• 回答数

    4

  • 浏览数

    327

电风扇啊电风扇
首页 > 期刊论文 > 二次函数最值的论文开题报告

4个回答 默认排序
  • 默认排序
  • 按时间排序

小笼包不怕胖

已采纳

最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/一、代数问题一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若02,=,==2.评注:求在有限闭区间上的二次函数的最值问题,关键抓住两点:①二次函数图像的开口方向;②二次函数图像的对称轴与所给闭区间的相对位置关系.此类型最值必然在区间端点或图像顶点处取得.【例3】(2005·全国卷Ⅱ·文21题改编)设a为实数,函数,求的最值.解析:令=3x2-2x-1=0得=-,=1∵,≥0,∴函数在上是增函数,∴==a+显然不存在最小值.与本题类似,2008全国卷I第19题、全国卷Ⅱ第22题(文)都出现了与导数有关的判断函数单调性的问题.评注:导数知识放在高中阶段学习,为高中数学增添了许多亮点,同时也为高考数学的考查方向和难度提供了许多有利的条件.【例4】已知,,求的最小值.解法1:==5+≥5+=9(当且仅当且x+y=1,即时取“=”号)∴的最小值等于9.说明:此法符合均值不等式的条件“一正二定三相等”.解法2:∵x+y=1,令,()∴====≥=9说明:此解法运用了三角换元,最后又运用了重要不等式,与法1实质相同.解法3:利用柯西不等式==≥==9说明:实质上令,,是的应用.解法4:令=t,由,消去y可得:转化为上述方程在内有解,故有,可得到t≥9.所以最小值等于9.说明:本解法体现了转化思想、方程思想.评注:对本题的四种解法中,我们可看到解法1、解法2是较为简洁的.我们提倡一题多解,善于发现、总结,从中找出最优解法,逐步提高分析问题、解决问题的能力.二、三角函数问题三角函数作为一种重要的函数,也是高考考查的重点.三角函数常借助三角函数的有界性或利用换元转化为代数的最值问题.【例5】(2008·全国卷Ⅱ·第8题)若动直线与函数与的图像分别相交于M、N两点,则的最大值为( ). B. C. 分析:画图像,数形结合是很难得到答案的.易得,,则,利用正弦函数的有界性易知最大值为.【例6】(2004全国卷)求函数的最大值.解析:,而,∴评注:令,则,这样转化为区间或其子集上的二次函数的值域问题.类似的结构还有:,,等.【例7】(2008重庆·第10题)函数的值域为( ).A. B. C. D.分析:观察式子结构,若化为∵,∴但最小值不能直接观察出.因为分子取最小值时,分母取不到最小正数.变形为另一种形式:,观察结构,再配凑,会发现什么?令,,问题转化为求的最值问题,数形结合,易知的范围是[],从而选B.可见向量作为工具的重要应用,应多观察、联想、对比、发现,从中寻找解决问题的最佳途径.上述介绍的数学思想与方法是根据近几年部分高考试题总结的,也是最值求解问题中最常用的,只要在平时注意归纳,加强训练,就能够熟练运用.但没有任何一种方法能够“包打天下”,因此在具体实施时,还需要注意解题方法的选择,及各种思想方法的综合使用,实现优势互补,这样才能够“游刃有余”.

160 评论

苦丁茶1苦丁茶

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

237 评论

lingling8826

1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。

322 评论

sweetmiriam

摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...

180 评论

相关问答

  • 三角函数的最值问题研究论文

    三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域

    huahuaxiaoer 4人参与回答 2023-12-08
  • 三角函数的最值问题的研究论文

    【摘要】高中数学函数求最值问题是高中数学最重要的课程之一,由于求最值问题的内容较散,方法难以选择,因此最值问题求解一直困扰我们的学习。最值问题是数学考试中常用的

    Tracy猪猪 3人参与回答 2023-12-09
  • 函数最值问题的研究论文引言

    【摘要】高中数学函数求最值问题是高中数学最重要的课程之一,由于求最值问题的内容较散,方法难以选择,因此最值问题求解一直困扰我们的学习。最值问题是数学考试中常用的

    噗噗小维尼winnie 3人参与回答 2023-12-12
  • 函数最值的论文开题报告

    数学小课题开题报告 在教学中引导学生掌握审题的具体步骤和方法。以下是我J.L为大家分享的2017年关于数学小课题的开题报告范文。 题目:初中数学主体合作学习方式

    肥胖卷的肥蛋卷 3人参与回答 2023-12-08
  • 二次函数在研究论文

    就写下二远一次方程是求二元一次函数与x轴交点时用的

    xianla198501 7人参与回答 2023-12-07