peipei1222
液晶材料的分类、应用及其发展状况摘要介绍了液晶材料的种类及其分类性能,论述了液晶材料的应用和发展情况。关键词液晶材料;介晶相;应用1.液晶的简介和分类液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称作介晶相,是一种取向有序流体,既具有液体的易流动性,又有晶体的双折射等各向异性的特征。1888年奥地利植物学家Reinitzer首次发现液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。近二十多年来液晶材料获得迅速的发展,这是因为液晶材料的光电效应被发现,因此被广泛地应用在需低电压和轻薄短小的显示组件上,因此它一跃成为一热门的科学研究及应用的主题,目前已被广泛使用于电子表、电子计算器和计算机显示屏幕上,液晶逐渐成为显示工业上不可或缺的重要材料,液晶高分子的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门科学,而且在高分子材料、生命科学等方面都得到了大量应用。溶致型液晶有些材料在溶剂中,处于一定的浓度区间内会产生液晶,这类液晶我们叫它溶致液晶。如可以利用溶致型液晶聚合物的液晶相的高浓度低黏度特性进行液晶纺丝制备强度高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和粘度等。在热致型液晶中,又根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。近晶型液晶近晶相除有沿分子长轴的取向有序外,有一个沿某一方向的平移有序,近晶型液晶在所有液晶聚合态结构中最接近固体晶体,通常含有C=N或者N=N键及苯环结构,分子是厂棒状。目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。向列型液晶向列相仅有沿分子长轴的取向有序,液晶分子呈棒状形刚性部分平行排列,该种液晶分子运动自由度大,是流动性最好的液晶,此类型液晶的粘度小,应答速度快,是最早被应用的液晶,普遍地使用于液晶电视、笔记本电脑以及各类型显示元件上。胆甾型液晶这类液晶大都是胆甾醇的衍生物,胆甾醇本身无液晶性质,而它的衍生物均具有液晶特性,次类型液晶是由多层相列型液晶堆积所形成,为向列相液晶的一种,也可以称为旋光性的向列相液晶,因分子具有非对称碳中心,所以分子的排列呈螺旋平面状的排列,面和面之间为相互平行,而分子在各平面上为向列相。2.液晶的应用及发展状况液晶材料在显示器的应用回顾液晶的发展史可以发现,尽管液晶早在19世纪60年代已经被发现,然而在相当长一段时间里,虽然液晶的许多有价值的现象早被揭露,但液晶始终只是实验室中的珍品而已。只有当液晶被用于显示器开始,它的研究才有了前所未有的动力。在这最近的几十年时间里液晶显示器有了长足的进步,目前液晶显示器已是整个领域中的佼佼者,只要稍加留意,不难发现市场上用液晶显示器的仪器仪表、计算器、计算机、彩色电视机等不仅品种越来越多,而且显示品质亦越来越高,价格越来越便宜。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有T N(扭曲向列相)模式,H T N(高扭曲向列相)模式、S T N(超扭曲向列相)模式、T F T(薄膜晶体管)模式等。其中TFT模式是近10年发展最快的显示模式。
让雪飞CXF
顶1楼!!2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。 谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。” 该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。” 指挥烯烃分子“交换舞伴” 诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。 “用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。 一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。 20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。 寻找更优秀的催化剂 有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。 1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。 1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。 麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。” 奖励来得理所应当 对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。 诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。 丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。 记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”
包华包华
化学反应惠泽人类2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。”该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。”指挥烯烃分子“交换舞伴”诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。“用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。寻找更优秀的催化剂有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。”奖励来得理所应当对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”
linsisty-Q
仅供参考;《功能高分子材料》课程是高分子材料、复合材料、材料化学和应用化学专业的核心主干课程,它是建立在高分子化学和高分子物理基础上,并与其它多种学科如物理学、生物学、医学、分离科学等交叉的综合性课程。由于涉及领域非常广泛,如涵盖了吸附分离功能高分子材料、反应型功能高分子材料、电功能高分子材料、光功能高分子材料、高分子功能膜材料、生物医用功能高分子材料、液晶高分子材料、环境敏感高分子材料等,该门课程教学质量的优劣对学生能否深入了解功能性高分子的设计、表征和应用非常重要。考虑到《功能高分子材料》课程一般是在大三的下学期或大四的上学期开设,这时学生面临着考研复习和找工作等问题,很难静下心来进行深入的学习。因此,采用传统的教学方式难以达到满意的教学效果。针对这些问题,结合我校高分子材料专业教学的实际情况,笔者对《功能高分子材料》课程的教学从教材选定、教学内容和教学方式方面进行了探索。下面,笔者就自己的点滴体会进行论述。1教材的选定和内容的精讲自高分子学科在我国诞生以来,功能高分子材料的发展非常迅速,目前为止国内所见的教材已有十多种。由于功能高分子材料发展非常迅速,为了获取最新的知识,不能选择那些出版年月较老的教材。另外,还要保证教材编写的质量。经过对不同教材的比较,结合我校实际,最终选用了赵文元和王亦军编著的由化学工业出版社于2008年出版的教材。该教材是在1996年版的基础上,加入了许多新的功能高分子方面的研究内容,并结合实际对一部分内容进行了一定的删改。经过对该教材一段时间的试用,我们发现效果较好。另外,针对课时有限而授课内容多的矛盾,应突出教学重点,选择最热门和重要的部分进行精讲,其它部分略讲或者学生自学。2多媒体教学与传统教学方式相结合多媒体教学是指运用计算机并借助于预先制作的教学课件来开展教学活动的过程。与传统教学方法相比,它具有课堂容量大、图文并茂、形象生动、易于突出教学重点和难点等优点。近几年来,越来越多的课程开始实行多媒体教学。功能高分子材料方面新概念多,涉及领域广,借助多媒体技术,不仅可向学生直观地展示有关功能高分子设计实例,而且可插入适当的生产生活实例,使抽象枯燥的功能高分子材料课程更加具体生动。同时,要注意的是多媒体教学效果的好坏,在很大程度上取决于教学课件的水平。因此,老师应努力提高教学课件的制作水平。另外,我们也注意到,多媒体教学的上课进度明显要快于传统的板书教学。这样,对于某些特别重要的理论公式的学习和推导,通过多媒体教学难以使学生在较短的时间内完全理解,这时就应该采用传统的板书教学方式。因此,我们应采取多媒体教学与传统教学相结合的教学方式,根据教学内容进行相应的调整,既保证学生对课程感兴趣,又能让学生真正深入的理解功能高分子材料的知识。3联系生活实际,引出所要讲述的功能高分子材料以生活中的实际例子或新闻报道中的最新科技进展为例子,引出将要介绍的功能高分子材料。这样既能让学生意识到功能高分子材料的重要性,提高学习的积极性,又能让学生了解到最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的功能高分子材料,介绍这些功能高分子材料的设计思路和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时,还可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大的提高,教学效果也会明显得到改善。4利用网络资源,紧跟最新研究进展,实时补充新的教学内容功能高分子材料是一门发展非常迅速的学科,每隔一段时间都有新的研究成果诞生,我们应根据情况实时的补充那些热门和重要的研究成果到教学内容中,让学生了解到最新的功能高分子知识,提高学生对功能高分子材料的兴趣。互联网上资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以制作一个功能高分子的网页,提供最新研究成果的链接,方便学生浏览。同时,还可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给同学。这样,既能让学生对功能高分子材料进行全面的了解,又能让学生主动的参与教学,达到较好的教学效果。5互动式教学,学生做“学术报告”课堂教学是教学的关键性环节,如何启发学生积极思考,调动学生的学习积极性,是老师们一直在探索的问题。针对功能高分子材料涵盖领域多,可以从热门的领域中选择几个作为报告题目,然后让学生分成若干个小组,共同完成查找资料和组织讲稿的工作。最后,从各小组中选出一人作为代表上台做“学术报告”,每个小组之间互相提问。
2017年,糖尿病人数量已增加至4.25亿,全球18岁以上成人的患病率为8.8%。而糖尿病人,最熟悉的口服药物便是 神药二甲双胍 ,它在糖尿病治疗领域有着无可撼
你是要文献吗 发不过去 留下邮箱吧己酰壳聚糖/聚丙交酯共混膜的制备与表征 这个行不
一.工艺流程简述: 前段工位: ITO 玻璃的投入(grading)—— 玻璃清洗与干燥(CLEANING)——涂光刻胶(PR COAT)——前烘烤(PREBR
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考!
命题为 谈谈你对华莱士《社会学中的科学逻辑》:"科学是理论与研究之间不断相互作用的过程"的理解,并画出社会研究的"科学环"图示. 要求字数在1500字