DaisyYaoYao
给定一个或多个搜索词,如“高血压 患者”,从已有的若干篇文本中找出最相关的(n篇)文本。 文本检索(text retrieve)的常用策略是:用一个ranking function根据搜索词对所有文本进行排序,选取前n个,就像百度搜索一样。 结巴分词后的停用词性 [标点符号、连词、助词、副词、介词、时语素、‘的’、数词、方位词、代词] 对一篇文章分词、去停用词 对目录下的所有文本进行预处理,构建字典
cHeN&Li$Li
人与人相处多一些真诚,少一些套路,不要把别人当傻子,只是别人不想和你计较罢了。
上一篇: python3比较版本号方法封装 下一篇: configobj读写.ini配置文件方法封装
下面封装的方法是用于检查列表、元组、字符串中是否有重复元素,only_show_repeat方法返回一个只有重复元素的列表,show_repeat_count方法返回一个以重复元素为key,重复次数为value的字典,相当于查重。内有注释自己看吧。
如果感觉本文对您有帮助可以点个赞哦
本文仅供交流学习,请勿用于非法途径
仅是个人意见,如有想法,欢迎留言
~Miss.Q~
应用1:关键词自动生成
核心思想是对于某个文档中的某个词,计算其在这个文档中的标准化TF值,然后计算这个词在整个语料库中的标准化IDF值。在这里,标准化是说对原始的计算公式进行了一些变换以取得更好的衡量效果,并避免某些极端情况的出现。这个词的TF-IDF值便等于TF*IDF。对于这个文档中的所有词计算它们的TF-IDF值,并按照由高到低的顺序进行排序,由此我们便可以提取我们想要的数量的关键词。
TF-IDF的优点是快捷迅速,结果相对来说比较符合实际情况。缺点是当一篇文档中的两个词的IDF值相同的时候,出现次数少的那个词有可能更为重要。再者,TF-IDF算法无法体现我词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。存在的解决办法是对文章的第一段和每段的第一句话给予比较大的权重。
应用2:计算文本相似度
明白了对于每个词,如何计算它的TF-IDF值。那么计算文本相似度也轻而易举。我们已经计算了文章中每个词的TF-IDF值,那么我们便可以将文章表征为词的TF-IDF数值向量。要计算两个文本的相似度,只需要计算余弦即可,余弦值越大,两个文本便越相似。
应用3:自动摘要
以第一个图为例,其中的cluster一共有7个词,其中4个是关键词。因此它的重要性分值就等于(4*4)/7=。然后,找出包含cluster重要性分值最高的句子(比如5句),把它们合在一起,就构成了这篇文章的自动摘要。具体实现可以参见
类似的算法已经被写成了工具,比如基于Java的Classifier4J库的SimpleSummariser模块、基于C语言的OTS库、以及基于classifier4J的C#实现和python实现。
别折腾了,不打算往爬虫方向发展的话没必要自己学,爬虫所需要的技术非常广泛、且对深度都有一定要求,不存在“快速学会”的情况。所有那些吹快速学会爬虫的培训班都是扯淡
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样
代码会查的,如果重复率20%,本科毕业论文能够过,硕士研究生毕业论文不一定能过,要看你所在学校的具体制度,有些需要研究要求不超过15%,有些学校要求不超过25%
应届生求职网,信息量挺大的,去看看吧,希望对你有益。