• 回答数

    3

  • 浏览数

    146

雾夜狂奔
首页 > 期刊论文 > 概率论与数理统计论文格式

3个回答 默认排序
  • 默认排序
  • 按时间排序

小黑鬼佐二

已采纳

是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。� “概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。� 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。�一、 学习“概率论”要注意以下几个要点 1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。� 2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。� 3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。� 4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点� 1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。� 2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。

349 评论

辛燃arzue

自考金融专业科目有概率论与数理统计(经管类)、毕业论文、保险学原理、财务管理学、国际市场营销学、管理系统中计算机应用、国际金融、金融风险控制与管理、社会保障概论、金融理论与实务、国家税收、线性代数(经管类)、市场营销学、中国近现代史纲要、管理学原理、银行会计学、英语(二)。 自考金融毕业论文写法 一、拟定论文题目 选择职业须扬长避短。当某人选择了符合自身优势及特长的职业时,他就能从容自如地施展才华,一帆风顺地实现其人生价值。论文的选题也是这样。尤其自考生,由于大多数是在职人员,拥有自己工作的一方天地,所以在论文题目的选择上,就要充分利用这一点。就是说,既要考虑所学专业和自身的知识优势,还要充分利用工作所提供的便利,从而确定、选择理论能联系实际的题目,为论文的顺利完成创造良好的开局。 二、举“纲”张“目”,顺“理”成“章 写论文,“间架”第一。“纲”即总论点;“目”即分论点。大、小“论点”都张开了,“间架”即成;然后,顺“理”(论点)而论(分析、论证),自然成“章”(段或部分)。刘勰说:“论如斫薪,贵能破理。”斫薪是劈柴,破“理”是顺着事物内在纹理去劈,这说得是很对的。 三、确定研究方法 本科论文的研究方法可归纳为两大类:定性研究法和定量研究法。 定性研究法是比较传统的论文写作方法,通常根据社会现象或事物所具有的属性和在运动中的矛盾变化,从事物的内在规律性来研究事物。它主要以普遍承认的公理、严谨的逻辑演绎和大量的历史事实为分析基础,描述、阐释所研究的事物。进行定性研究,需要依据一定的理论与经验。 定量研究法是当代论文写作中较通用的方法,它主要依据调查或收集得到的现实资料数据,运用经验测量、统计分析和建立模型等方法,对所提出的问题进行实证研究。 这类论文的题目形式一般是“XX问题的实证分析”“基于XX方法的实证分析”等。 在实际研究中,定性研究与定量研究常配合使用。 进行定量研究前,通常借助定性研究确定所要研究现象的性质;定量研究过程中,又常借助定性研究确定现象发生质变的数量界限和引起质变的原因。 四、收集论文素材 论文的素材一般可以通过以下渠道来收集:购买专业著作(不包括教材);进入专业的论文数据库,如同方知网数据库、万方数据库等,以及国家图书馆等网站。 收集论文素材时,考生要浏览专业论文,而不是新闻或类似于晚报性质的小文章。 五、新和“独特”有关 所谓人无我有;人有我优;人优我转;人转我弃--重新开辟新天地!以“论文”而论,“新”亦有多种:“通说”的否定;“前说”的补充;“异说”的辨证;“成说”的质疑;发现新“材料”;提出新“观点”;填补研究“空白”;论述有新“角度”;研究有新“方法”等等。这正是:山不在高,有仙则名;水不在深,有龙则灵;文不在长,有“新”则“行”! 六、论文格式 题目(一般在20个汉字以内,可有一副题);作者;提要(为中文内容提要,200字左右,文字要概括,力避主观评论和价值判断,一般还须译成英文);关键词(一般为3-7个,中间以“;”隔开);正文(包括分节等);参考文献;注释等。自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:

335 评论

smilejune521

数理统计法在论文中要实际分析解决问题。

论文思路:

数学统计是使用数学统计分析方法解决实际问题的学科。它们是数学研究领域的一类分支,可以观察事物以确定基本规律这些规律是现象的根源,并利用统计数据作出预测。

数学统计已成为各种学科发展的一个重要因素,通过选择适当的统计分析方法,可以深入分析试验产生的元数据,从中提取模式,并将其用作监测活动的指南。通过数据分析,可以获得详细的产品信息,并在生产过程中严格控制多个不同的链接。要将数学统计学科应用于现实。

概率论与数理统计是随机数学的重要理论分支,具有深厚的实际应用背景,是数学建模的重要理论之一。

鉴于我国高校对应用型和创新型人才培养的实际需求,以该课程部分知识点的实际教学为例,介绍在“概率论与数理统计”课堂教学中,将数学模型思想融入课程,即将实际问题结合于理论知识,以达到使学生了解数学理论的实际应用,同时加深对基础知识的理解与记忆的目的。实践表明教学效果显著。

数理统计起源发展:

数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。

数理统计起源于人口统计、社会调查等各种描述性统计活动。

公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质。

可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作。

在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计,到了亚里士多德时代,统计工作开始往理性演变。这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载,统计一词,就是从意大利一词逐步演变而成的。

数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段。

147 评论

相关问答

  • 概率论与数理统计论文模板

    概率论与数理统计课程的改革与实践论文 摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效

    superman0810 3人参与回答 2023-12-10
  • 概率跟统计论文文献

    医学统计论文 医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。 摘要: 不同的统计分

    崎岛莫奈子 3人参与回答 2023-12-09
  • 概率统计论文参考文献

    概率论与数理统计课程的改革与实践论文 摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效

    Phyllis。 3人参与回答 2023-12-08
  • 概率论与数理统计的论文题目

    是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论

    天权STAR 3人参与回答 2023-12-09
  • 数理统计与管理论文模板

    在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为

    在路上嘚吧嘚 2人参与回答 2023-12-06