• 回答数

    3

  • 浏览数

    265

馒头的馒头
首页 > 期刊论文 > 矩阵和行列式毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

一知蓝色

已采纳

虽然19世纪行列式和矩阵引起了大家的注意,但它们与其说是数学上的改革,不如说是语言上的改革。不像向量和导数等创立新领域的概念,矩阵和行列式是对已有概念的速记表达式,不提供方程或变换以外的内容。它们是非常有用的数学工具,一是作为紧凑的表达式,二是矩阵在学习群论一般定理中有启发作用。 行列式出现在解线性方程组中,然后是消元法、坐标变换、多重积分中的变数替换、解行星运动的微分方程组、将三个或多个变数的二次型及二次型束(一个束为A+λB,其中A、B为指定型,λ是参数)化简成标准型。19世纪直接继承了克莱姆、贝祖、范德蒙、拉格朗日和拉普拉斯的工作。 1815年柯西把行列式这个词(高斯用来指二次型 的判别式)用在18世纪出现的行列式中,并把元素排成方阵,采用双重足标记法。例如一个三阶行列式写为(1841年Cayley引入两条竖线) 同时柯西给出了行列式第一个系统的、近乎现代的处理。主要结果之一是行列式的乘法定理。拉格朗日已经对三阶行列式给出了这一定理,但他行列式的行是一个四面体的顶点坐标,是一种未推广的特殊情形。按柯西的说法(用现代记号表示),一般定理是 ,|a||b|代表n阶行列式,而 ,意思是第i行第j列的项是|a|的第i行和|b|的第j列对应元素的乘积之和。1812年比内(Jacques Philippe Marie Binet,1786-1856)曾叙述这一定理,但没有进行满意的证明。柯西改进了拉普拉斯行列式展开定理,并给了一个证明。 1825年舍克(Heinrich Ferdinand Scherk,1798-1885)给出了几个行列式新性质。他建立了只有一行(或列)不同的两个行列式相加的规则和一常数乘行列式的规则。他说当一个方阵的某一行是另两行或其它几行的线性组合时,其行列式为0,以及三角行列式(主对角线以上或以下的所有元素是0)的值是主对角线上元素的乘积。 西尔维斯特(James Joseph Sylvester,1814-1897)持续搞行列式理论,虽然他在剑桥数学会考成绩优异,但因为是犹太人,被禁止在剑桥任教。1841-1845他在弗吉尼亚大学任教,后来回到伦敦,1845-1855担任书记官和律师。之后在英格兰当老师到1871年,经过一些活动后到霍普金斯当教授,1876年起演讲不变量理论,他开创了美国的纯数学研究,创办了《美国数学杂志》。1884年(70岁)回到英格兰成为牛津教授(这次真的是莫欺少年穷了) 西尔维斯特是个活泼、敏感、兴奋、热情甚至易激动的人,他引入了很多新术语,开玩笑地把自己比作亚当(亚当曾给野兽和花起名字),虽然他涉及力学和不变量理论等领域,但他没有系统而彻底地作出理论。他频繁地作出猜想,其中不乏出色的,但也有很多错的。他的主要贡献是组合的思想以及从较具体的发展中进行抽象。 西尔维斯特的重要成就之一是改进了从一个n次和m次的多项式中消去x的方法,称为析配法(dialytic method),比如为消去方程 中的x,形成五阶行列式 ,该行列式为0是两个方程有公共根的充要条件。 1841年雅可比首次给出当行列式元素是t的函数时其导数公式。设aij是t的函数,Aij是aij的余子式,D是行列式,则 这个'表示对t的微商。 行列式还用于多重积分的变数替换,1832-1833雅可比找到一些特殊结果。后来1839年卡特兰(Eugene Charles Catalan,1814-1894)给出了一些今天常用的结果,如二重积分 在变数替换x=f(u,v),y=g(u,v)下成为 这里G(u,v)=F(x(u,v),y(u,v)),其中的行列式称为x,y关于u,v的雅可比行列式或函数行列式。 雅可比对函数行列式专门写了一篇重要文章,在文中他考虑n个函数u1,u2,...,un,每个函数都是x1,x2,...,xn的函数,他问什么时候能从这n个函数消去xi使ui用一个方程联系起来,如果不可能则称函数ui是无关的。答案是,如果ui关于xi的雅可比行列式是0,则函数不是无关的,反之若函数不是无关的,则行列式值为0。他还给出雅可比行列式的乘积定理,如果ui是yi的函数,而yi是xi的函数,则ui关于xi的雅可比行列式是ui关于yi的雅可比行列式和yi关于xi的雅可比行列式的乘积、

205 评论

typical2006

行列式是特殊的矩阵,N*N矩阵,N*M可以不同,矩阵可以进行乘法,行列式不可以

189 评论

小甜甜不赖你

你好,叫你写小结,就是归纳整理学习到的知识点行列式小结一、行列式定义 行列式归根结底就是一个数值,只不过它是由一大堆数字经过一种特殊运算规则而得出的数而已。当然这堆数排列成相当规范的n行n列的数表形式了。所以我们可以把行列式当成一个数值来进行加减乘除等运算。 举个例子:比如说电视机(看做一个行列式),是由很多个小的元件(行列式中的元素)构成的,经过元件的相互作用、联系最终成为一台电视机(行列式)。 那么这n*n个数字是按照什么规则进行运算的呢? 行列式是不同行、不同列的所有可能元素乘积的代数和(共有n!项)。(这里面的代数和,表示每个乘积项是带有正负号的,而正负号的确定要根据行列标的逆序数来判断!) 对于行列式的这个概念,仅仅是给出了行列式的一种通用定义,它能用来求特殊行列式(比如三角行列式、对角行列式等)的值和做一些证明,而真正要来求行列式的值,需要依据行列式的性质和展开法则。 二、行列式性质 行列式的那几条性质其实也很容易记忆。 1、行列式转置值不变。这条性质说明行列式行、列等价,凡是对行成立的,对列也成立。 2、互换两行(列),行列式变号。 3、两行(列)相等,则行列式为0。 4、数乘行列式等于该数与行列式某一行(列)所有元素相乘! 5、两行(列)成比例,则行列式为0。 6、行列式加法运算:某一行(列)每个元素都可以看成两项的和的话,可以将行列式展开成两个同阶行列式的和。 7、某行(列)同乘一个数加到另外一行(列)上,行列式值不变。 这7条性质往往组合使用来求行列式的值。尤其第7条性质,一定要会熟练运用来将一个行列式化为三角行列式(既要会对行使用,也要会对列使用),最好能自己多做点练习。 三、行列式行(列)展开法则 行列式的行(列)展开法则其实是一种降阶求行列式值的方法。 行列式的行(列)展开法则一定注意一点,即一定是某行(列)每个元素同乘以自己对应的代数余子式。(即我一直强调的:要配套。) 如果是某行(列)每个元素同乘以另外一行(列)对应位置的代数余子式则值为零。(即:不配套。)矩阵小结初等矩阵的概念是随着矩阵初等变换的定义而来的。初等变换有三类: 1、位置变换:矩阵的两行(列)位置交换; 2、数乘变换:数k乘以矩阵某行(列)的每个元素; 3、消元变换:矩阵的某行(列)元素同乘以数k,然后加到另外一行(列)上。初等矩阵:由单位矩阵经过一次初等变换后所得的矩阵。则根据三类初等变换,可以得到三种不同的初等矩阵。 1、交换阵E(i,j):单位矩阵第i行与第j行位置交换而得; 2、数乘阵E(i(k)):数k乘以单位矩阵第i行的每个元素(其实就是主对角线的1变成k); 3、消元阵E(ij(k)):单位矩阵的第i行元素乘以数k,然后加到第j行上。其上的三种初等矩阵均可看成是单位矩阵的列经过初等变换而得。初等矩阵的模样其实我们可以尝试写一个3阶或者4阶的单位矩阵,然后进行初等变换来加深一下印象。 首先:初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。最关键的问题是:初等矩阵能用来做什么?当我们用初等矩阵左乘一个矩阵A的时候,我们发现矩阵A发生变化而成为矩阵B,而这种变化恰好是一个单位矩阵变成该初等矩阵所产生的变化。具体来说: 左乘的情况: 1、E(i,j)A=B,则矩阵A第i行与第j行位置交换而得到矩阵B; 2、E(i(k))A=B,则矩阵A的第i行的元素乘以数k而得到矩阵B; 3、E(ij(k))A=B,则矩阵A的第i行元素乘以数k,然后加到第j行上而得到矩阵B。结论1:用初等矩阵左乘一个矩阵A,相当于对矩阵A做了一次相应的行的初等变换。 右乘的情况: 4、AE(i,j)=B,则矩阵A第i列与第j列位置交换而得到矩阵B; 5、AE(i(k))=B,则矩阵A的第i列的元素乘以数k而得到矩阵B; 6、AE(ij(k))=B,则矩阵A的第i列元素乘以数k,然后加到第j列上而得到矩阵B。结论2:用初等矩阵右乘一个矩阵A,相当于对矩阵A做了一次相应的列的初等变换。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 请注意并理解结论1和结论2中的“相应”两字。 初等矩阵为由单位矩阵E经过一次初等变换(三种)而来,我们可以把初等矩阵看成是施加到单位矩阵E上的一个变换。 若某初等矩阵左(右)乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。或者说,我们想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。

184 评论

相关问答

  • 矩阵有关毕业论文

    初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多

    基督城里 3人参与回答 2023-12-09
  • 矩阵补全毕业论文

    你好,对论文进行修改。毕业论文没有调查数据,则会导致论文内容的不严谨。毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。

    可爱的giraffe 4人参与回答 2023-12-08
  • 矩阵应用毕业论文

    据我所知,矩阵可以解高次方程,在线性代数中也有运用。

    饿魔娃娃 5人参与回答 2023-12-10
  • 矩阵和行列式毕业论文

    虽然19世纪行列式和矩阵引起了大家的注意,但它们与其说是数学上的改革,不如说是语言上的改革。不像向量和导数等创立新领域的概念,矩阵和行列式是对已有概念的速记表达

    馒头的馒头 3人参与回答 2023-12-10
  • 有关矩阵的毕业论文格式

    标题(三号宋体,居中,加粗)【说明: 标题是能反映论文中特定内容的恰当、简明的词语的逻辑组合,应避免使用含义笼统、泛指性很强的词语(一般不超过20字,必要时可加

    柔柔1989 4人参与回答 2023-12-06