掉了BOWL
细胞生长【摘要】 本文从细胞水平论述了生命生长的三种形式与作用,以及细胞生长与个体生命、生命(医学)科学、生物技术的重要关系。发育生长是生殖细胞全能分化生长,作用是繁衍生命诞生个体,延续物种。【关键词】 细胞 生长 发育 基因 细胞是构成生命体及进行生命活动的基本单位。每个生命体都是由细胞生长分化而来,细胞生长在生命体诞生、死亡及生命物种延续发展和维护个体生命中均起着重大作用,也是生物科学技术建立及应用的基础,有非常重要意义。现就细胞生长的作用,简述如下。 1 细胞生长形式 细胞在生命活动中,其生长形式有所不同,根据生长作用结果可分为发育式生长、再生式生长和肿瘤式生长。 发育式生长 发育生长是有性繁殖生物,经两性(雌雄)生殖细胞结合形成受精卵细胞生长分化形成胎儿,并成长为(性)成熟个体的整个生命历程,分为胚胎发育和胚后发育。 胚胎发育是由一个受精卵细胞生长分化出具有不同组织器官能单独生活的胎儿的过程,包括卵裂期、囊胚期,原肠胚期、器官形成〔1〕。胚后发育是由胎儿生长到生命终结(死亡)的整个历程,包括幼年期、青春期、成年期和老年期。 再生式生长 再生生长是生命体的一部分在损伤、脱落或截除之后重新生长出的过程,分为生理再生和病理再生。 生理再生是生命体在生命活动中,对不断衰老死亡组织细胞的更换补充,如表皮细胞脱落的补充,红细胞死亡的更替等。病理再生又称损伤再生,是对受伤部分组织器官的修复或补偿。根据再生能力分为愈合修复伤口(称愈合)和重新长出缺失部分(器官),称再生。其再生过程包括创面愈合、再生芽基形成、芽基生长和分化〔2〕。 2 细胞生长的作用和结果 发育生长 发育生长结果第一步通过胚胎发育生长分化出一个具有生命活动的幼体,即胎儿;第二步由胎儿生长成具有繁殖能力的成熟个体,并继续发育生长新的幼体。同时,成熟个体继续发育生长走向衰老死亡,完成生命历程即生命周期。 发育生长的作用是不断的诞生生命个体、增加群体数量。自然界中大部分生命群体(包括人类)都是由不断的发育生长延续生命,以达到生命不灭的,同时两性结合发育生长也是生物自然选择、杂交进化、个体变异的主要途径。 再生生长 再生生长作用是保护个体生命,维护机体生命所需正常生理功能。确保幼体(胎儿)发育生长成熟,继续繁衍生命,直至保护生命个体走完生命历程。如生理再生中皮肤再生,保证了皮肤作为机体第一道防线,阻止外界因素对机体的侵害和对机体内脏器的保护作用〔4〕。红细胞不断再生补充凋亡的红细胞,保证了对机体氧的供应和二氧化碳排出〔5〕。白细胞和淋巴细胞的再生在对入侵体内的有害物(病菌)的清除和增加机体免疫力上,均起着重要作用〔5〕。损伤再生中的伤口愈合,在及时有效的防止有害物质通过伤口进入机体,确保血液正常循环,阻止血液大量流失危及生命上具有不可缺少作用。再生在补偿机体因损伤丢失器官免除残疾,功能恢复上有着重要意义,如蜥蜴再生尾〔2〕、蝾螈再生肢体〔6〕。 再生生长除保护生命、恢复功能、为个体生命保驾护航外,还有无性繁殖生命、纯洁物种、减少变异的作用,如水螅出芽生殖、植物扦插、组织培养、动物克隆等。 3 细胞生长条件 细胞生长需要激活(刺激、诱导)使细胞处于生长状态,同时生长还需要在一定的环境条件下进行。主要有足够的营养(包括氧)和适合生长的温度及湿度(水分)。 发育生长 发育生长细胞激活是通过两性(精卵)结合形成受精卵细胞实现的〔1〕。发育生长分为胎生和卵生,胎生发育生长是受精卵细胞在母体子宫内进行,营养靠母体通过胎盘提供,体温和子宫内的水分就是适合发育生长所需要的温度和湿度。卵生发育生长是受精卵(分体内和体外受精)细胞在母体外进行,营养由卵内卵黄提供,温度靠外界提供。如:鸟类的孵卵、壁虎借助自然环境温度(6~9月份)〔7〕,湿度是卵内具有的水分加外界环境湿度。 再生生长 再生生长细胞激活是机体组织细胞受到损伤刺激或正常工作细胞程序死亡丢失情况下被激活,营养靠机体血液通过血管循环供给,温度和湿度借助机体环境,生长以机体为宿主。 人类是社会生活群体,在经济全球化的今天,每个人的生活都与社会息息相关。总之,人类在竞争发展、追求经济利益、占有财富的同时,更应追求和谐健康,人生最大的财富是健康快乐生活100岁。
臭臭的猪宝贝
写作思路:主要写出细胞分裂的过程等。
正文:
细胞分裂是活细胞增殖其数目由一个细胞分裂为两个细胞的过程。分裂前的细胞称母细胞,分裂后形成的新细胞称子细胞。一般包括细胞核分裂和细胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。
在单细胞生物中细胞分裂就是个体的繁殖,在多细胞生物中细胞分裂是个体生长、发育和繁殖的基础。1855年德国学者魏尔肖()提出“一切细胞来自细胞”的著名论断,即认为个体的所有细胞都是由原有细胞分裂产生的,除细胞分裂外还没有证据说明细胞繁殖有其他途经。
主要是引发细胞分裂,诱导芽的形成和促进芽的生长。对组织培养的烟草髓或茎切段,细胞分裂素可使已不具备分裂能力的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。茎切段的分化常受细胞分裂素及生长素比例的调节。
当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素或在侧芽上涂抹一定浓度的生长素,可以解除顶端对侧芽的抑制(即顶端优势)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。
米拉妹妹12
写作思路:首先可以开篇点题,直接给出文章的主旨,接着表达自己的想法以及观点,用举例子的方式来进行阐述论证自己的看法,中心要明确等等。
生物是指具有动能的生命体,也是一个物体的集合。而个体生物指的是生物体,与非生物相对。 其元素包括:
在自然条件下,通过化学反应生成的具有生存能力和繁殖能力的有生命的物体以及由它(或它们)通过繁殖产生的有生命的后代,能对外界的刺激做出相应反应,能与外界的环境相互依赖、相互促进。并且,能够排出体内无用的物质,具有遗传与变异的特性等。
诱导芽的形成和促进芽的生长。对组织培养的烟草髓或茎切段,细胞分裂素可使已不具备分裂能力的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。
茎切段的分化常受细胞分裂素及生长素比例的调节。当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;
反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素或在侧芽上涂抹一定浓度的生长素,可以解除顶端对侧芽的抑制(即顶端优势)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。
细胞分裂素还有防止离体叶片衰老、保绿的作用,这主要是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。在叶片上局部施用细胞分裂素,能吸聚其他部分的物质向施用处运转和积累。
细胞分裂素的作用方式还不完全清楚。已知在tRNA中与反密码子相邻的地方有细胞分裂素,在蛋白质合成过程中,它们参与到tRNA与核糖体mRNA复合体的连接物上。但这可能不是外源细胞分裂素的作用方式。
因为在tRNA中,细胞分裂素的合成是由原来在tRNA中的嘌呤的改变产生的。而外源细胞分裂素并不参入tRNA中,但可促进硝酸还原酶、蛋白质和核酸的合成。除了天然的促进细胞分裂的物质外,还用化学方法人工合成了一些类似激动素的物质。通常也统称细胞分裂素。其中活性较强,也最常用的是6-苄基嘌呤。
细胞核分裂的状况可分为3种:即有丝分裂、减数分裂和无丝分裂。有丝分裂是真核细胞分裂的基本形式。减数分裂是在进行有性生殖的生物中导致生殖母细胞中染色体数目减半的分裂过程。它是有丝分裂的一种变形,由相继的两次分裂组成。
无丝分裂又称直接分裂。其典型过程是核仁首先伸长,在中间缢裂分开,随后核也伸长并在中部从一面或两面向内凹进横缢,使核变成肾形或哑铃型,然后断开一分为二。
差不多同时细胞也在中部缢裂分成两个子细胞,由于在分裂过程中不形成由纺锤丝构成的纺锤体或中心体发出的星射线,不发生由染色质浓缩成染色体的变化,故命名无丝分裂。
送我个时光机
机体在长期的进化过程中,在病原生物的压力下,适应产生了两套免疫系统,即天然免疫(innate immunity)和获得性免疫(acquired or adaptive immuniy)。天然免疫或称非特异免疫,存在于所有的多细胞生物,与生俱来,包括多种效应细胞和分子,如各种粒细胞、单核/巨噬细胞、树突状细胞(DC)、NK细胞和体液杀菌成分如补体、抗微生物肽、溶菌酶等。获得性免疫即特异性免疫,到脊椎动物才出现,是在个体发育过程中通过体细胞lg超家族基因重排而产生的抗原识别细胞,包括T和B淋巴细胞。自20世纪50年代末BURNET[1]提出克隆选择学说以来,对获得性免疫系统进行了广泛深入的研究,获得性免疫应答所涉及的细胞、蛋白质和基因的结构、功能及其机制诸方面均取得了许多重大的进展和突破,而天然免疫的研究进展缓慢。然而,90年代以来多种天然免疫识别分子的发现,其结构、功能的初步阐明,导致了90年代后期“天然免疫研究之崛起”[2]及其“复兴时代的到来”[3]。本文仅就其核心问题—“分子模式识别作用”及其免疫生物学意义作一概略介绍。1天然免疫识别分子及其“分子模式识别作用”天然免疫识别分子的种类天然免疫识别分子都是由胚系基因编码的蛋白质,根据结构特征分为7个家族(见表1),但一些分子如补体经典途径识别分子C1q、旁路途径识别分子C3、肽聚糖识别蛋白等尚未归类,而且,新的天然免疫识别分子还在不断发现之中。还可以从功能上将天然免疫识别分子分为循环于血浆中的体液蛋白、表达于细胞表面的内吞受体和细胞表面或细胞内的信号受体;按识别方式可分直接识别分子如CD14、DEC-205、胶凝素等和间接识别分子(识别天然免疫系统与病原体反应后的产物)如补体受体、Toll受体等。
echorabbit123
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
细胞凋亡与细胞坏死的区别及其生物学意义细胞凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。细胞凋亡与细胞坏死不同,细胞凋亡不是一件被动的过程,而是主
nature cell biology即自然细胞生物学杂志,是国际顶级期刊。 《自然细胞生物学》是英国著名杂志《Nature》五个学科主题其中之一,也是该领域经
海洋生物来源药物先导化合物的研究进展【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并
关于高中生物竞赛方面的书有不少。比如《培优教程》《奥赛经典》《精英教案》等等。看书是一部分,做题目也很重要。像《冲刺全国高中生物联赛》《奥赛题典》《精英教案习题
机体在长期的进化过程中,在病原生物的压力下,适应产生了两套免疫系统,即天然免疫(innate immunity)和获得性免疫(acquired or adapt