海派装饰0312
人们把客观存在的事物以数据的形式存储到计算机中,经历了对现实生活中事物特性的认识、概念化到计算机数据库里的具体表示的逐级抽象过程,即现实世界-概念世界-机器世界三个领域。有时也将概念世界称为信息世界;将机器世界称为存储或数据世界。 一、三个世界 1、现实世界 人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。 2、概念世界 概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语: 实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。 实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值"。 属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。 关键字:如果某个属性或属性组合的值能唯一地标识出实体集中的每一个实体,可以选作关键字。用作标识的关键字,也称为码。如"职工号"就可作为关键字。 联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。 3、机器世界 存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。 数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。 关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro等。 网络数据库也叫Web数据库。促进Internet发展的因素之一就是Web技术。由静态网页技术的HTML到动态网页技术的CGI、ASP、PHP、JSP等,Web技术经历了一个重要的变革过程。Web已经不再局限于仅仅由静态网页提供信息服务,而改变为动态的网页,可提供交互式的信息查询服务,使信息数据库服务成为了可能。Web数据库就是将数据库技术与Web技术融合在一起,使数据库系统成为Web的重要有机组成部分,从而实现数据库与网络技术的无缝结合。这一结合不仅把Web与数据库的所有优势集合在了一起,而且充分利用了大量已有数据库的信息资源。图1-1是Web数据库的基本结构图,它由数据库服务器(Database Server)、中间件(Middle Ware)、Web服务器(Web Server)、浏览器(Browser)4部分组成。 Web数据库的基本结构它的工作过程可简单地描述成:用户通过浏览器端的操作界面以交互的方式经由Web服务器来访问数据库。用户向数据库提交的信息以及数据库返回给用户的信息都是以网页的形式显示。 Internet技术与相关协议Internet技术在Web数据库技术中扮演着重要的角色。Internet(因特网)专指全球最大的、开放的、由众多网络相互连接而成的计算机网络,并通过各种协议在计算机网络中传递信息。TCP/IP协议是Internet上使用的两个最基本的协议。因此也可以说Internet是全球范围的基于分组交换原理和TCP/IP协议的计算机网络。它将信息进行分组后,以数据包为单位进行传输。Internet在进行信息传输时,主要完成两项任务。(1)正确地将源信息文件分割成一个个数据包,并能在目的地将源信息文件的数据包再准确地重组起来。(2)将数据包准确地送往目的地。TCP/IP协议的作用就是为了完成上述两项任务,规范了网络上所有计算机之间数据传递的方式与数据格式,提供了数据打包和寻址的标准方法。1.TCP/IP协议TCP协议(Transmission Control Protocol,传输控制协议)规定了分割数据和重组数据所要遵循的规则和要进行的操作。TCP协议能保证数据发送的正确性,如果发现数据有损失,TCP将重新发送数据。2.IP协议在Internet上传送数据往往都是远距离的,因此在传输过程中要通过路由器一站一站的转接来实现。路由器是一种特殊的计算机,它会检测数据包的目的地主机地址,然后决定将该数据包送往何处。IP协议(Internet Protocol,网际协议)给Internet中的每一台计算机规定了一个地址,称为IP地址。IP地址的标准是由4部分组成(例如),其中前两部分规定了当前使用网络的管理机构,第3部分规定了当前使用的网络地址,第4部分规定了当前使用的计算机地址。Internet上提供的主要服务有E-mail、FTP、BBS、Telnet、WWW等。其中WWW(World Wide Web,万维网)由于其丰富的信息资源而成为Internet最为重要的服务。3.HTTP协议HTTP协议(Hypertext Transfer Protocol,超文本传输协议)应用在WWW上,其作用是完成客户端浏览器与Web服务器端之间的HTML数据传输。 Web的工作原理与工作步骤万维网简称为Web。Web可以描述为在Internet上运行的、全球的、交互的、动态的、跨平台的、分布式的、图形化的超文本信息系统。1.Web的工作原理Web是伴随着Internet技术而产生的。在计算机网络中,对于提供Web服务的计算机称为Web服务器。Web采用浏览器/服务器的工作方式。每个Web服务器上都放置着大量的Web信息。Web信息的基本单位是Web页(网页),多个网页组成了一个Web节点。每个Web节点的起始页称为“主页”,且拥有一个URL地址(统一资源定位地址)。Web节点之间及网页之间都是以超文本结构(非线性的网状结构)来进行组织的。2.Web的工作步骤Web的工作步骤如下。(1)用户打开客户端计算机中的浏览器软件(例如Internet Explorer)。(2)用户输入要启动的Web主页的URL地址,浏览器将生成一个HTTP请求。(3)浏览器连接到指定的Web服务器,并发送HTTP请求。(4)Web服务器接到HTTP请求,根据请求的内容不同作相应的处理,再将网页以HTML文件格式发回给浏览器。(5)浏览器将网页显示到屏幕上. 图1-2 Web的工作步骤 WWW世界中的标记语言1.HTML语言HTML(Hypertext Markup Language,超文本标记语言)是创建网页的计算机语言。所谓网页实际上就是一个HTML文档。文档内容由文本和HTML标记组成。HTML文档的扩展名就是.html或.htm。浏览器负责解释HTML文档中的标记,并将HTML文档显示成网页。(1)HTML标记HTML标记的作用是告诉浏览器网页的结构和格式。每一个标记用尖括号<>括起来。大多数标记都有一个开始标记和一个结束标记。标记不分大小写。多数标记都带有自己的属性。例如字体标记有FACE、COLOR、SIZE等属性:FACE定义字体;COLOR定义字体的颜色;SIZE定义字体的大小。使用格式: BEIJING 。网页中有很多文本链接和图片链接。链接,又被称为超链接,用于链接到WWW万维网中的其他网页上。在HTML文档中表示超链接的标记是,通过属性HREF指出链接的网页地址URL。使用格式: BEIJING 。(2)HTML程序HTML程序必须以标记开始,以标记结束。在和标记之间主要由两部分组成:文件头和文件体。文件头用标记 来标识,文件体用标记来标识。在文件的头部通常包含整个网页的一些信息。例如
蘁嘬天唑地
人们把客观存在的事物以数据的形式存储到计算机中,经历了对现实生活中事物特性的认识、概念化到计算机数据库里的具体表示的逐级抽象过程,即现实世界-概念世界-机器世界三个领域。有时也将概念世界称为信息世界;将机器世界称为存储或数据世界。 一、三个世界 1、现实世界 人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。 2、概念世界 概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语: 实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。 实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值"。 属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。 关键字:如果某个属性或属性组合的值能唯一地标识出实体集中的每一个实体,可以选作关键字。用作标识的关键字,也称为码。如"职工号"就可作为关键字。 联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。 3、机器世界 存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。 数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。 关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro等。 网络数据库也叫Web数据库。促进Internet发展的因素之一就是Web技术。由静态网页技术的HTML到动态网页技术的CGI、ASP、PHP、JSP等,Web技术经历了一个重要的变革过程。Web已经不再局限于仅仅由静态网页提供信息服务,而改变为动态的网页,可提供交互式的信息查询服务,使信息数据库服务成为了可能。Web数据库就是将数据库技术与Web技术融合在一起,使数据库系统成为Web的重要有机组成部分,从而实现数据库与网络技术的无缝结合。这一结合不仅把Web与数据库的所有优势集合在了一起,而且充分利用了大量已有数据库的信息资源。图1-1是Web数据库的基本结构图,它由数据库服务器(Database Server)、中间件(Middle Ware)、Web服务器(Web Server)、浏览器(Browser)4部分组成。 Web数据库的基本结构 它的工作过程可简单地描述成:用户通过浏览器端的操作界面以交互的方式经由Web服务器来访问数据库。用户向数据库提交的信息以及数据库返回给用户的信息都是以网页的形式显示。 Internet技术与相关协议 Internet技术在Web数据库技术中扮演着重要的角色。Internet(因特网)专指全球最大的、开放的、由众多网络相互连接而成的计算机网络,并通过各种协议在计算机网络中传递信息。TCP/IP协议是Internet上使用的两个最基本的协议。因此也可以说Internet是全球范围的基于分组交换原理和TCP/IP协议的计算机网络。它将信息进行分组后,以数据包为单位进行传输。Internet在进行信息传输时,主要完成两项任务。 (1)正确地将源信息文件分割成一个个数据包,并能在目的地将源信息文件的数据包再准确地重组起来。 (2)将数据包准确地送往目的地。 TCP/IP协议的作用就是为了完成上述两项任务,规范了网络上所有计算机之间数据传递的方式与数据格式,提供了数据打包和寻址的标准方法。 1.TCP/IP协议 TCP协议(Transmission Control Protocol,传输控制协议)规定了分割数据和重组数据所要遵循的规则和要进行的操作。TCP协议能保证数据发送的正确性,如果发现数据有损失,TCP将重新发送数据。 2.IP协议 在Internet上传送数据往往都是远距离的,因此在传输过程中要通过路由器一站一站的转接来实现。路由器是一种特殊的计算机,它会检测数据包的目的地主机地址,然后决定将该数据包送往何处。IP协议(Internet Protocol,网际协议)给Internet中的每一台计算机规定了一个地址,称为IP地址。IP地址的标准是由4部分组成(例如),其中前两部分规定了当前使用网络的管理机构,第3部分规定了当前使用的网络地址,第4部分规定了当前使用的计算机地址。 Internet上提供的主要服务有E-mail、FTP、BBS、Telnet、WWW等。其中WWW(World Wide Web,万维网)由于其丰富的信息资源而成为Internet最为重要的服务。
宝哥哥艺涵
相关范文:人才测评的效度与信度研究【摘要】人才测评在现代人力资源管理中的广泛运用,为企业人才选拔提供了参考依据。然而,其效度和信度一直是企业最关心的问题。本文将用数量分析方法解来检验企业测评的信度和效度,进而修正和完善自身测评与选拔体系。【关键词】人才测评 效度 信度一、基本概念人才测评也叫人才素质测评,是指测评者采用科学的方法,收集被测评者在主要活动领域中的表征信息,针对人才素质测评标准体系做出量值或价值判断的过程;或者从表征信息中引发与推断某些素质特征的过程。综合运用心理学、管理学、测量学、系统论、行为科学和计算机技术等多种学科的原理和方法,对社会各行各业所需人才的知识水平、能力结构、道德品格、个性特点以及职业倾向和发展潜力等多种素质进行测量和评价的一种选才方法。二、问题引述人才测评往往是一项复杂的工作,尤其是面对大规模招聘和核心人才的选拔,企业需要投入大量的时间、精力。然而,许多企业随着业务规模的不断扩大,期望构建自己完整的测评与选拔体系,这样的测评体系可以真正反映公司对特定人才的需求,以便做出正确的决策。调查显示,效度和信度是许多企业关心的核心问题。一个完善的测评与选拔体系并不是一蹴而就的,完备的测评体系,都是不断修正的结果。人才测评的方法是取得被考核人员有关考评数据的手段,经常使用的主要有以下几种:履历档案分析、笔试、心理测量、面试和评价中心技术。在实际操作中,不同类型人才往往采取不同的测评技术,而企业普遍关心的问题是如何提高测评的信度和效度。三、解决方案1、测评与选拔的可靠性分析在人员测评与选拔中,结果的可靠性是由测评信度来鉴定,所谓信度是指人员测评与选拔结果的准确性或一致性程度。按照衡量测评信度程度的方法不同,信度可分为再测信度、复本信度、内在一致性信度和评分者信度。(1)再测信度。指以同样的测评与选拔工具,按照同样的方法,对于相同的对象再次进行测评与选拔,所得先后结果的一致性程度。再测信度的两次测评使用的是同一个测评工具,同一种测评方式,但较难把握的是两次测评间隔的时间长短。时间间隔过长,被测者特征将随时间的增加而发展变化,由此计算的稳定系数将失去意义;若时间间隔过短,又可能产生记忆与练习效应,这也将影响稳定系数。一般来说,时间间隔不应是固定不变的,不同性质的人时间间隔应有区别,通常为1至3个月之间。在进行测评结果报告时,应报告两次测评的间隔时间,以及在此期间内被测者的相关经历。(2)复本信度。指测评与选拔结果与另一个等值测评与选拔结果的一致性程度。所谓等值,是指在测评内容、效度、要求、形式上都与原测评一样,其中一个测评可以看作是另一个测评的近似复写,即复本。如果两个复本测评相距一段时间分两次实施,则在鉴定复本信度的同时还可鉴定再测信度,可见它应用范围的广泛。鉴定复本信度,首先要编制等值的复本。编制严格平行的复本难度较大,这也是制约复本信度的主要因素。此外,复本信度虽能较好地克服再测信度的练习、记忆效应,但原测评中的一些技能技巧也会产生迁移效应。(3)内在一致性信度。指所测素质相同的各测评项目分数间的一致性程度。若被测的第一个项目的分数高于他人,在第二个项目的分数还高于其他人,在第三个项目的分数仍高于他人……且这些测评项目所测评的是同一素质,那么有理由认为测评与选拔结果较可靠。再测信度与复本信度都需要组织两次测评,而内在一致性信度只需要进行一次测评,增加了人员测评的可操作性,同时也为实际工作带来了极大的方便。(4)评分者信度。指多个测评者给同一组被测样组进行评分的一致性程度。测评与选拔结果的差异程度来自两方面:一是被测评者自身,二是被测评者及其测评。信度主要是对后者的度量,测评者及其测评的无关差异越小,测评与选拔结果就越可靠。测评者的评分是引起主观性测评结果差异的主要原因。客观性测评是利用计算机评分,不受主观因素影响,不存在评分误差。2、测评与选拔的有效性分析上面我们对测评信度进行了简要描述,目的是提高测评的可信度。测评的有效性也即测评效度是人才测评与选拔质量检验的重要内容,尤其是对测评选拔反馈有重要的指导和参考修正价值。效度的具体内容主要包含以下几个方面:(1)内容效度。是指实际测评到的内容与期望测评的内容的一致性程度。内容效度在实际操作中的鉴定主要采用定性分析的方法,有蓝图对照分析法与专家比较判断法。所谓的蓝图对照法实际上就是将测评内容与设计蓝图对照,做出分析判断。专家比较判断法是由一组独立的专家组成专家评定组,对测评量表内容取样的充分性、必要性、适合性进行评定,对实际测评到的内容与所要测素质特征的符合程度做出判断。(2)结构效度。又称作构想效度、构思效度、构建效度等。在测评实践中,有些指标我们是不能直接测评得到答案的,例如智力、动机、态度、品德、善良、诚实等抽象概念,这时候我们只能借助于具体的行为测评来推断。把抽象素质构建成具体行为特征,是否抓住了该素质的本质特征进行构建是最关键的,这就是结构效度问题。它表明了在多大程度上,实际的测评结果能够被看作是所要测评的素质在结构上的替代物。不难看出,结构效度的判断是一个难点。在实际操作中,这里也是最复杂的一个环节之一。构建一个素质结构模型是非常必要的,包括项目、指标、权重、标度等。然后,根据事实材料评判结构效度。就是根据实际的测评结果,结合专家小组的意见和逻辑分析等方法,评判结构效度。这一点对于测评结果的反馈修正具有重要价值。(3)关联效度。是指测评结果与效标的一致性程度。效标是一种用来衡量测评有效性的外在参照标准,它可以是一种测评的结果,也可以是标准测评分数。根据效标是否可以同时获得,可将关联效度分为同时效度与预测效度。作为效标的结果与预测结果同时获得,这种效度称之为同时效度。当作为效标的结果是后来测评中获得,这种效度称为预测效度。它反映了现在的测评结果对未来素质发展的预测程度。不同的测评目的,对于效度的要求也不尽相同。例如,通过测评来选拔人才,则希望测评有较高的预测效度;通过测评来开发培训人才,则希望测评兼备较高的同时效度和预测效度。四、总结当然,影响信度的因素有很多,主要是系统误差和随机误差。包括测评者的专业性和素质、被测评者本人心理、测评工具的稳定性、环境稳定性等都会影响测评的可信度。在实际测评过程中要把握各相关方面,不仅要有专业的测评人员,同时也要在稳定的环境中为被测评者提供一个放松真实的氛围。测评的效度也是受多因素影响的,如测评工具,测评过程及测评这因素,被测评者状态,效标因素和信度因素等。其中信度和效度之间的关系是:高信度是高效度的必要条件,但非充分条件。即信度高不一定其效度就高,但想获得较高的测评效度,其信度必定要高。信度和效度是人才测评与选拔质量的重要指标。运用数量方法进行定量研究,有利于提高测评的有效性,进而做出正确的选拔决策。对于低效度、信度的测评指标,可以及时做出调整,完善指标体系,对于建立企业自身完善的测评反馈机制有重要意义。【参考文献】[1] 加里·钱德勒著,刘昕、吴雯芳等译:人力资源管理,中国人民大学出版社,北京,1999。[2] 张俭:建立人才评价管理机制[J].人才开发,2002,6。[3] 萧鸣政:人才测评与选拔,复旦大学出版社,上海,2005。[4] RICHARD A P, FREDERICK P M, MICHAEL A C. Beyond employment interview validity: a comprehensive narrative review of recent research and trends over time [J].Personnel Psychology 2002。仅供参考,请自借鉴希望对您有帮助
姜大大夫人
人们把客观存在的事物以数据的形式存储到计算机中,经历了对现实生活中事物特性的认识、概念化到计算机数据库里的具体表示的逐级抽象过程,即现实世界-概念世界-机器世界三个领域。有时也将概念世界称为信息世界;将机器世界称为存储或数据世界。 一、三个世界 1、现实世界 人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。 2、概念世界 概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语: 实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。 实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值"。 属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。 关键字:如果某个属性或属性组合的值能唯一地标识出实体集中的每一个实体,可以选作关键字。用作标识的关键字,也称为码。如"职工号"就可作为关键字。 联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。 3、机器世界 存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。 数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。 层次模型 若用图来表示,层次模型是一棵倒立的树。在数据库中,满足以下条件的数据模型称为层次模型: ① 有且仅有一个结点无父结点,这个结点称为根结点; ② 其他结点有且仅有一个父结点。 根据层次模型的定义可以看到,这是一个典型的树型结构。结点层次从根开始定义,根为第一层,根的子结点为第二层,根为其子结点的父结点,同一父结点的子结点称为兄弟结点,没有子结点的结点称为叶结点。 网状模型 在现实世界中,事物之间的联系更多的是非层次关系的,用层次模型表示非树型结构是很不直接的,网状模型则可以克服这一弊病。网状模型是一个网络。在数据库中,满足以下两个条件的数据模型称为网状模型。 ① 允许一个以上的结点无父结点; ② 一个结点可以有多于一个的父结点。 从以上定义看出,网状模型构成了比层次结构复杂的网状结构。 关系模型 在关系模型中,数据的逻辑结构是一张二维表。 在数据库中,满足下列条件的二维表称为关系模型: ① 每一列中的分量是类型相同的数据; ② 列的顺序可以是任意的; ③ 行的顺序可以是任意的; ④ 表中的分量是不可再分割的最小数据项,即表中不允许有子表; ⑤ 表中的任意两行不能完全相同。 个人版权,请勿复制
dp72893325
有图片的,这里发不了图片,满意我的论文加分后联系我,我发给你。基于关系数据库的模式匹配技术研究摘 要 随着 网络 技术的 发展 ,信息处理需要对大量的、异构的数据源的数据进行统一存取,多源异构数据的集成 问题 就显得十分重要。而模式匹配是数据集成领域的一个基本技术。文章提出一种解决关系数据库语义冲突问题的模式匹配技术,以实现异构数据的共享与互操作。关键词 数据集成;模式匹配;语义冲突1 引言随着 计算 机及网络技术的快速发展,网络上的各种信息以指数级爆炸性增长,成为了一个巨大的信息库,同时各 企业 单位开发了大量的软硬件平台各异的 应用 系统,在各种应用系统下又积累了丰富的数据资源。这样就形成了成千上万个异构的数据源,多为传统的关系数据库数据。这些数据资源由于软硬件平台各异、数据模型各异而形成了异构数据,使各数据源间的互操作变得复杂。为了更好地利用这些异构信息,以及不造成企业应用系统的重复建设和数据资源的浪费,模式匹配技术吸引了众多关注。本文针对模式匹配过程中存在的语义冲突进行分类,并提出了相应的解决策略,以达到异构数据源的共享和互操作。2 模式匹配中的冲突问题在数据集成领域中,由于数据源系统多是独立开发,数据源是相对自治的,因此描述数据的数据模型或存储结构经常会出现模式的不一致,数据源的自治性和数据源模式的异构性使数据源在共享和互操作上存在了语义冲突。这些正是模式匹配的焦点问题,它们形式上的性质使得人们很容易想到要用模式匹配去解决逻辑、语义和知识的描述问题。对于描述模式匹配中的语义冲突有两种较有代表性的分类[4]。第一种分类将冲突分为异类冲突、命名冲突、语义冲突和结构冲突。第二种分类主要是对第一类异类冲突概念的一个细致的改进,但和其它分类仍有细微的不同,它把异类冲突看作是语义不一致的一类(如语义冲突),把冲突分为命名冲突、域冲突、元数据冲突、结构冲突、属性丢失和硬件/软件不同。模式匹配是一项复杂而繁重的任务,所能集成的数据源越来越多,上述冲突情况也会越来越普遍,想解决所有的模式冲突是不现实的。本文主要解决关系数据模式之间的语义冲突。3 模式匹配中的语义冲突本文所提出的模式匹配 方法 是根据关系数据库的特点设计的。关系数据库中关系的基本单位是属性,属性本身就包含着语义信息,因此异构数据源语义相似性就围绕着数据源模式中的属性来进行,并在匹配的过程中解决异构数据源模式之间的一系列语义冲突。 语义匹配体系结构本文提出的语义匹配体系结构采用数据集成中的虚拟法数据集成系统的典型体系结构,采用将局部模式匹配到全局模式的语义匹配体系结构,自下而上地建立全局模式。首先进行模式转化,消除因各种局部数据模式之间的差异所带来的 影响 ,解决各种局部模式之间的语义冲突等,然后在转化后的模式的基础上进行模式匹配,其主要手段是提供各数据源的虚拟的集成视图。数据仍保存在各数据源上,集成系统仅提供一个虚拟的集成视图和对该集成视图的查询的处理机制。系统能自动地将用户对集成模式的查询请求转换成对各异构数据源的查询。在这种体系结构中,中间层根本不实际存储数据,当客户端发出查询请求时,仅是简单地将查询发送到适当的数据源上。由于该方法不需要重复存储大量数据,并能保证查询到最新的数据,因此比较适合于高度自治、集成数量多且更新变化快的异构数据源集成。本文中的语义匹配的体系结构如图1所示。 关系数据库模式中语义冲突问题分类及其解决策略大多数数据库系统提供了一套概念结构来对现实世界的数据进行建模。每一个概念结构被认为是一个类型,它可以是一种复杂类型或一种基本类型。类型和它所表示的数据间的联系就称为语义[3]。在关系数据库中,一个关系模式是一个有序对(R,c),其中R为模式所指向的关系(表)的名称,而c则为具有不同名称的属性的有限集。同时,属性也是一个有序对(N,D),其中N为属性的名称,而D则为一个域。可以看出关系模式的基本单位是属性。属性本身就包含着语义信息,因此模式语义相似性就围绕模式中的属性来进行,并在模式匹配的过程中解决异构数据库模式之间的一系列语义冲突。根据语义的定义,在关系数据库系统中,语义系统是由模式、模式的属性、模式中属性之间的联系和模式间的属性之间的联系构成。这里将语义分为3级:模式级、属性级和实例级。下面将异构模式中存在的语义冲突问题进行了分类,并阐述了各种语义冲突的解决策略:1)模式级冲突(1)关系命名冲突。包括关系名同义词和关系名同形异义词。前者进行换名或建立关系名同义词表以记载该类冲突;后者进行换名或建立关系名同形异义词表以记载该类冲突。(2)关系结构冲突。分为包含冲突和相交冲突。包含冲突是指在含义相同的两个关系 R1 和 R2 中一个关系的属性集是另一个的属性子集。相交冲突是指两关系属性集的交不为空,我们用 attrset 代表关系的属性集。对包含冲突:①如果两个关系的属性集相同即attrset(R1)=attrset(R2),则合并这两个对象,Merge(R1, R2)into R3;②如果 attrset(R1) attrset(R2),则 attrset(R2')=attrset(R2)-attrset(R1),attrset(R1') = attrset(R1);③对相交冲突:通常概括语义进行如下解决:generalize(R1,R2)其中 attrset(R3)=attrset(R1)∩attrset(R2), attrset(R1')= attrset(R1)-attrset(R3);attrset(R2')=attrset(R2)-attrset(R3)。(3)关系关键字冲突:两个含义相同的关系具有不同的关键字约束。包括候选关键字冲突和主关键字冲突。解决候选关键字冲突的 方法 是,将两关系的候选关键字的交集作为两关系的候选关键字;解决主关键字冲突的方法是,从两关系的公共候选关键字中选一个分别作为两关系的主关键字。(4)多对多的关系冲突:两个数据库中用不同数量的关系来表达现实世界的相同语义信息,就产生了多对多的关系冲突,这种冲突分3种:一对多,多对一和多对多。解决方法是在表示相同语义信息的数据库中关系之间建立映射来表示多对多的关系。2)属性级冲突(1)属性命名冲突:分属性名同义词冲突和属性名同形异义词。前者的解决方法是,换名或建立属性名同义词字典;后者的解决方法是,换名或建立属性名同形异义词字典。(2)属性约束冲突:分属性类型冲突和属性长度冲突两种。当在两个相关的关系R1和R2的属性N1和N2具有不同的属性类型时,就发生属性类型冲突。解决方法是在全局模式中将发生属性类型冲突的属性统一到某种属性类型。对属性长度的解决方法是,在全局模式中将发生属性长度类型冲突的属性对统一定义为最大者就可。(3)多对多的属性冲突:两个数据库中的关系分别用不同数量的属性来表达现实世界中相同的语义信息时,就发生了多对多的属性冲突,这种冲突分3种:一对多,多对一和多对多。解决方法是在表示相同语义信息的数据库中关系的属性之间建立映射来表示这种多对多的关系。3)实例级冲突(1)不兼容关系实例冲突:当含义相同的数据项在不同的数据库中存在不一致的数据值时就发生了不兼容关系实例冲突。其解决方法是:将关系实例的最近修改作为关系实例冲突部分的值,但不能保证数据的正确性。(2)关系实例表示冲突:关系实例表示冲突是指用不兼容的符号、量纲和精度来表示相关关系实例中等价的数据元素,主要包括表达冲突、量纲冲突和精度冲突。表达冲突是指在两个相关的关系R1和R2中含义相同的属性N1和N2具有不同的数据表达时,这种冲突使用语义值的概念来解决,即将表示同一概念的多种表达在全局数据中进行统一即可。量纲冲突是指在两个相关的关系R1和R2和中含义相同的属性N1和N2具有不同的量纲表示。量纲冲突也可以语义值加以解决,解决过程如下:分别定义发生量纲冲突的局部数据源的语义值模式和语义值说明,然后再定义全局数据模式中相应的语义值模式和语义值说明,将发生量纲冲突的属性值在全局模式中进行统一。精度冲突是指在两个相关的关系 R1 和 R2 中含义相同的属性具有不同的精度。其解决方法是在全局模式中将发生精度冲突的数据项定义为最高精度即可。4 总结本文针对异构数据源管理自治和模式异构的特点,提出了数据源集成模式匹配的体系结构,制定了匹配策略, 研究 了基于语义的模式匹配过程。以关系模式为 参考 模式,对异构数据源关系模式间可能存在的语义冲突 问题 进行了分类,并阐述了解决这些语义冲突的策略。参考 文献[1] Bergamaschi S, Castano S, Vincini M. Semantic Integration of Semistructured and Structured Data Sources [J]. SIGMOD Record, 1999, 28(1): 54-59.[2] Li W, Clifton C, Liu S. Database Integration Using Neural Network: Implementation and Experiences [J]. Knowledge and Information Systems, 2000, 2(1).[3] Reddy M P, Prasad B E, GReddy P. A Methodology for Integration of Heterogeneous Databases [J]. Information System, 1999,24(5).[4] Rahm E,Bernstein Survey of Approaches to Automatic Schema Matching[J]. The International Journal on Very Large Data Bases (VLDB),2001,10(4):334-350.[5] 孟小峰,周龙骧,王珊.数据库技术 发展 趋势[J].软件学报,2004,15(12):1822-1835[6] 邓志鸿,唐世渭,张铭,等.Ontology研究综述[J].北京大学学报( 自然 科学 版),2002,38(5):730-738[7] 郭志鑫.基于本体的文档引文元数据信息抽取[J].微 计算 机信息,2006,22(6-3)相关文献:基于XML的多数据库系统集成数据模型 - 华中科技大学学报:自然科学版 - 卢晓蓉 陈传波 等基于CORBA和XML的多数据库系统研究 - 郑州轻工业学院学报:自然科学版 - 张素智,钱慎一,卢正鼎,集成数据库和文件系统的多数据库事务模型 - 华中理工大学学报 - 卢正鼎 肖卫军基于主动规则对象的分布式多数据库系统集成 - 小型微型计算机系统 - 胡华,高济,基于CORBA的多数据库系统 - 计算机科学 - 石祥滨 张斌基于XML的文件系统与多数据库系统的集成 - 小型微型计算机系统 - 卢正鼎 李兵 等基于CORBA/XML的多数据库系统的研究与实现 - 计算机研究与发展 - 卢正鼎 李兵 等多数据库系统集成平台CMDatabase体系结构 - 计算机工程 - 魏振钢 郭山清 贾忠伟多数据库系统的数据模式集成与查询处理 - 电脑开发与应用 - 陶世群数据库网格:基于网格的多数据库系统 - 计算机工程与应用 - 任浩 李志刚 肖侬高校学生收费系统基于多数据库系统集成的一种实践 - 昆明冶金高等专科学校学报 - 杨滨生,蒋涛勇,张中祥,谢静静,基于RDBMS的地理信息集成数据库系统 - 计算机工程 - 江崇礼 王丽佳 等基于CORBA的异构数据库系统集成模型的研究 - 现代计算机:下半月版 - 陈刚基于分布式对象技术的多数据库系统 - 计算机工程与科学 - 韩伟红 隋品波基于CORBA的多数据库系统互操作技术 - 计算机科学 - 肖明,肖毅,
有可能被驳回。看什么论题,看有无新数据。有新数据的,不能用旧数据是原则;或者用旧数据做全面系统数据,再以叙述方式提供新数据里重要的单项数据做补充。有些论题的数据
首先介绍大数据带来的好处,然后介绍大数据带来的弊端。 大数据带来的好处 1、大数据便利我们的生活: 自助缴水、电、燃气、电视费,汽车摇号、手机充值、违章查询、公
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持
新时期地方政府网络定情。应对能力探讨论文选题的原因。是什么?问题太复杂。回答不了你。
可以的。 论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。引文应以原始文献和第一手资料为原则。所有引用别人