设计监理
特征脸方法
步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所示哦。每张图像可以转换成一个N维的向量(是的,没错,一个像素一个像素的排成一行就好了,至于是横着还是竖着获取原图像的像素,随你自己,只要前后统一就可以),然后把这M个向量放到一个集合S里,如下式所示。
步骤二:在获取到人脸向量集合S后,计算得到平均图像Ψ ,至于怎么计算平均图像,公式在下面。就是把集合S里面的向量遍历一遍进行累加,然后取平均值。得到的这个Ψ 其实还挺有意思的,Ψ 其实也是一个N维向量,如果再把它还原回图像的形式的话,可以得到如下的“平均脸”,是的没错,还他妈的挺帅啊。那如果你想看一下某计算机学院男生平均下来都长得什么样子,用上面的方法就可以了。
步骤三:计算每张图像和平均图像的差值Φ ,就是用S集合里的每个元素减去步骤二中的平均值。
步骤四:找到M个正交的单位向量un ,这些单位向量其实是用来描述Φ (步骤三中的差值)分布的。un 里面的第k(k=1,2,3...M)个向量uk 是通过下式计算的,
当这个λk(原文里取了个名字叫特征值)取最小的值时,uk 基本就确定了。补充一下,刚才也说了,这M个向量是相互正交而且是单位长度的,所以啦,uk 还要满足下式:
上面的等式使得uk 为单位正交向量。计算上面的uk 其实就是计算如下协方差矩阵的特征向量:
其中
对于一个NxN(比如100x100)维的图像来说,上述直接计算其特征向量计算量实在是太大了(协方差矩阵可以达到10000x10000),所以有了如下的简单计算。
步骤四另解:如果训练图像的数量小于图像的维数比如(M 一旦我们找到了L矩阵的M个特征向量vl,那么协方差矩阵的特征向量ul就可以表示为: 这些特征向量如果还原成像素排列的话,其实还蛮像人脸的,所以称之为特征脸(如下图)。图里有二十五个特征脸,数量上和训练图像相等只是巧合。有论文表明一般的应用40个特征脸已经足够了。论文Eigenface for recognition里只用了7个特征脸来表明实验。 步骤五:识别人脸。OK,终于到这步了,别绕晕啦,上面几步是为了对人脸进行降维找到表征人脸的合适向量的。首先考虑一张新的人脸,我们可以用特征脸对其进行标示: 其中k=1,2...M,对于第k个特征脸uk,上式可以计算其对应的权重,M个权重可以构成一个向量: perfect,这就是求得的特征脸对人脸的表示了! 那如何对人脸进行识别呢,看下式: 其中Ω代表要判别的人脸,Ωk代表训练集内的某个人脸,两者都是通过特征脸的权重来表示的。式子是对两者求欧式距离,当距离小于阈值时说明要判别的脸和训练集内的第k个脸是同一个人的。当遍历所有训练集都大于阈值时,根据距离值的大小又可分为是新的人脸或者不是人脸的两种情况。根据训练集的不同,阈值设定并不是固定的。 后续会有对PCA理论的补充^_^.已补充理论:特征脸(Eigenface)理论基础-PCA(主成分分析法) 参考资料: 1、Eigenface for Recognition: 2、特征脸维基百科: 3、Eigenface_tutorial:
zzyunicorn
复制这句话再加上一张随便什么图片,百分百幼稚,我这句话要删掉。在淘宝购物的过程中,我们很多人多不知道旺旺号是什么。当我们需要退换货时就需要旺旺号了,那么,我们该如何查看呢?一起看看吧。如果想看自己的旺旺号,那么旺旺号就是淘宝会员名。如果你忘记了会员名,那么进入“我的淘宝”,头像下面就是你的会员名
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些
优势肯定是有的,非接触就可以识别,另外疫情区间还需要测温的,像zkteco就有人脸识别带测温的门禁设备。
通过面部表情来识别人的心理 通过面部表情来识别人的心理,生活中,想知道一个人内心在想什么,其实是有方法的,我们可以通过人们的面部表情,来识别人的心理变化。那么大
特征脸方法 步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图
人脸识别在如今运用很广泛,很多APP的使用都需要人脸识别,但这个技术存在一些安全隐患,那么,人脸识别存在哪些风险? 人脸识别目前有两大风险问题: 1、人类脸部存