• 回答数

    2

  • 浏览数

    296

兔宝宝装饰
首页 > 期刊论文 > 地下水数值模拟论文答辩

2个回答 默认排序
  • 默认排序
  • 按时间排序

王凡Angela

已采纳

地下水流系统模拟模型就是描述和刻画地下水流系统行为和功能的各种模型。一个好的地下水流系统模拟模型,应是所研究的地下水流系统的复制品,对于相同的系统输入,模拟模型的输出响应与实际系统的输出响应应充分逼近,这样就可以用模拟模型来预测地下水系统的行为和功能,了解地下水流系统行为功能与多种自然因素和人为因素的相互关系。同样,地下水系统模拟模型是建立地下水系统管理模型的前提和基础。无论是以“嵌入法”或以“响应矩阵法”为基础的地下水流系统管理模型都以正确的模拟模型作为基本条件。因为地下水模拟模型可以通过求解控制地下水流的一组偏微分方程以了解地下水水质或水流场的分布特征。而多种形式的地下水管理模型则是不同类型地下水模拟模型与其他约束条件及目标函数的有机结合。

地下水流定解问题的数学模拟模型按时空参数的不同可划分为多种类型。按空间变量特征可分为一维、二维和三维模型。按与时间有无关系可分为稳定流模型和非稳定流模型。按所研究含水层的特征可分为承压水流模型、潜水流模型和饱和-非饱和带水流模型。按反映含水系统状态变量及其影响参数的性质和与可知程度可分为确定性模型、模糊模型和随机模型等。本书介绍了最具代表性的地下水承压二维非稳定水流模拟模型及其求解过程,其他类型的地下水流系统模拟模型读者可参阅文献[40]。由于建立模型的质量守恒定律、能量守恒定律和 Darcy地下水运动定律具有普遍意义,因此,其研究结果对其他类型的模拟模型具有适用性。

二维承压地下水非稳定流定解问题可表示如下:

地下水系统随机模拟与管理

式中:S——储水系数(量纲一);

H——水位(L);

Tx,Ty——x,y方向导水系数(L2·T-1);

Q——源、汇项。(源为正,汇为负)(L·T-1);

Γ1——一类边界;

Γ2——二类边界;

Tn———边界法向导水系数(L ·T);

———H 的外法线方向导数(量纲一);

Hb,H0,r,β——均为已知值。

在实际问题中,根据具体的水文地质条件,其描述地下水流定解方程()中的某些项可以不存在或增加某些项。

求解地下水流定解问题的数值方法常用的有有限单元法,有限差分法,边界元法和有限分析法等。以Galerkin有限单元法为例求解上述二维承压非稳定水流问题的基本步骤为:

化边值问题为变分问题

若固定t,并引入基函数η(x,y)∈HE,则有:

地下水系统随机模拟与管理

利用格林公式并结合边界条件可得:

地下水系统随机模拟与管理

式中:η(x,y)——每个单元上的基函数;

D——渗流区域;

其他符号同前。

方程()称为承压二维非稳定水流的Galerkin方程。

剖分求解区域

在区域D的边界Γ=Γ1+Γ2上,取有限个点依次联成一闭多边形ΓD,并以此近似代替Γ,以ΓD围成的多边形区域DD近似代替D。然后将DD剖分为Ne个三角形区域之和。三角形的顶点称为节点,其编号依次为i=1,2,…,Np,第i号节点的坐标记为(xi,yi),三角形单元用Δβ(β=1,2,…,Ne)表示。

构造基函数和线性形函数

对顶点为i,j,k的三角形Δβ上的任意点P(x,y)的面积坐标定义为:

地下水系统随机模拟与管理

式中:Δβ——三角形ijk的面积;

Δi——三角形kjP的面积;

Δj——三角形Pki的面积;

Δk——三角形Pij的面积。

见图()。

地下水系统随机模拟与管理

节点i的基函数定义为:

地下水系统随机模拟与管理

式中:{Δβi}———以 i 节点为公共节点的三角形单元的集合。

如取形函数为线性元,则在节点i上的线性函数可表示为:

地下水系统随机模拟与管理

建立有限元方程

将式()及其他边界条件代入式()得有限元方程:

地下水系统随机模拟与管理

式中:Nu——内部节点与第二类边界节点数总和。

地下水系统随机模拟与管理

式中:Nt——以j为公共节点的单元个数;

Qj——第j节点处的源、汇水量。

用全隐式法求解常微分方程()可得隐格式:

地下水系统随机模拟与管理

式中:

地下水系统随机模拟与管理

上述步骤构成了地下水流模拟模型及其求解的基本过程,书中仅以二维承压水非稳定流为例进行了分析。该方法对于其他类型的地下水流模拟模型具有普遍适应性。

81 评论

林麓是吃货

8. 2. 1 模型的校验与识别

利用 1990~2000 年期间的水资源的实际利用量、河流水文、地下水位动态、气象等数据,对中游水资源数值模型进行校验与识别。

该期间实际水资源数据带入模型,模拟出地下水位动态过程、泉水流量过程、正义峡流量过程等模拟数据,将模拟数据与实际数据进行拟合对比,调整模型结构与模型参数,直至达到较好的拟合,即实现了对中游水资源系统的宏观模拟。

地下水位动态数据受地表水文随机因素、开采与灌溉随机性因素的影响,带有一定的随机性成分,某月的地下水位升降,或某季度甚至某年的水位变化趋势,并不一定能够代表区域地下水位的总趋势。因此某季度或某年的地下水下降值一般不能作为模型的校验依据。加之在数据处理中对实际水资源数据进行了一定的简化,简化归纳后的数据也带有微小的随机波动因素。

较理想的用于判断校对模型的数据,最好具有长时间系列、大变幅的特征,若变化幅度远超过随机波动干扰,其实质是将随机干扰 “过滤”掉了,提高模拟识别的可靠性。

中游干流平原区地下水研究程度较高,积累了大量的水利数据,选用 20 世纪 90 年代 10 年的地下水位累积变幅值与正义峡水文站历年 12 月至 2 月径流量数据作为模型校验识别依据 ( 12 月至2 月期间,由于黑河沿程不引水,此期间正义峡径流量基本上是泉水溢出量) ,尽管某年的地下水位动态具有一定的随机性,但累积 10 年的动态数据是非常可靠的。

经过调整模型结构参数与地层参数,使模拟水位与实际水位降深达到了较好的区域拟合,尤其是 10 年的累积水位变化量,相对拟合精度接近 90%。由此可以说明两方面的问题: 一是水资源数值模型的概化比较合理,二是该模型可较好地模拟水资源各要素之间的相互影响。经识别后的数值模型,可用于水资源调控预测及模拟分析,以科学合理配置中游地区的水资源。

8. 2. 2 地下水均衡分析

通过数值模拟,得到黑河干流中游平原区不同时期的地下水资源均衡结果 ( 表 8. 1) ,以及累计 10 年 ( 1990~1999 年) 地下水位降深模拟图 ( 图 8. 3) 。

图 8. 3 黑河干流中游平原区累计 10 年 ( 1990~1999 年) 地下水位降深模拟图

表 8. 1 中游平原地区地下水模拟均衡分析表 单位: 108m3/ a

由表 8. 1 分析可知,20 世纪 90 年代初、2000 年 ( 现状年) 两个典型时期的地下水总补给资源量分别为16. 627×108m3/ a 和 14. 632×108m3/ a,10 年间减少近 2×108m3/ a,其中渠系渗漏与田间灌溉渗漏减少 2. 125×108m3/ a。按整个中游平原计算区进行粗略统计,20 世纪 90 年代初干、支、斗渠的渠系利用系数约为 60%,田间灌溉入渗系数约为 15%~20%,到 2000 年,由于加强渠道防渗,干、支、斗三级渠系利用系数平均提高到 80%左右,地下水补给量大幅度减少,从而使地下水总补给量明显减少。

90 年代初至 2000 年这 10 余年间,为解决春旱问题,对地下水开采量有较大幅度提高,由0. 65×108m3/ a 逐步提高到 2. 476×108m3/ a,从而引起各地下水排泄要素重新调整,河水与泉水的溢出量及地下水蒸发量相应变小,河泉水溢出量由 90 年代初的 12. 131×108m3/ a 逐渐 减少 到11. 537×108m3/ a,减少了 0. 594×108m3/ a; 地下水蒸发量由 90 年代初的 4. 417×108m3/ a 逐渐减少到 2. 849×108m3/ a,减少了 1. 568×108m3/ a。

由图 8. 3 累计 10 年降深分布表明,地下水位降深大的位置,并没有大强度的地下水开采,显然不是开采地下水引起的。降深大的区域可超过 4m,最大值发生在民乐县洪水河与童子坝河山前的洪积扇上部,降深值超过十余米,其他降深大的位置,均沿南部山前埋深大且没有地下水开采的部位分布 ( 骆驼城地下水开采灌区除外) 。

在模型校正过程中,为寻求区域地下水降深的影响机制,对多种可能机制进行了大量组合模拟分析,经综合分析后得出结论: 产生如此形状降深场有两个主要的原因,其中最主要的原因是各灌区 “面状分布”渗漏量或灌溉回归补给量减少,即近十年来加强渠道衬砌防渗及逐步推广较省水灌溉方式形成的; 另一主要原因是山区拦蓄洪水使地下水山前补给量不断减少。

模拟结果同时表明,山前拦蓄洪水对地下水产生的后续影响将持续数十年甚至上百年才能达到新的平衡。

黑河是中游平原区最低的排泄基准面,在该种特定条件下,相对于泉水和蒸发排泄来说,河流溢出排泄量是相对稳定的,即增加地下水开采量,或者由于水利工程措施使地下水补给量减少,最先受到影响的应该是泉水上游的源头区溢出量与浅埋带地下水的蒸发量。由此,河流溢出量的衰减具有明显的滞后性,响应滞后周期长,而位于相对上游的泉水及浅埋带地下水蒸发,响应滞后周期较短,即泉水流量衰减相对较快。多年来的实际数据与模型模拟结论都证明了这一点,这与地下潜水的循环规律是相一致的。河流溢出量的大小,主要取决于河流附近的局部水力坡度,只要黑河附近地下水流场 ( 或坡度) 没有大的变化,河水溢出量就不会大幅度减少。当地下水埋深较小时,由于蒸发与埋深之间的非线性关系,地下水蒸发强度随地下水埋深急剧变化,虽然近十年来浅埋带地下水位下降幅度并不大,但地下水蒸发量却有较明显变化,尤其是在埋深小于 2m地区更为明显。当地下水位埋深超过 3m 后,降低地下水位所能夺取的地下水蒸发量有限。

从资源均衡的角度纵观中游干流平原地区地下水均衡,虽然整个计算区是负均衡的,但负均衡主要发生在远离黑河、泉及蒸发浅埋区的近山地带,具体表现为山前平原区地下水位的下降较多,黑河、泉及蒸发浅埋带水位降深小。以 2000 年均衡为例,在东南部 ( 民乐县) ,因地下水位持续下降而逐渐疏干上游区含水层,使该局部区域地下水负均衡量接近 1. 5×108m3/ a; 而靠近河流与泉水溢出带地区及地下水浅埋蒸发带,由于地下水排泄的 “自适应”调节作用 ( 当补给量减少时,排泄量将会自动缩减) ,地下水负均衡量较小,即在排泄带局部范围内,地下水补排大致平衡。

河流与泉水溢出量的响应滞后特征,容易给人们一种错觉,当某些水利工程运转之后,增加了部分地表水资源利用量,同时地下水补给量也随之减少。由于河流与或泉水响应滞后特性,其溢出量没有马上减少,表面上可利用的总水资源量 ( 地表水+地下水) 似乎增加了。这仅仅是短期的表现,实际情况是含水层 “地下水库”逐渐消耗,在较长的时期后,地下水溢出量减少会逐步表现出来,严重者使地下水资源枯竭。

以黑河中游平原东南部 ( 民乐县) 为例,地下水位比张掖附近的黑河水位高出 200 多米,当灌区地下水位下降不太大时,如 10m,相对于整个地下水位落差来说,其总体水力坡度变化还不到 10%,即在短期内,上游地带通过含水层向下游输送的地下水量不会明显减少 ( 短期内几乎是一个 “常数”) ,但要以不断疏干上游含水层为代价,据模拟均衡计算结果,现状条件下,每年疏干消耗民乐地区含水层地下水量约 ( 1. 5~2) ×108m3。从可持续发展的观点来看,长时期的疏干消耗上游含水层,一方面生态环境的极大改变不允许,同时将会导致地下水资源枯竭。这种开发利用方式可谓 “寅吃卯粮”,不能长时期持续。

随着渠道防渗工程的完善及节水技术的推广,使可利用的水量有所增加,应利用丰水年或丰水季节 “多余的”水资源对上游区进行回补,以阻止或减缓地下水资源向枯竭的方向演化,而不要盲目地扩大耕地面积,使水资源循环向合理可持续的状态转化。

177 评论

相关问答

  • 关于地下水的论文

    人类对环境的保护归根结底是基于保护地球上日益枯竭的资源,保护人类生存发展的最起码条件——保护水资源首当其冲。下面笔者就现代生产和生活中如何保护水资源谈一些粗浅的

    五月mother 6人参与回答 2023-12-12
  • 锅炉燃烧数值模拟毕业论文

    你好!比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性,不妨搜集一些国内外新型锅炉发展方向和现状的资料写毕业论文用的吧,这要看你的专业方向了、减少

    诗涵百草兔 4人参与回答 2023-12-11
  • 论文答辩数值答不上来怎么办

    稍微准备下,看点相关资料,必然没问题,毕竟学校不会为难学生,大家都没好处的事没人愿意做,除非变态。

    yanran8385 4人参与回答 2023-12-06
  • 高工论文答辩模拟

    一般提问几个论文中涉及的技术难点,创新点,主要应该回答新颖 独到之处。评委提问主要看你对论文是否清楚,以此判断是否是别人写的挂你名字。注意说自己清楚 擅长的,千

    A.灰~白~黑~ 5人参与回答 2023-12-06
  • 地下水数值模拟论文答辩

    地下水流系统模拟模型就是描述和刻画地下水流系统行为和功能的各种模型。一个好的地下水流系统模拟模型,应是所研究的地下水流系统的复制品,对于相同的系统输入,模拟模型

    兔宝宝装饰 2人参与回答 2023-12-11