纯爱火乐
引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。2 排列定义1 由……n组成的一个有序数组称为一个 级排列。n级排列的总数为(n的阶乘个)。定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 行列式定义(设为n阶):n阶行列式是取自不同行不同列的n个元素的乘积的代数和,它由 项组成,其中带正号与带负号的项各占一半, 表示排列 的逆序数。 阶行列式具有的性质性质1 行列式与它的转置行列式相等.( ) 事实上,若记 则 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行( )或两列( ),行列式变号. 例如 推论 若行列式 有两行(列)完全相同,则 . 证明: 互换相同的两行, 则有 , 所以 . 性质3 行列式某一行(列)的所有元素都乘以数 ,等于数 乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,则 ;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即.证: 由行列式定义性质6 行列式 的某一行(列)的各元素都乘以同一数 加到另一行(列)的相应元素上,行列式的值不变 ,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 行列式的计算数字型行列式的计算 1. 三角化法例1 .解: 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…, 列都加到第1列上,行列式不变,得. 例2 .解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.2. 2.递推法 例3 计算行列式 之值。解 把各列均加至第1列,并按第1列展开,得到递推公式继续使用这个递推公式,有 而初始值 ,所以 例4 计算 .解:., ,,3.数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。 一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。 例5 计算行列式 .解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当 时, 假设 时,有 则当 时,把 按第一列展开,得由此,对任意的正整数 ,有4.公式法例6 计算行列式 之值。解 由于 ,故用行列式乘法公式,得因 中, 系数是+1,所以 。行列式的概念与性质的例题 例7 已知 是6阶行列式中的一项,试确定 的值及此项所带的符号。解 根据行列式的定义,它是不同行不同列元素乘积的代数和。因此,行指标 应取自1至6的排列,故 ,同理可知 。直接计算行的逆序数与列的逆序数,有 。亦知此项应带负号。抽象行列式的计算 例8 若4阶矩阵A与B相似,矩阵A的特征值为 则行列式 ( )。解 由A~B,知B的特征值是 。那么 的特征值是2,3,4,5.于是 的特征值是1,2,3,4。有公式得, 。含参数行列式的计算 例9 已知 ,求 。解 将第3行的-1倍加至第1行,有所以 。关于 的证明 解题思路:①设证法 ;②反证法:如 从A可逆找矛盾;③构造齐次方程组 ,设法证明它有非零解;④设法证矩阵的秩 ;⑤证明0是矩阵A的一个特征值。特殊行列式的解法 1 范德蒙行列式定义:行列式 称为n级的范德蒙行列式。例10 计算行列式 之值。解 把1改写成 ,第一行成为两数之和, 可拆成两个行列式之和,即分别记这两个行列式为 和 ,则由范德蒙行列式得,故 拉普拉斯定理设在行列式D中任意取定了 个行,由这 行元素所组成的一切 级子式与它们的代数余子式的乘积的和等于行列式 。(其中:① 级子式:在一个 级行列式 中任意选定 行 列 。位于这些行和列的交点上的 个元素按照原来的次序组成一个 级行列式 ,称为行列式 的一个 级子式。②余子式:在 中划去这 行 列后余下的元素按照原来的次序组成的 级行列式 称为 级子式 的余子式。③代数余子式:设 的 级子式 在 中所在的行、列指标分别是 则 的余子式 前面加上符号 后称为 的代数余子式)。例11 求行列式 。解:在行列式 中取定第一、二行,得到六个子式:它们对应的代数余子式为根据拉普拉斯定理3 结束语老师渊博的学识、敏锐的思维、民主而严谨的作风,使我受益匪浅,终生难忘,严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作。感谢我的老师对我的关心、指导和教诲! 感谢我的学友和朋友对我的关心和帮助
rachelkong
数学专业毕业论文选题方向
1动态规划及其应用问题。
2计算方法中关于误差的分析。
3微分中值定理的应用。
4模糊聚类分析在学生素质评定中的应用。
5关于古典概型的几点思考。
6浅谈数形结合在数学解题中的应用。
7高校毕业生就业竞争力分析。
8最大模原理及其推广和应用。
9 最大公因式求解算法。
10行列式的计算。
大哈哈a呦呦
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
DaisyYaoYao
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊
1、在物流行业面向各类物流企业、物流枢纽中心及各类综合型企业的物流部门等的完整解决方案,依靠大规模的云计算处理能力、标准的作业流程、灵活的业务覆盖、精确的环节控
引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。2 2.1排列定义1 由1.2……n组成
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可
A* 是A的伴随矩阵, 也有教材称为转置伴随矩阵A*中的元素是由|A|中元素的代数余子式构成的A* = (Aji), Aij 是 |A| 中 aij 的代数余