• 回答数

    7

  • 浏览数

    292

robert8727500
首页 > 期刊论文 > 数学毕业论文格式需要引言吗

7个回答 默认排序
  • 默认排序
  • 按时间排序

我爱蟹爪兰

已采纳

数学系本科毕业论文格式规范

一、论文中句号全部用“.”,奇数页码在右下角,偶数页码在左下角。

二、打印:表格单面打印,论文部分正反面打印。

三、页边距:上下边距35mm,左右边距32mm,文字部分为倍行距,有数学公式的内容为单倍行距。

四、正文层次格式按学校文件执行。

(1)论文的正文层次格式:

第1章 xxxx(三号黑体,段前24磅,段后18磅,单倍

行距,序号与题名间空1个汉字字符,居中)

xxxx(四号宋体加黑,段前24磅,段后6磅,左对齐,

不接排)

xxxx(小四号黑体,段前

12磅,段后6磅,左对齐,

不接排)

a. xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四号

宋体)

(1) xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四

号宋体)

1)xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四

号宋体)

(2)图表要求:图、表内容使用5号宋体。

图:图序一律采用阿拉伯数字分章编写,例如,第2章第3个图的图序为“图”,图题应简明,图序与图题间空1个汉字字符,居中排于图的下方。

表:表序一律采用阿拉伯数字分章编写,例如,第2章第3个表的表序为“表”,表序与表题间空1个汉字字符,居中排于表的上方。

五、基本格式与装订顺序 1、封皮

2、开题报告 3、任务书 4、中期检查表 5、答辩许可证 6、质量考核表 7、毕业论文封皮

8、(单独占一页)

中文题目(二号宋体加黑)(从此项开始双面打印)

中文摘要(摘要顶左边):

摘要(小四号宋体加黑,摘要的内容用小四号宋体,字数约

200-300字)

关键词(小四号宋体加黑,关键词的内容用小四号宋体),关键词3—5个(关键词之间用一个汉字空格隔开,最后一个关键词不加标点)。

9、(单独占一页)

英文题目(二号Times New Roman字体加黑)

Abstract(小四号Times New Roman字体加黑,内容用小四号Times New Roman字体)

Keywords (小四号Times New Roman字体加黑,内容用小四号Times New Roman字体),关键词3—5个(关键词之间用两个英文空格隔开,最后一个关键词不加标点)。

10、目录(小四号宋体加黑):章节不超过3级,标清页码,自动生成。 参考格式

目 录

引 言„„„„„„„„„„„„„„„„„„„„„„„„1 第1章„„„„„„„„„„„„„„„„„„„„„„„„„2 „„„„„„„„„„„„„„„„„„„„„„„„„3 第2章„„„„„„„„„„„„„„„„„„„„„„„„„4 „„„„„„„„„„„„„„„„„„„„„„„„10 总 结„„„„„„„„„„„„„„„„„„„„„„„„„20 致 谢„„„„„„„„„„„„„„„„„„„„„„„„„22 参考文献„„„„„„„„„„„„„„„„„„„„„„„23 附 录„„„„„„„„„„„„„„„„„„„„„„„„„24

11、正文(字数在8000字以上)

12、参考文献 文章:作者,题目,期刊,年份,页面。 书:作者,书名,出版时间。 示范格式

参考文献(左对齐,小四号宋体加黑,具体的'文献为小四号宋体,篇

数在 10篇以上)

(1)期刊

[序号]主要负责者(两位以上作者中间用逗号分开).文献名[J].期刊名称(外文刊名可缩写,缩写后的首位字母应大写),出版年,卷号(期

8

号):起止页码.

[1]赖炎连,高自友,贺国平.非线性最优化的广义梯度投影法[J]. 中国科学(A),1992,(9):916-924.

[2] O. L. Mangasarian, Linear and nonlinear separation of patterns by linear programming [J]. Operation Research, 1965, 13: 444-452.

(2)专著、论文集,学位论文、报告

[序号]主要负责者(两位以上作者中间用逗号分开).文献题名[文献表示类型].出版地:出版者,出版年.起止页码.

[3]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997. [4]张筑生.微分动力系统的不变集[D].北京:北京大学数学系数学研 究所,1983.

276 评论

闪闪惹人爱ii

论文一定要有引言。用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

引言要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。关键问题在于题目要紧扣论文内容,或论文内容与论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。

扩展资料

引言写作方法:

(1)开门见山,不绕圈子。避免大篇幅地讲述历史渊源和立题研究过程。

(2)言简意赅,突出重点。不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。在引言中提示本文的工作和观点时,意思应明确,语言应简练。

(3)回顾历史要有重点,内容要紧扣文章标题,围绕标题介绍背景,用几句话概括即可;在提示所用的方法时,不要求写出方法、结果,不要展开讨论。

虽可适当引用过去的文献内容,但不要长篇罗列,不能把前言写成该研究的历史发展;不要把前言写成文献小综述,更不要去重复说明那些教科书上已有,或本领域研究人员所共知的常识性内容。

(4)尊重科学,实事求是。在前言中,评价论文的价值要恰如其分、实事求是,用词要科学,对本文的创新性最好不要使用“本研究国内首创、首次报道”、“填补了国内空白”、“有很高的学术价值”、“本研究内容国内未见报道”或“本研究处于国内外领先水平”等不适当的自我评语。

(5)前言的内容不应与摘要雷同,注意不用客套话,如“才疏学浅”、“水平有限”、“恳请指正”、“抛砖引玉”之类的语言;前言最好不分段论述,不要插图、列表,不进行公式的推导与证明。

参考资料来源:百度百科-论文引言

282 评论

吐司酸奶

引言就叫绪论(也有叫前言的),只需交代论文论题,不需交代论据;主要叙述论文的主题,中心,写作动机,写作背景,论文的价值和意义;摘要概括全文大意,是论文的中心思想。也是论文主要内容的提要,包括主要观点,主要论证结构以及结论等。因此,一般说来论文是要有引言的,也可能有引言的内容但没有写“引言”这2个字!

101 评论

未央1895

当然,要有。论文正文(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。

224 评论

张小电1301

楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H· words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this the convenience of discuss, the simplest Heawood configuration model is given in [1] as shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s follows, the detailed Heawood configuration’s inevitable sets is is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A shown in , if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C shown in , if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B shown in , if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D shown in , if B2-A2 chain and A1-D2 loop is intersectant in Fig. solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu :〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

295 评论

我的宝贝-童童

据学术堂了,引言是论文引人入胜之言,所以在论文写作时,必须要写引言。引言对于论文来说很重要,所以一定要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。摘要中应排除本学科领域已成为常识的内容,切忌把应在引言中出现的内容写入摘要,一般也不要对论文内容作诠释和评论(尤其是自我评价)。论文要结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。

320 评论

猫妖梦懿

1、论文题目:要求准确、简练、醒目、新颖. 2、目录:目录是论文中主要段落的简表.(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整.字数少可几十字,多不超过三百字为宜. 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索.每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方. 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语. 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头.引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围.引言要短小精悍、紧扣主题. 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论.主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论. 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行. 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证. (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息.

354 评论

相关问答

  • 毕业论文要引言吗

    问题一:论文一定要有引言吗 5分 引言就叫绪论(也有叫前言的),只需交代论文论题,不需交代论据;主要叙述论文的主题,中心,写作动机,写作背景,论文的价值和意义;

    pingping28 5人参与回答 2023-12-07
  • 论文格式需要前言吗

    论文题目 主标题在20字之内,可以添加副标题。主标题采用宋体三号字加粗;副标题用宋体小三号字,均在文本居中位置。 摘要和关键词 中文摘要的篇幅大概在300字左右

    烂Pandade 5人参与回答 2023-12-11
  • 毕业论文正文需要引言吗

    1、正文一般包括序论(引言)、本论、结论三部分。文中一般不出现“引言”、“本论”、“结论”字样,但一般应有引言段和结论段。本论是论文的主体,一般要分几个部分和几

    苦瓜老太婆 2人参与回答 2023-12-09
  • 毕业论文引言格式要求

    毕业论文格式要求和论文类型 论文格式是论文整体的呈现,不能只是对其中某个部分进行整理,以下是我为大家推荐的毕业论文格式要求和论文类型,希望能帮到大家,更多精彩内

    hanhan0124 3人参与回答 2023-12-11
  • 毕业论文格式引言格式

    毕业论文格式要求和论文类型 论文格式是论文整体的呈现,不能只是对其中某个部分进行整理,以下是我为大家推荐的毕业论文格式要求和论文类型,希望能帮到大家,更多精彩内

    mengjia097 3人参与回答 2023-12-10