赤脚医师
随着社会的高速发展和全球化的加速推进,各国的学术研究也在不断壮大和深入。中国的学术研究也不例外,各个领域的论文层出不穷,尤其是在一些科技领域,中国的研究成果已经开始受到国际的关注。在国内,学术研究的领域非常广泛,但是,更多的注意力是集中在一些热门的领域,例如人工智能、大数据、物联网、生物基因等,这些都是当前世界范围内研究的热点。同时,随着中国对世界经济和政治的影响力日益增强,一些战略型的研究也受到了高度的重视,例如能源、环境、军事等领域。
针对这些热门领域,国内的论文研究也取得了很多的成果。例如,近年来,智能驾驶、人脸识别、语音识别等人工智能领域的技术不断提高,分别利用深度学习、强化学习等技术,这些研究都为中国智能化制造、智能家居等领域的发展提供了坚实的基础。物联网领域的研究也逐渐成熟,利用无线传感器和云计算等技术,实现了物品之间的互联互通和智能控制。
在国外,学术研究也在不断向前发展。一些国外的研究成果对中国的学术研究也产生了较大的影响。例如在生物医学领域,国外的一些研究成果为中国的医学事业提供了宝贵的参考和启示,中国的生物医学研究也在不断地发展和进步。同时,在能源、环境保护等领域,国外研究成果也为中国提供了许多借鉴,为中国的科技创新提供了必要的支持。
总的来说,中国的学术研究成果在国内外都越来越受到重视,各个领域的学术研究也在不断发展和进步。但是,仍然存在一些问题,例如研究的深度和广度不够,研究方法和手段不够先进,学术交流和合作不够紧密等。因此,我们需要不断加强学术研究的质量和效率,发挥学者的创造力和创新精神,不断推进学术研究的深入发展,为中国的科技创新和经济发展做出更大的贡献。
nono521521
果蔬加工已成为果蔬 种植 业规模化的重要环节。下面是我为大家整理的果蔬加工技术论文,希望你们喜欢。
野菜果蔬汁的生产加工技术
摘 要:主要介绍以新鲜蔬菜、水果、野菜等为主要原料制作浓缩野菜果蔬汁及野菜果蔬汁饮料的生产工艺流程及生产技术要点,并从感官指标检测及微生物指标检测等两个方面评价了野菜果蔬汁饮料的质量情况,为饮料生产商开发生产新型饮料提供参考。
关键词:野菜 果蔬汁 生产加工
根据中国营养学会提出的“平衡膳食”的理论,以水果、蔬菜、野菜等为主要原料,设计生产出一种复合果蔬汁饮品,富含胡萝卜素及维生素、果胶酶、蛋白质、脂肪、碳水化合物、微量矿物元素等有效成分,营养、时尚、健康、解渴。原料来自无公害蔬菜基地,选用红、黄、绿等多种颜色的果蔬原料加工而成,使该果蔬汁饮品具有诱人的色泽及浓郁的香气,深受消费者的喜爱。这里主要介绍野菜果蔬汁饮品的生产加工技术及其质量评价,为饮料生产商开发生产新型饮料提供参考。[1]
1 野菜果蔬汁的生产工艺流程
实验原材料
新鲜胡萝卜、番茄、柑橘、柠檬、苹果、马齿菜、蒲公英、苣荬菜、明叶菜、荠菜、苋菜、食叶番薯、花椰菜(绿、白)、车前草、莼菜、香麻叶、紫苏、白砂糖、香料及其他配料等。
实验仪器设备
果蔬清理机、果蔬分级机、果蔬清洗机、果蔬蒸煮机、破碎机、打浆机、榨汁机、均质机、离心分离机、浓缩锅、电炉、真空抽滤机、搅拌机、恒温水浴锅、灭菌锅、电热恒温烘箱、饮料灌装机、封口机、电光分析天平、真空脱气机、电冰箱等。
野菜果蔬汁的生产工艺
浓缩野菜果蔬汁的生产工艺
新鲜水果、蔬菜、野菜原料清理去杂→分级、去皮、拣果→清洗→汽蒸软化或开水烫煮→破碎、打浆→榨汁→离心分离→均质、浓缩→加糖调配→ 杀菌→灌装→封口→冷藏→成品。
其中离心分离出的果渣、菜渣排出→制作饲料。
野菜果蔬汁饮料的生产工艺
→调和→均质→脱气→杀菌→装罐→封口→冷却→真空度检查→贴标、包装→成品。[2]
野菜果蔬汁的生产技术要点
加工原料的准备
根据野菜果蔬汁的生产配方要求,将所需的所有原料进行彻底清理,去掉各种果皮、果核、泥沙杂质等,野菜及蔬菜去掉菜根、老叶、发黄叶、病虫叶等,然后将清理好的果蔬及野菜原料放入清水中彻底清洗干净并沥干水分备用。洗净后的胡萝卜、苹果、番茄等用刀切成厚的均匀薄片,柑橘分成均匀的小瓣,柠檬切成3mm厚的薄片,花椰菜(绿色和白色两种)切成2~3cm厚的均匀小块备用。各种野菜去掉泥沙、杂质洗净并沥干水分后用刀切成粗细均匀的小段备用。
野菜果蔬汁原料的汽蒸软化或开水烫煮
为方便破碎、打浆,将上述已经切好的胡萝卜、苹果、番茄、柠檬、花椰菜及柑橘等果蔬原料放在压力为~的蒸汽中气蒸5~8min使果蔬原料软化。将已经切好的马齿菜、蒲公英、苣荬菜、明叶菜、荠菜、苋菜、食叶番薯、车前草、莼菜、香麻叶、紫苏等野菜原料放在60~80℃的温开水中烫煮5~8s备用。
野菜果蔬汁原料的破碎、打浆及榨汁
将上述已经汽蒸、软化的果蔬原料放入破碎机中进行破碎处理,然后将破碎的果蔬原料放入打浆机中进行打浆处理。将经过温开水烫煮的野菜原料放入打浆机中进行打浆处理。然后将经过破碎、打浆处理的果蔬及野菜原料分别转入榨汁机中进行榨汁处理。
野菜果蔬汁的离心分离及均质、浓缩
将上一步中已经榨好的野菜果蔬汁放入离心机中进行离心分离,其中离心分离出的果渣、菜渣经离心机分离出来以后经适当的处理可以作为牲畜的饲料。而分离出的野菜果蔬汁引入均质机中进行均质处理,然后再将经均质处理的野菜果蔬汁引入真空浓缩锅中进行浓缩处理即得到浓缩野菜果蔬汁。
野菜果蔬汁加糖液调配及杀菌、灌装、封口、冷藏
按照野菜果蔬汁的生产配方要求,在电光分析天平上称取白砂糖并用80℃温开水溶解后,然后添加到上一步中已经得到的浓缩野菜果蔬汁中并进行充分的调配,调配好的浓缩野菜果蔬汁放入卧式灭菌锅中在95~110℃的超高温条件下瞬时灭菌10~15s,再冷却至30℃的室温条件下进行无菌灌装,其包装的容器有无菌利乐包、塑料瓶、玻璃瓶、塑料桶、易拉罐等多种形式。灌装后立即封口,并放入冰箱中在0℃左右的低温条件下冷藏。
野菜果蔬汁饮料的生产
根据野菜果蔬汁饮料的生产配方要求,取上一步中已经制作好的浓缩野菜果蔬汁原料适量,砂糖、香料及其他配料等放入调配桶中备用。再根据生产配方要求取适量的自来水经过滤及离子交换处理后得到软化水,将所得的软化水也加入到调配桶中,并进行充分的调配混匀,混匀后的野菜果蔬汁饮料加入到均质机中进行均质处理,均质后的野菜果蔬汁饮料转入真空脱气机中进行脱气处理,然后再将脱气后的野菜果蔬汁饮料放入卧式灭菌锅中,在95~110℃的超高温条件下瞬时灭菌10~15s,即得到所需的野菜果蔬汁饮料成品。
野菜果蔬汁饮料的灌装、封口、冷却、真空度检查及包装
将上一步中已经制作好并经过灭菌处理的野菜果蔬汁饮料选择合适的包装材料进行灌装,并对灌装好的野菜果蔬汁饮料立即进行封口处理,以防污染杂菌,降低野菜果蔬汁饮料成品的品质。封口后的野菜果蔬汁饮料冷却到30℃左右的室温条件下,然后进行野菜果蔬汁饮料真空度检查,剔除封口不严,密封性不好的野菜果蔬汁饮料成品,以防野菜果蔬汁饮料在贮藏、运输及销售过程中污染杂菌,降低成品品质。完成真空度检查的野菜果蔬汁饮料成品进行贴标、包装装箱处理后即得到所需的野菜果蔬汁饮料成品。
2 浓缩野菜果蔬汁及野菜果蔬汁饮料的质量评价
为了如实反映按照上述生产工艺流程及其生产配方所生产加工的浓缩野菜果蔬汁及野菜果蔬汁饮料的质量好坏,笔者严格按照上述生产工艺及相关的生产配方生产加工了一批浓缩野菜果蔬汁及野菜果蔬汁饮料,并从感官指标和理化、微生物指标等两个方面对浓缩野菜果蔬汁及野菜果蔬汁饮料产品进行了随机检测。感官指标主要是关注浓缩野菜果蔬汁及野菜果蔬汁饮料的口感风味、颜色、香气、组织状态、稳定性等几个方面的指标。经观察发现所制作的本批次浓缩野菜果蔬汁及野菜果蔬汁饮料口感细腻醇厚,酸甜可口,色香味俱佳,风味突出,该饮料由红、黄、绿、白等各种颜色的原料均匀搭配而成,具有浓郁的水果、蔬菜及野菜的清香味,无絮状沉淀、分层等不良现象,组织状态好,稳定性强等,故其感官指标比较好。而理化、微生物指标主要检测浓缩野菜果蔬汁及野菜果蔬汁饮料的蛋白质、脂肪、碳水化合物、总酸度、固形物含量、大肠菌群、致病菌等。检测结果见表1。
从表1看出,本批次所生产加工的浓缩野菜果蔬汁及野菜果蔬汁饮料样品的理化、微生物指标完全符合GB/T 5511-2008《谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法》、GB/T 《淀粉总脂肪测定》、GB/T 《食品中蔗糖的测定》、GB/T 12456-2008《食品中总酸的测定》、GB/T 12143-2008《饮料通用分析 方法 》、GB 17325-2005《食品工业用浓缩果蔬汁(浆)卫生标准》、GB/T 《食品卫生微生物学检验 冷冻饮品、饮料检验》等标准要求,消费者可以放心饮用。
3 结语
这里主要介绍了以新鲜胡萝卜、番茄、柑橘、柠檬、苹果、马齿菜、蒲公英、苣荬菜等新鲜蔬菜、水果及野菜等为主要原料生产加工浓缩野菜果蔬汁及野菜果蔬汁饮料的工艺流程及生产技术要点,并从感官指标和理化、微生物指标等两个方面评价了浓缩野菜果蔬汁及野菜果蔬汁饮料的质量问题。从本次试验的检测结果来看,浓缩野菜果蔬汁及野菜果蔬汁饮料的生产工艺可行,产品的各项质量指标完全符合上述国家标准的规定,所生产加工的饮料产品色泽鲜艳,口感细腻醇厚,酸甜可口,营养丰富,不添加防腐剂、色素、香精等食品添加剂,是当前男女老少消费者皆宜的时尚饮品。该生产工艺简单可行,成本较低,对生产实践具有一定的指导意义,希望对饮料生产厂家有一定帮助。
参考文献
[1] 邵长富,赵晋府.软件饮料工艺学[M].北京:中国轻工业出版社,.
[2] 陈海军.苹果、胡萝卜、红枣混合果蔬汁酸奶的生产加工技术研究[J]
安徽农业科学,2010,38(25):13827-13828,13836.
点击下页还有更多>>>果蔬加工技术论文
彷徨爱情
我给你一部分,因为太多了,过不来,具体的你点击下面的网址自己挑选吧,拼拼就成了!干燥是保持物质不致腐败变质的方法之一。干燥的方法许多,如晒干、煮干、烘干、喷雾干燥和真空干燥等。但这些干燥方法都是在0℃以上或更高的温度下进行。干燥所得的产品,一般是体积缩小、质地变硬,有些物质发生了氧化,一些易挥发的成分大部分会损失掉,有些热敏性的物质,如蛋白质、维生素会发生变性。微生物会失去生物活力,干燥后的物质不易在水中溶解等。因此干燥后的产品与干燥前相比在性状上有很大的差别。而冷冻干燥法不同于以上的干燥方法,产品的干燥基本上在0℃以下的温度进行,即在产品冻结的状态下进行,直到后期,为了进一步降低产品的残余水份含量,才让产品升至0℃以上的温度,但一般不超过40℃。冷冻干燥就是把含有大量水分物质,预先进行降温冻结成固体,然后在真空的条件下使水蒸汽直接升华出来,而物质本身剩留在冻结时的冰架中,因此它干燥后体积不变,疏松多孔在升华时要吸收热量。引起产品本身温度的下降而减慢升华速度,为了增加升华速度,缩短干燥时间,必须要对产品进行适当加热。整个干燥是在较低的温度下进行的。冷冻干燥有下列优点:一.冷冻干燥在低温下进行,因此对于许多热敏性的物质特别适用。如蛋白质、微生物之类不会发生变性或失去生物活力。因此在医药上得到广泛地应用。二.在低温下干燥时,物质中的一些挥发性成分损失很小,适合一些化学产品,药品和食品干燥。三.在冷冻干燥过程中,微生物的生长和酶的作用无法进行,因此能保持原来的性装。四.由于在冻结的状态下进行干燥,因此体积几乎不变,保持了原来的结构,不会发生浓缩现象。五.干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而完全,几乎立即恢复原来的性状。六.由于干燥在真空下进行,氧气极少,因此一些易氧化的物质得到了保护。七.干燥能排除95-99%以上的水份,使干燥后产品能长期保存而不致变质。因此,冷冻干燥目前在医药工业,食品工业,科研和其他部门得到广泛的应用。第二节 冻干机的组成和冻干程序产品的冷冻干燥需要在一定装置中进行,这个装置叫做真空冷冻干燥机,简称冻干机。冻干机按系统分,由致冷系统、真空系统、加热系统、和控制系统四个主要部分组成。按结构分,由冻干箱或称干燥箱、冷凝器或称水汽凝集器、冷冻机、真空泵和阀门、电气控制元件等组成。图十三是冻干机组成示意图。冻干箱是一个能够致冷到-40℃左右,能够加热到+50℃左右的高低温箱,也是一个能抽成真空的密闭容器。它是冻干机的主要部分,需要冻干的产品就放在箱内分层的金属板层上,对产品进行冷冻,并在真空下加温,使产品内的水份升华而干燥。冷凝器同样是一个真空密闭容器,在它的内部有一个较大表面积的金属吸附面,吸附面的温度能降到-40℃以下,并且能恒定地维持这个低温。冷凝器的功用是把冻干箱内产品升华出来的水蒸气冻结吸附在其金属表面上。冻干箱、冷凝器、真空管道和阀门,再加上真空泵,便构成冻干机的真空系统。真空系统要求没有漏气现象,真空泵是真空系统建立真空的重要部件。真空系统对于产品的迅速升华干燥是必不可少的。致冷系统由冷冻机与冻干箱、冷凝器内部的管道等组成。冷冻机可以是互相独立的二套,也可以合用一套。冷冻机的功用是对冻干箱和冷凝器进行致冷,以产生和维持它们工作时所需要的低温,它有直接致冷和间接致冷二种方式。加热系统对于不同的冻干机有不同的加热方式。有的是利用直接电加热法;有的则利用中间介质来进行加热,由一台泵使中间介质不断循环。加热系统的作用是对冻干箱内的产品进行加热,以使产品内的水份不断升华,并达到规定的残余水份要求。控制系统由各种控制开关,指示调节仪表及一些自动装置等组成,它可以较为简单,也可以很复杂。一般自动化程度较高的冻干机则控制系统较为复杂。控制系统的功用是对冻干机进行手动或自动控制,操纵机器正常运转,以冻干出合乎要求的产品来。冷冻干燥的程序是这样的:在冻干之前,把需要冻干的产品分装在合适的容器内,一般是玻瓶或安瓶,装量要均匀,蒸发表面尽量大而厚度尽量薄些;然后放入与冻干箱尺寸相适应的金属盘内。装箱之前,先将冻干箱进行空箱降温,然后将产品放入冻干箱内进行预冻,抽真空之前要根据冷凝器冷冻机的降温速度提前使冷凝器工作,抽真空时冷凝器应达到-40℃左右的温度,待真空度达到一定数值后(通常应达到100uHg以上的真空度),即可对箱内产品进行加热。一般加热分两步进行,第一步加温不使产品的温度超过共熔点的温度;待产品内水份基本干完后进行第二步加温,这时可迅速地使产品上升的规定的最高温度。在最高温度保持数小时后,即可结束冻干。整个升华干燥的时间约12-24小时左右,与产品在每瓶内的装量,总装量,玻璃容器的形状、规格,产品的种类,冻干曲线及机器的性能等等有关。冻干结束后,要放干燥无菌的空气进入干燥箱,然后尽快地进行加塞封口,以防重新吸收空气中的水份。在冻干过程中,把产品和板层的温度、冷凝器温度和真空度对照时间划成曲线,叫做冻干曲线。一般以温度为纵坐标,时间为横坐标。冻干不同的产品采用不同的冻干曲线。同一产品使用不同的冻干曲线时,产品的质量也不相同,冻干曲线还与冻干机的性能有关。因此不同的产品,不同的冻干机应用不同的冻干曲线。图十四是冻干曲线示意图(其中没有冷凝器的温度曲线和真空度曲线)。第三节 共溶点及其测量方法需要冻干的产品,一般是预先配制成水的溶液或悬浊液,因此它的冰点与水就不相同了,水在0℃时结冰,而海水却要在低于0℃的温度才结冰,因为海水也是多种物质的水溶液。实验指出溶液的冰点将低于溶媒的冰点。另外,溶液的结冰过程与纯液体也不一样,纯液体如水在0℃时结冰,水的温度并不下降,直到全部水结冰之后温度才下降,这说明纯液体有一个固定的结冰点。而溶液却不一样,它不是在某一固定温度完全凝结成固体,而是在某一温度时,晶体开始析出,随着温度的下降,晶体的数量不断增加,直到最后,溶液才全部凝结。这样,溶液并不是在某一固定温度时凝结。而是在某一温度范围内凝结,当冷却时开始析出晶体的温度称为溶液的冰点。而溶液全部凝结的温度叫做溶液的凝固点。因为凝固点就是融化的开始点(既熔点),对于溶液来说也就是溶质和溶媒共同熔化的点。所以又叫做共熔点。可见溶液的冰点与共熔点是不相同的。共熔点才是溶液真正全部凝成固体的温度。显然共熔点的概念对于冷冻干燥是重要的,因为冻干产品可能有盐类、糖类、明胶、蛋白质、血球、组织、病毒、细菌等等的物质。因此它是一个复杂的液体,它的冻结过程肯定也是一个复杂的过程,与溶液相似,也有一个真正全部凝结成固体的温度。即共熔点。由于冷冻干燥是在真空状态下进行。只有产品全部冻结后才能在真空下进行升华,否则有部分液体存在时,在真空下不仅会迅速蒸发,造成液体的浓缩使冻干产品的体积缩小;而且溶解在水中的气体在真空下会迅速冒出来,造成象液体沸腾的样子,使冻干产品鼓泡,甚至冒出瓶外。这是我们所不希望的。为此冻干产品在升华开始时必须要冷到共熔点以下的温度,使冻干产品真正全部冻结。在冻结过程中,从外表的观察来确定产品是否完全冻结成固体是不可能的;靠测量温度也无法确定产品内部的结构状态。而随着产品结构发生变化时电性能的变化是极为有用的,特别是在冻结是电阻率的测量能使我们知道冻结是在进行还是已经完成了,全部冻结后电阻率将非常大,因此溶液是离子导电。冻结是离子将固定不能运动,因此电阻率明显增大。而有少量液体存在时电阻率将显著下降。因此测量产品的电阻率将能确定产品的共熔点。正规的共熔点测量法是将一对白金电极浸入液体产品之中,并在产品中插一温度计,把它们冷却到-40℃以下的低温,然后将冻结产品慢慢升温。用惠斯顿电桥来测量其电阻,当发生电阻突然降低时,这时的温度即为产品的共熔点。电桥要用交流电供电,因为直流电会发生电解作用,整个过程由仪表记录。(图十六)也可用简单的方法来测量,如图十五所示。用二根适当粗细而又互相绝缘的铜丝插入盛放产品的容器中,作为电极。在铜电极附近插入一支温度计,插入深度与电极差不多,把它们一起放入冻干箱内的观察窗孔附近,并用适当方法把它们固定好,然后与其他产品一起预冻,这时我们用万用表不断地测量在降温过程中的电阻数值,根据电阻数值的变化来确定共熔点。把电极引线通过一个开关与万用表相连,可以不分正负极。如果冻干箱没有电线引出接头,则可以用二根细导线从箱门缝处引出,在电线附近涂些真空密封蜡,这样不致于影响真空度。待温度计降至0℃之后即开始测量并作记录。把万用表的转换开关放在测量电阻的最高档(×1K或×10K)。由于万用表内使用的是直流电,为了防止电解作用,在每次测量完之后要把开关立即关掉,把每一次测量的温度和电阻数值一一记录下来。开始时电阻值很小,以后逐步增高。到某一温度时电阻突然增大,几乎是无穷大,这时的温度值便是共熔点数值。用这种方法测量的共熔点有一定的误差,因为铜电极处多少有些电解作用。万用表对于高阻值没有电桥灵敏;另外,冻结过程与熔化过程电阻的变化情况并不完全相同,但所测之值仍有实用参考价值。共熔点的数值从0℃到40℃不等,与产品的品种、保护剂的种类和浓度有关。一些物质的共熔点列表二十二供参考,因实际的冻干产品还有其它成份。所以与此不相同。第四节 产品的预冻产品在进行冷冻干燥时,需要装入适宜的容器,然后进行预先冻结,才能进行升华干燥。预冻过程不仅昰为了保护物质的主要性能不变;而且要获得冻结后产品有合理的结构以利于水份的升华;还要有恰当的装量,以便日后的应用。产品的分装通常有散装和瓶装二种方式。散装可以采用金属盘,饭盒或玻璃器皿;瓶装采用玻璃瓶和安瓿。玻璃瓶又有血浆瓶。疫苗瓶和青霉素小瓶等,安瓿也有平底安瓿、长安瓿和圆安瓿等;这些需根据产品的日后使用情况来决定,瓶子还需配上合适的胶塞。表二十二 一些物质的共熔点(℃)物质 共熔点氯化钠溶液 -2210%蔗糖溶液 -2640%蔗糖溶液 -3310%葡萄糖溶液 -272%明胶、10%葡萄糖溶液 -322%明胶、10%蔗糖溶液 -1910%蔗糖溶液、10%葡萄糖溶液、氯化钠溶液 -36脱脂牛奶 -26马血清 -35各种容器在分装之前要求清洗干净并进行灭菌处理。需要冻干的产品需配制成一定浓度的液体,为了能保证干燥后有一定的形状,物质含量在10~15%之间最佳。产品分装到容器有一定的表面积与厚度之比。表面积要大一些,厚度要小些。表面积大有利于升华,产品厚度大不利于升华。一般分装厚度不大于10mm。有些产品需用大瓶。并冻干较大量的产品时,可以采用旋冻的方法冻成壳状,或倾斜容器冻成斜面,以增大表面积,减小厚度。产品的预冻方法有冻干箱内预冻法和箱外预冻法。箱内预冻法是直接把产品放置在冻干机冻干箱内的多层搁板上,由冻干机的冷冻机来进行冷冻。大量的小瓶和安瓿进行冻干时为了进箱和出箱方便,一般把小瓶或安瓿分装在若干金属盘内,再装进箱子。为了改进热传递,有些金属盘制成可分离式,进箱时把底抽走,让小瓶直接与冻干箱的金属板接触;对于不可抽低的盘子要求盘底平整,以获得产品的均一性。采用旋冻法的大血浆瓶要事先冻好后加上导热用的金属架或块后再进行冷冻。箱外预冻有二种方法。有些小型冻干机没有进行预冻产品的装置。只能利用低温冰箱或酒精加干冰来进行预冻。另一种是专用的旋冻器,它可把大瓶的产品边旋转边冷冻成壳状结构。然后再进入冻干箱内。还有一种特殊的离心式预冻法,离心式冻干机就采用此法。利用在真空下液体迅速蒸发,吸收本身的热量而冻结。旋转的离心力防止产品中的气体溢出,使产品能“平静地”冻结成一定的形状。转速一般为800转/分左右。冷冻会对细胞和生命体产生一定的破坏作用,其机理是非常复杂的。目前尚无统一的理论,但一般认为主要是由机械效应和溶质效应引起。生物物质的冷冻过程首先是从纯水结冰开始,冰晶的生长逐步造成电解质的浓缩。随后是低共熔混合物凝固。最后全部变为固体。机械效应是细胞内外冰晶生长而产生的机械力量引起的。特别是对于有细胞膜的生命体影像较大。一般冰晶越大,细胞膜越易破裂,从而造成细胞死亡;冰晶小,对细胞膜的机械损伤也较小。缓慢冷冻产生的冰晶较大,快速冷冻产生的冰晶较小;就此而言。快速冷冻对细胞的影响较小。缓慢冷冻容易引起细胞的死亡。溶质效应是由于水的冻结使间隙液体逐渐浓缩,从而使电解质的浓度增加,蛋白质对电解质是较敏感的。电解质浓度的增加引起蛋白质的变性,而使细胞死亡;另外电解质浓度的增加会使细胞脱水而死亡。间隙液体浓度越高。上述原因引起的破坏也越厉害。溶质效应在某一温度范围最为明显。这个温度范围在水的冰点和该液体的全部固化温度之间。若能以较高的速度越过这一温度范围,溶质效应所产生的效果就能大大减弱。另外冷冻时所形成的晶体大小在很大程度上也影响干燥的速率和干燥后产品的溶解速度。大的冰晶容易升华,小的冰晶不利于升华;但大的冰晶溶解慢,小的冰晶溶解快。冰晶越小、干燥后越能反映产品的原来结构。综上所述,需要有一个最优的冷却速率。以得到最高的细胞存活率,最好的产品物理性状和溶解速度。当然提高存活率与在产品中加入抗低温剂(保护剂之一)还有很大的关系。列如甘油、二甲亚砜、糖类等。这些抗低温物质能帮助产品扩大最优冷却速率的范围,以便使更多的细胞存活下来。为了获的不同的降温速度。就要采取不同的预冻方法;列如有时需装箱之后才开始冻干箱的降温,有时需让机器预先降到低温,再将产品装入冻干箱内。预冻的目的也是为了固定产品,以便在真空下进行升华。如果没有冻实。则抽真空时产品会冒出瓶外来,没有一定的形状;如果冷的过低,则不仅浪费了能源和时间,而且对某些产品还会降低存活率。因此预冻之前应确定三个数据。其一是预冻的速率,应根据产品不同而试验出一个最优冷冻速率。其二是预冻的最低温度,应根据改产品的共熔点来决定,预冻的最低温度应低于共熔点的温度。其三是预冻的时间,根据机器的情况来决定,保证抽真空之前所有产品均已冻实。不致因抽真空而冒出瓶外,冻干箱的每一板层之间,每一板层的各部分之间温差越小,则预冻的时间可以相应缩短,一般产品的温度达到预冻最低温度之后1-2小时即可开始抽真空升华。第五节 产品的第一阶段干燥产品的干燥可分为二个阶段,在产品内的冻结冰消失之前称第一阶段干燥、也叫作解吸干燥阶段。产品在升华时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量,因此升华阶段必须对产品进行加热。但对产品的加热量是有限度的,不能使产品的温度超过其自身共熔点温度。升华的产品如果低于共熔点温度过多,则升华的速率降低,升华阶段的时间会延长;如果高于共熔点温度,则产品会发生熔化,干燥后的产品将发生体积缩小,出现气泡,颜色加深,溶解困难等现象。因此升华阶段产品的温度要求接近共熔点温度,但又不能超过共熔点温度。由于产品升华时,升华面不是固定的。而是在不断的变化,并且随着升华的进行,冻结产品越来越少。因此造成对产品温度测量的困难,利用温度计来测量均会有一定的误差。可以利用气压测量法来确定升华时产品的温度,把冻干箱和冷凝器之间的阀门迅速地关闭1-2秒的时间(切不可太长)。然后又迅速打开,在关闭的瞬间观察冻干箱内的压强升高情况,计下压强升高到某一点的最高数值。从冰的不同温度的饱和蒸汽压曲线或表上可以查出相应数值,这个温度值就是升华时产品的温度。产品的温度也能通过对升华产品的电阻的测量来推断。如果测得产品的电阻大于共熔点时的电阻数值,则说明产品的温度低于共熔点的温度;如果测得的电阻接近共熔点时的电阻数值,则说明产品温度已接近或达到共熔点的温度。冷冻干燥时冻干箱内的压强,过去认为是越低越好,现在则认为不是越低越好,而是要控制在一定的范围之内。压强低当然有利于产品内冰的升华。但由于压强太低时对传热不利,产品不易获得热量,升华速率反而降低。实验标明:在冻干箱的压强低于毫巴时,气体的对流传热小到可以忽略不计;而压强大于毫巴时,气体的对流传热就明显增加。在同样的板层温度下,压强高于毫巴时,产品容易获得热量,因而升华速率增加。但是,当压强太高时,产品内冰的升华速率减慢,产品吸热量降减少。于是产品自身的温度上升,当高于共熔点温度时,产品将发生熔化,造成冻干失败。冻干箱的合适压强一般认为是在毫巴之间,在这个压强范围内,既利于热量的传递又利于升华的进行。超过毫巴时,产品可能熔化,此时应发出真空报警信号,切断对产品的加热,甚至启动冷冻机对冻干箱进行降温,以保护产品不致发生熔化。冻干箱内的压强是由空气的分压强和水蒸汽的分压强组成的,因此要使用能测量全压强的热真空计来测量真空度;而不宜使用压缩式真空计,以水银为介质的压缩式真空计由于水银蒸汽有害产品应禁止使用。1克冰在压强毫巴时大约能产生10000升体积的蒸汽,为了排除大量的水蒸汽,光靠机械真空泵排除是不行的。冷凝器作为冷却使大量水蒸汽凝结在其内部的制冷表面上,因此冷凝器实际上起着水蒸汽泵的作用。大量水蒸汽凝结时放出的热量能使冷凝器的温度发生回升,这是正常的现象。但由于冷凝器冷冻机的制冷能力不够,冷凝器吸附水蒸汽的表面太小,或对产品提供热量过多而产生过多的水蒸汽等原因,会引起冷凝器温度的过度回升。当发生这种情况时。冻干箱和冷凝器之间的水蒸汽压力差减小,从而导致升华速率的降低;与此同时冻干机系统内水蒸汽的分压强增强,使真空度恶化,进而又引起升华速率的减慢,产品吸收热量减少,产品温度上升,致使产品发生熔化,冻干失败。因此为了冷冻干燥出好的产品,需要保持系统内良好而稳定的真空度。需要冷凝器始终能低于-40℃以下的低温,因为-40℃时冰的蒸汽压为毫巴左右。在升华干燥阶段,冻干箱的板层是产品热量的来源。板层温度高,产品获得的热量就多;板层温度低,产品获得的热量就少;板层温度过高,产品获得过多的热量使产品发生熔化;板层温度过低,产品得不到足够的热量会延长升华干燥时间。因此,板层的温度应进行合理的控制。板层温度的高低应根据产品温度、冻干箱的压强(即冻干箱的真空度)、冷凝器温度三个因素来确定。如果在升华干燥的时候,产品的温度低于该产品的共熔点温度较多,冻干箱内的压强小于真空报警设定的压强较多,冷凝器温度也低于-40℃较多,则板层的加热温度还可以继续提高。如果板层温度提高到某一数值之后产品的温度已接近共熔点温度,或者冻干箱的压强上升到接近真空报警的数值或者冷凝器温度回升到-40℃,则板层温度不可再继续提高,不然会出现危险的情况。实际上升华时板层温度的高低还与冻干机的性能有关,性能较好的冻干机,板层的加热温度可以升得高一些。升华阶段时间的长短与下列因素有关:产品的品种:有些产品容易干燥,有些产品不容易干燥。一般来说,共熔点温度较高的产品容易干燥,升华的时间短些。产品的分装厚度:正常的干燥速率大约每小时使产品下降1毫米的厚度。因此分装厚度大,升华时间也长。升华时提供的热量:升华时若提供的热量不足,则会减慢升华速率,延长升华阶段的时间。当然热量也不能过多地提供。冻干机本身的性能,这包括冻干机的真空性能,冷凝器的温度和效能,甚至机器构造的几何形状等,性能良好的冻干机使升华阶段的时间较短些。在产品的第一阶段时,除了要保持冻结产品的温度不能超过共熔点以外,还要保持已干燥的产品温度不能超过崩解温度。所谓崩解温度是对已经干燥的产品而言的。已干燥的产品应该是疏松多乱,保持一个稳定的状态,以便下层冻结产品中升华的水蒸汽顺利通过,使全部的产品都良好的干燥。但某些已干燥的产品当温度达到某一数值时会失去刚性,发生类似崩溃的现象,失去了疏松多乱的性质,使干燥产品有些发粘。比重增加,颜色加深。发生这种变化的温度就叫做崩解温度。干燥产品发生崩解之后,阻碍或影响下层冻结产品升华的水蒸汽的通过,于是升华速度减慢冻结产品吸收热量减少,由板层继续供给的热量就有多余。将会造成冻结产品温度上升,产品发生熔化发泡现象。崩解温度与产品的种类和性质有关,因此应该合理的选择产品的保护剂,使崩解温度尽可能高一些,例如产品的崩解温度应高于该产品的共熔点温度。崩解温度一般由试验来确定,通过显微冷冻干燥试验可以观察到崩解现象,从而确定崩解温度。
摘要:虚拟现实技术作为一种综合多种科学技术的计算机领域新技术,是国内外计算机仿真应用研究的热点,涉及众多发展和应用领域,极大地丰富了我们的生活。本文针对虚拟现实
西方茶 文化 有着几百年的历史,也涌现很多的关于西方茶文化的论文。下面是我精心为你整理的西方茶文化论文参考文献,一起来看看。 参考文献 [1]朱亚夫.意义的
论文的国内外研究现状写法如下: 第一,写国内外研究现状的时候首先需要具备的是研究国内的现状,需要举出一系列的数据,同时这些数据必须是来源于正规的数据平台,这样的
水溶性膳食纤维聚葡萄糖的市场现状及发展应用 摘要: 聚葡萄糖(英文名称Polydextrose,俗名水溶性膳食纤维),为白色或乳黄色颗粒固体,易溶于水,是在柠檬
国外婚纱拍摄需求量越来越大。婚纱可单指身上穿的服饰,也可以包括头纱、捧花部分。国外婚纱摄影发展现状是拍摄需求量越来越大。拍摄,是用摄影机﹑录像机把人﹑物的形象记