小百合2011
常用的方法有两种,等值演算法和真值表法,等值演算法,就是按照步骤推导公式,最终得到主合取范式或者主析取范式。
检查主合取范式中遗漏的4个主项p∨q∨¬r,p∨¬q∨¬r,¬p∨q∨¬r,¬p∨¬q∨r可以反推出它的主析取范式⇔(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧¬r)得到主析取范式。
主析取范式
是大学数学里一门名叫离散数学(Discrete mathematics)的课程中的内容,在离散数学的数理逻辑一节中,利用真值表和等值演算法可以化简或推证一些命题,但是当命题的变元的数目较多时,上述方法都显得不方便,所以需要给出把命题公式规范的方法,即把命题公式化成主合取范式和主析取范式的方法。
欢乐空间装饰
我们知道在离散数学中,有主合取范式与主析取范式的概念。本文分享什么是主合取范式与主析取范式,以及如何按步骤求命题公式的主合取范式与主析取范式首先,我们需要了解一下数学概念。简而言之,主合取范式,就是若干个极大项的合取(交集)。 主析取范式,就是若干个极小项的析取(并集)。 而所谓的极大项,就是包含全部数目的命题变元的析取表达式例如:p∨¬q∨r所谓的极小项,就是包含全部数目的命题变元的合取表达式例如:¬p∧¬q∧r下面言归正传,我们看如何按步骤求解命题公式的主合取范式与主析取范式。常用的方法有两种,等值演算法和真值表法等值演算法,就是按照步骤推导公式,最终得到主合取范式或者主析取范式下面,我们来举个例子,求出命题公式的主合取范式与主析取范式(p→¬q)↔r⇔ (¬p∨¬q)↔r⇔ [(¬p∨¬q)→r] ∧ [r→(¬p∨¬q)]⇔ (¬(¬p∨¬q)∨r)∧ (¬r∨¬p∨¬q)⇔ ((p∧q)∨r)∧ (¬p∨¬q∨¬r)⇔ (p∨r)∧(q∨r)∧ (¬p∨¬q∨¬r)⇔ [p∨(q∧¬q)∨r]∧[(p∧¬p)∨q∨r]∧ (¬p∨¬q∨¬r)⇔ (p∨q∨r)∧ (p∨¬q∨r)∧ (p∨q∨r)∧ (¬p∨q∨r) ∧ (¬p∨¬q∨¬r)⇔ (p∨q∨r)∧ (p∨¬q∨r)∧(¬p∨q∨r) ∧ (¬p∨¬q∨¬r)得到主合取范式检查主合取范式中遗漏的4个主项p∨q∨¬r,p∨¬q∨¬r,¬p∨q∨¬r,¬p∨¬q∨r可以反推出它的主析取范式⇔(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧¬r)得到主析取范式最后,我们看如何使用真值表方法,求命题公式的主合取范式与主析取范式。9我们来看这样一个具体例子。根据真值表,我们取值为0的指派,得到最大项从而写出最大项的合取,得到主合取范式
邮政邮政
1.首先,我们需要了解一下数学概念。主合取范式,就是若干个极大项的合取(交集)。
2.主析取范式,就是若干个极小项的析取(并集)。
3.而所谓的极大项,就是包含全部数目的命题变元的析取表达式,例如:p∨¬q∨r
4.所谓的极小项,就是包含全部数目的命题变元的合取表达式,例如:¬p∧¬q∧r
5.用真值表方法,求命题公式的主合取范式与主析取范式。
6.根据真值表,我们取值为0的指派,得到最大项,从而写出最大项的合取,得到主合取范式
例如由命题变项p,q,r组成的某公式的成真赋值为:(001),(101),(110)
那么该公式的主析取范式为m1∨m5∨m6,
则其主合取范式为M0∧M2∧M3∧M4∧M7.
对应的极小项为m1=(~p∧~q∧r) m5=(p∧~q∧r) m6=(p∧q∧~r)
对应的极大项为M0=(~p∨~q∨~r) M2=(~p∨q∨~r) M3=(~p∨q∨r) M4=(p∨~q∨~r) M7=(p∨q∨r)
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
一、利用极限四则运算法则求极限 函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 l
论文研究方法包括什么 论文研究方法包括什么?论文是大学毕业或者是学术研究经常用到的,研究方法是完成论文的一种手段和方式,那么论文研究方法包括什么呢?以下是我整理
不会写去问问你的老师吧
抗生素的不良反应【摘要】 目的 帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏