关性仅随偏振器设置之间的角度(作为余弦平方)而变化,并且随着发射光子之间的时间滞后呈指数下降。

Kocher 的装置配备了更好的偏振器,被 Freedman 和 Clauser 使用,他们可以确认余弦平方相关性,并用它来证明对一组固定角度的贝尔不等式的违反。所有这些实验都表明与量子力学一致,而不是局部实在论原理。

几十年来,每个人都至少留下了一个漏洞,可以通过这个漏洞质疑结果的有效性。然而,2015年进行了一项同时堵住检测漏洞和局部漏洞的实验,被誉为“无漏洞”;这个实验肯定地排除了一大类局部现实主义理论。

Alain Aspect指出,“设置独立漏洞”——他称之为“牵强”,然而,一个“不容忽视”的“残余漏洞”——尚未关闭,自由——意志/超决定论漏洞是不可关闭的;俗话说“没有实验,再理想,也可以说是万无一失”。

贝尔的工作提出了使用这些超强相关性作为交流资源的可能性。它导致了1984年发现的量子密钥分发协议,最有名的BB84由查尔斯H.贝内特和吉勒臂章通过阿尔图尔·埃克特。尽管不使用纠缠,但 Ekert 的协议使用违反贝尔不等式作为安全性证明。

以上内容参考 百度百科-量子纠缠

246 评论

若伦丫头

是关于量子力学理论最著名的预测。它描述了两个粒子互相纠缠,即使相距遥远距离,一个粒子的行为将会影响另一个的状态。当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。

量子纠缠的本质就是量子的关联性。

那量子为什么会纠缠,其本质又是什么呢?

要想了解这一点,还是得提一下相对论,大家都知道当代物理学有两大基础 - 相对论和量子力学。在提出到现在这两个理论经受了很多严格的实验,其正确性是毫无疑问的。

而目前两个理论在根本架构上的冲突之处是:量子场论是建构在广义相对论的平坦时空下基本力的粒子场上。如果要透过这种相同模式来对引力场进行量子化,则主要问题是在广义相对论的弯曲时空架构,无法一如以往透过重整化的数学技巧来达成量子化描述,没办法用数学技巧得到有意义的有限值。

相对地,例如量子电动力学中对于光子的描述,虽然仍会出现一些无限大值,但为数较少可以透过重整化方法可以将之消除,而得到实验上可量到的、具有意义的有限值。

所以说广义相对论的修改方向是这两点:

1、引力的成因不是时空弯曲的。广义相对论的时空背景是弯曲的时空,但不是引力的成因。

2、引力的本源是时空。且描述引力量子化的时候一定要用“微分”思维来化解时空弯曲的尴尬。但引力不是时空弯曲造成的。引力可以说是一种时空性质。它反过来又会影响时空构建。且引力的作用是以光速传递的。

那么量子纠缠所引发的“超光速”的讨论是否对相对论理论构成了挑战呢?答案又是否定的!

别忘了量子力学的两大支柱互补原理【波和粒子在同一时刻是互斥的,但它们在更高层次上统一。】和不确定性原理【不确定性原理表明,粒子的位置与动量不可同时被确定】。

所以在量子力学中微观粒子并不是界限分明的,而是一种行动诡异的“概率云”。这些粒子不会只存在一个位置上,也不会只从一个路线到达另一个位置。我们一般用波函数来描述这些粒子的行为和特征。而两个有共同来源的微观粒子之间,只要有一个粒子发生变化,另一个就会发生变化。这种变化是立刻发生的,这就是量子纠缠。

大家有没有注意到,量子纠缠发生的机制是有限制的。并不是说随便两个粒子相距N千米距离远,都能发生量子纠缠。比如说地球上一个粒子不可能和100光年以外的一个粒子发生量子纠缠。

两个或两个以上的粒子发生量子纠缠必须在一个系统中,而且粒子是有共同来源的。

〈双光子系统〉比如:同一激光器产生光子场进行双偏分光,由于本身由同一激光器产生属`相干态'',那这二个分光产生的光子系统属〈相干纠缠态〉然后我们测量一个光子态某物理参量,会发现另一光子对应该物理参量也会同时改变,那么我们说对该〈双光子相干系统〉对该物理参量而言是一种量子纠缠态!

量子纠缠说明在两个或两个以上的稳定粒子间,会有强的量子关联。例如在双光子纠缠态中,向左(或向右)运动的光子既非左旋,也非右旋,既无所谓的x偏振,也无所谓的y偏振,实际上无论自旋或其投影,在测量之前并不存在。在未测之时,二粒子态本来是不可分割的。

那这样量子纠缠态产生原因就不难理解了,其实我们只要认为该双光子系统在分光前后是一个整体,那量子纠缠效应就很好理解了但实际上是这样吗?有人会说光子空间分离为二部分,怎么可能还是一个整体?关键点在于〈量子纠缠态〉的先决条件,双光子系统是一种相关联态,在没有解除相关联态前,它就是一个整体!

量子力学是非定域的理论,这一点已被贝尔不等式【任何定域隐变量理论不可能重复量子力学的全部统计预言。】的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。

纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。

多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。

其实从量子纠缠本身的系统就可以看出它与互补原理和不确定性原理有紧密关系。不确定性原理体现了“联系”,即位置和动量的联系。互补的原理体现了“矛盾与统一。”两者结合的必然结果就是“纠缠”。”而且贝尔不等式是永久成立了,不可出现爱氏思考的那样。即通过隐变量理论可以完整解释物理系统所有可观测量的演化行为,从而避免掉任何不确信性或随机性。

而且干涉量子纠缠的时候,量子纠缠态会立即消除,也就是这种关联态函数的描述现象终止。

这也是说明了,量子纠缠的“局域”性。它不会像引力那样,具有“广域”性。但整个量子力学的非定域,其实也是一种“广域”,在这种“光域”下量子纠缠遵从一定的法则存在。

再通俗一点举例解释可以这样理解,两个或两个以上的粒子的量子纠缠态是一体的东西,在一个波函数描述之下,和距离无关。就好像是两个人坐一个跷跷板玩。A和B坐在上面的时候,就有了联系。A下去,B必然上来;相反B下去,A立刻上来。但我们不能说这种联系是超距的,也就是A和B之间的变化是超光速完成的。要知道这和A和B直接的距离“无关”,与他们之间的联系态有关。

287 评论

nanaxuanku

别说量子纠缠原理了,就连万有引力的原理都没人能说得出来。能把量子纠缠概念解释正确(不是解释清楚,而是正确)就很不错了。量子纠缠的原理是两粒子被隐形的线(相干合一,应该是轨道)牵制使同步关联,断线就解除关联了(退相干)。

152 评论

小骨头骨头

“上帝是否掷骰子”,这个困扰过爱因斯坦的量子物理核心奥秘同样让潘建伟常常凝神思索,在他眉宇间刻出两道深深的沟痕。 从潘建伟第一次认识到量子世界的诡谲离奇到沉迷其中不可自拔已过去20多年。为何会有量子叠加、量子纠缠这些奇异的现象尚无答案,他却一直致力于利用奇异的量子特性来制造不可破译的密码,发展保密通信,研制强大的量子计算机…… 世界首颗量子卫星“墨子号”从太空建立了迄今最遥远的量子纠缠,证明在1200多公里的尺度上,爱因斯坦都感到匪夷所思的“遥远地点间的诡异互动”依然存在。作为量子卫星首席科学家的潘建伟还有更大的目标——在地月间建立30万公里的量子纠缠,检验量子物理的理论基础,并 探索 引力与时空的结构。 在很多人眼里,潘建伟是传奇:29岁,他参与的有关量子隐形传态的研究成果,同伦琴发现X射线、爱因斯坦建立相对论等影响世界的重大研究成果一起,被《自然》评为“百年物理学21篇经典论文”;31岁,任中国科学技术大学教授;41岁,成为中国当时最年轻院士;45岁,获国家自然科学一等奖…… 缘起痴迷 潘建伟1970年3月生于浙江东阳,自小成绩优秀。父母从不限制他,由他做感兴趣的事。1987年,他考入中国科学技术大学近代物理系。他对大学生活最深的印象是,同学间比着早起晚睡学习,拼命喝茶熬夜读书。 他的大学同学,如今是暗物质卫星科学应用系统总师的伍健回忆,潘建伟是个很有意思的人。他给潘建伟剃过头发,有点像马桶盖,但是潘并不生气。除了学习,潘建伟也很会享受生活,有次和同学跑到水库摸了一脸盆螺蛳回来,在宿舍煮着吃。 1990年潘建伟第一次接触量子力学。那时他经典力学、电动力学、统计力学都学得很好,却完全搞不明白量子力学,有次期中考试量子力学差点没及格。 “双缝实验中,人没有‘看’电子时,就不能说它是从哪条缝过去的,这实在太奇怪了,这不对啊。一个人要么在上海要么在北京,怎么会同时既在上海又在北京呢?”量子世界的奇怪与陌生让潘建伟陷入这样的苦思。 现在回看,潘建伟认为这是最好的现象,“量子力学的创始人之一玻尔说,如果学了量子力学后,你不觉得奇怪,不觉得不可思议,不犯糊涂的话,那你根本就没学懂。” 量子世界越古怪,潘建伟越想搞明白。于是,他选择与量子“纠缠”下去。 他认识到,物理学终究是门实验科学,再奇妙的理论若得不到实验检验,无异纸上谈兵。然而,上世纪90年代中国缺乏开展量子实验的条件。1996年硕士毕业后,潘建伟赴量子科研的重镇——奥地利因斯布鲁克大学攻读博士学位,师从量子实验研究的世界级大师塞林格。 一个理论物理专业的硕士,想要很快进入实验量子物理前沿,其中困难可想而知。为尽快掌握要领,潘建伟几乎整天泡在实验室里。 在老师眼里,当实验中出现问题,潘建伟从不退缩,把困难当做更上层楼的激励,大家总是听他说“情况很好”,这个非常乐观的人,总能找到解决问题的办法,大家都喜欢他。 量子卫星与阿里站建立链路。(中科院提供) “毫无疑问,他现在是世界上这个领域最好的科学家,我非常为他骄傲。”塞林格说,“我也很鼓励他回国发展,这里有很好的机会。中国在量子通信领域已步入世界先进行列,这里有很大一部分是潘建伟努力的结果。” 做盘“量子好菜” 潘建伟掌握了先进的量子技术后,迫切地希望中国在信息技术领域抓住这次赶超发达国家并掌握主动权的机会。 1997年起,他每年假期回到科大讲学,为中国在量子信息领域的发展提出建议,带动研究人员进入该领域。2001年,他获得中科院、国家自然科学基金委资助,在科大组建了量子物理与量子信息实验室。 量子信息研究集多学科于一体,要想突破,须拥有不同学科背景的人才。有一手好厨艺的潘建伟知道,做盘好菜,需要各种各样的好原料。 潘建伟将不同学科背景的年轻人送出国门,到德国、英国、美国、瑞士、奥地利等国学习锻炼。就这样,他的团队掌握了国际上最好的冷原子技术,最好的精密测量技术,最好的多光子纠缠操纵技术…… 近年,潘建伟团队已在《自然》《科学》《物理评论快报》等国际重要学术刊物上发表论文约200篇,被广泛引用。 科学带来内心安宁 实验中难免有让人灰心丧气的时候。但潘建伟说,做自己喜欢的事需要耐心,欲速则不达。“我愿意循序渐进地学习、工作。成功了,当然很高兴;不成功,也不觉得失落,就再来一次。关键是享受这个过程带来的乐趣。” “追求量子物理的奥妙,能让人获得内心的从容和安宁,如同阳光灿烂的春天,走在青草地上般心情愉快。”他说。 潘建伟是爱因斯坦的崇拜者,大学时就喜读《爱因斯坦文集》,“爱因斯坦的散文是最深刻、最美的,对于我,那就是天籁之音。” “研究量子物理对我的性格、思想产生了影响。在牛顿力学里面,0和1,黑或白,要么绝对正确,要么绝对错误。但量子力学告诉我们,对错、好坏是很难界定的,这时人就变得包容。” 潘建伟在繁忙工作中参加了很多科普活动,还创办了以科普为目的的墨子沙龙。他说:“建设创新型国家,必须培养公众的科学兴趣,提升公众科学素养,否则就不可能建成真正创新的国家。” 摘取物理“皇冠上的明珠” 时光飞逝。量子世界一如既往地怪异、难以捉摸。神奇的量子纠缠能在时空中无限延展下去吗? “至少现在理论是这样的,但也许量子纠缠会受到引力影响,它的品质会下降。而通过不断地扩展量子纠缠分发的距离,在实验上探寻量子物理和相对论的边界,我们可能对时空结构和引力开展前瞻性研究。”潘建伟说。 下一步,潘建伟希望在地月拉格朗日点上放一个纠缠光源,向地球和月球分发量子纠缠。通过对30万公里或更远距离的纠缠分发,来观测其性质变化,对相关理论给出实验检测。 “我已经47岁了,希望在60岁左右退休前,把这个实验做完。”他说。 如果这个梦想能实现,潘建伟将摘取这个领域“皇冠上的明珠”。 潘建伟认为,发展量子通信、量子计算技术是国家重大需求,自己义不容辞,而把量子世界最奇怪的问题搞清楚,是自己内心的原动力。 “量子力学为什么会这么奇怪,这个基本问题根本没有解决,我们可能还处于出发点上。对我来说,为什么会有量子纠缠,是最深层次的东西,我始终没有忘记。我把实验做下去,将来可能搞明白。”潘建伟说。 他也认为,科学理论与实用技术不应被割裂,自己愿意竭尽全力推动量子技术发展。 “用量子手段可以做很多事情,例如做原子钟、精密测量,甚至可用来做癌症的早期诊断。操纵好量子,将为人类带来巨大福祉。”潘建伟说。

201 评论

相关问答

  • 量子光学光学报

    物理学类的国家核心期刊比较多,现列出一部分如下:物理,物理学报,高压物理学报,工程热物理学报,计算物理,原子核物理评论,原子能科学技术,大学物理,中国科学(物理

    木姑娘Zara 5人参与回答 2023-12-10
  • 量子纠缠学术论文

    可以的;因为量子纠缠的速度非常快,只要我们掌握一定的科学技术,那么是可以实现瞬间移动的。

    超级飞侠包警长 6人参与回答 2023-12-11
  • 种子质量检测技术论文

    业务培养目标:本专业培养,包括科学与工程金属材料的基本知识,无机非金属材料,高分子材料和其他材料的广泛领域的领域,可形成制备,加工,结构与性能的各种材料从事科研

    映雪堂明 4人参与回答 2023-12-12
  • 电子测量技术在线投稿

    录用以后会邮寄你那期的样刊的,但快递费有可能会要你出,你可以问下通知你录用的编辑。样刊是一定会邮寄的。

    越狱找食吃 2人参与回答 2023-12-11
  • 电子测量技术期刊投稿

    在众多的电子测量科技类期刊中,《电子测量技术》以审稿周期2~3周、发表周期1~2个月、信息含量大、报道成果时效性强、覆盖学科广等获得了电子测量、控制及相关学科作

    刘思韵2522 2人参与回答 2023-12-10