sanmoyufeng
小议“割圆术” ---圆周率的计算历程 “割圆术”是什么?“割圆术”并不是把圆割开,而是为了计算 圆周率 ,不断倍增圆内接正多边形的边数求出圆周率的方法。由3世纪中期,魏晋时期的数学家 刘徽 首创。刘徽用这种算法得到圆周率约是,这个数值在当时已经非常领先。直至两百年后数学大拿祖冲之横空出世,把圆周率计算到了<π<之间,这个结果领先西方国家1000多年,不得不说中国古代的数学家太厉害了!祖冲之的计算方法“缀术”很不幸已失传,但我国现代著名数学家华罗庚认为“缀术”仍然是割圆术。可见割圆术的方法非同一般。 那“割圆术”是怎样计算圆周率的呢?割圆术的关键在于计算所需要的正多边形的周长,让其作为圆的周长,除以直径便可以得到圆周率。另外解决这个问题我们应该弄明白割圆术中的倍增,也就是成倍数增加。比如开始给定的是正四边形,那么下一次就要用到正八边形,下一次就是正十六边形,以此类推。 下面是割圆术计算圆周长的部分推导过程:涉及勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。如果两条直角边用a和b表示,斜边用c表示,那么勾股定理可以用符号语言表达为: 首先做一个半径是1的圆,如下图: 而我们不难得出,当N=6时,BD长度为1,所以代入上面的公式,我们便可求出正12边形的边长,用正12边形的边长我们就可求出正24边形的边长,依次倍增即可。然后用求得的正多边形的周长,作为圆的周长,除以直径便可以得到圆周率的近似值。当然边长数越大这个近似值也就越精确。 其实,我们也可以用割圆术,计算正多边形的面积,用正多边形的面积逼近圆的面积,也可得圆周率的近似值。 现代社会,已经有很多方法求导圆周率,大数学家欧拉就用级数的方法计算,似乎“割圆术”已经过时了。但义务教育阶段仍然会出现,小学6年级推导圆的面积时,割圆术作为其中一种方法出现,可能是因为这种逼近思想恰巧是微积分的萌芽吧!
勇往直前邓好
先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。然后对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。
逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值 为圆周率的近似值。
扩展资料:
3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法。
刘徽个人成就:割圆术与圆周率, 他在《九章算术 圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。
他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=,又算到3072边形的面积,得到π=3927/1250=,称为“徽率”。
参考资料来源:百度百科-割圆术
参考资料来源:百度百科-刘徽
Tracy猪猪
数学小论文:圆周率“π”的由来很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到<π<.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休…
习习谷风
【摘 要】高等数学是高职院校的基础课程之一,本文以案例教学为载体,通过若干具体应用实例阐述了如何培养学生的数学应用能力和实践能力,从而更好地适应当前高等职业教育的发展,同时也指出了案例实施过程中一些需要注意的问题。 【关键词】案例教学法 高等数学 高等职业教育 应用能力 【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)30-0038-02 中国的高等职业教育于20世纪80年代正式纳入国民教育体系,成为中国高等教育事业的重要组成部分。经过若干年不断探索和总结,高职教育确立了培养生产、建设、管理、服务第一线的高素质、高级技能型专门人才的培养目标,确立了工学结合为其重要人才培养模式,并对课程体系进行了一系列各具特色的改革,取得了一些有价值的成果。 高等数学是一门重要基础课程,在信息时代大背景下,其数学思想和数学思维方法越来越受到各行各业的重视。在高职教育中,数学课程首先是为专业课程提供必要的数学基础,并在此基础上培养学生应用高等数学解决实际问题的能力和素养,概括来讲,就是“理解概念,联系实际,深化应用,提高能力”。然而,在高职教育从无到有,到遍地开花、蓬勃发展的这些年,高等数学的课程改革却是举步维艰,特别是在“如何培养学生应用数学、实践数学的能力和素养”这一点上,探索显得尤为艰难。有相当一部分学生觉得数学“学了不知道有什么用”“学完就忘”等,因此,如果要切实提高学生学数学的兴趣和用数学的能力,就必须想办法让学生“动”起来,而案例教学就是动态学习过程的一个良好载体。 案例教学法起源于20世纪初美国哈佛大学,即围绕一定的培训目的把实际中真实的情境加以典型化处理,形成供学生思考分析和决断的案例,通过独立研究和相互讨论的方式,来提高学生分析问题和解决问题的能力的一种方法,在当今世界的教育和培训中受到重视和广泛的应用。本文主要讨论若干应用实例在高等数学教学中的运用实践,旨在对如何提高学生的数学应用能力做一些探索。 实例一:割圆术 案例介绍:公元263年,中国古代数学家刘徽在《九章算术注》中给出了一种求圆面积的方法――“割圆术”,先作圆的内接正三角形,记其面积为S1,再作圆的内接正四边形,记其面积为S2…,一直下去,记圆的内接正n边形的面积为Sn,于是得到一个数列S1,S2…Sn…。当n无限增大时,Sn无限接近于圆的面积S。 案例实施:解决这个案例,学生大概需要分三步实现,流程如下: 案例应用:极限是微积分的基石,该案例的实施过程是极限应用的典型范例,后续无论是切线斜率问题(导数)还是曲边梯形面积问题(定积分),其推导过程都遵循了上述“建立函数表达式”――“将所求量表示为函数(数列)的极限”――“计算极限”这样的分析过程。 实例二:蜂巢结构 案例介绍:观察蜂巢的一个储藏室,它是中空的正六角形柱,而底部是由三个菱形面组成,交会于底部中心顶点G。著名天文学家马拉尔第观察到了作为蜂房底的3个菱形的钝角等于109°28′,锐角等于70°32′。 马拉尔第的结果引起法国著名的博物 学家雷奥姆的兴趣,他猜测蜜蜂选择 这两个角度一定是有原因的,可能就 是要在固定容积下,使表面积为最小, 即以最少的蜂蜡做出最大容积的储藏 室。这个猜测被瑞士数学家柯尼格从 理论上做了证明(他的计算结果与实测值仅差两分)。 案例实施:设正六边形的边长为2a,G到平面B1D1F1的距离为x,GC1=2y,实施流程如下: 案例应用:该案例是一个高等数学与数学建模相结合的最优化问题,主要通过“提炼模型”――“模型分析”――“模型求解”这样三个步骤实现,学生通过该案例的学习,可以体验将实际问题抽象为数学模型进而求解的一般过程,高等数学应用中很多实际问题,如“最优广告策略”“最省用料方案”等,都有类似的分析求解过程。 实例三:溶液混合问题 案例介绍:容器内盛有50升的盐水溶液,其中含有10克盐。现将每升含盐2克溶液以每分钟5升的速度注入容器,并不断搅拌,使混合液迅速达到均匀,同时混合液以每分钟3升的速度流出容器,请问任一时刻t容器中溶液的含盐量是多少? 案例实施:在案例中,盐水流入的同时也在流出,这是个动态问题,用初等数学的知识无法解决,可以通过建立微分方程来实现。 案例应用:这类溶液混合问题与著名的牛吃草问题(也称消长问题或牛顿牧场问题)具有同一动态属性,其某个特定量的动态变化速度是“消”“长”因素共同作用的结果。其他一些工程问题,如“抽水机抽水问题”等,也可以采用这样的思路求解。 英国数学家牛顿曾说:“在学习科学的时候,题目比规则还有用些。”案例教学通过为学生提供合理的数学教学情境,经过学生主观自觉的对比、归纳、思考、领悟、分析与决策,让学生在动手操作过程中综合运用课程知识,从而提高分析、解决问题的能力,是常规教学的一种有效补充。当然,案例教学也有局限性,如适合教学的案例较少、花费的时间较多、对教师的要求较高、效率有时较低等。特别是在案例的选取上,教师一定要注意把握尺度,案例太复杂,超出学生的能力范围,会打击学生的积极性;案例太简单,不能调动学生的兴趣,其理解、思维和分析能力也得不到很好的锻炼。此外,还要注意案例的生动性与数学知识点相结合。单调呆板的案例对学生来说与纯粹的数学知识无异,只有生动的、贴近生活的案例才可能调动学生的兴趣,但如果一味地追求案例的生动性而忽视了与数学内容的结合,那么通过案例教学提高学生应用数学的能力也就成了一句空话。 参考文献 [1]张家军、靳玉乐.论案例教学的本质与特点[J].中国教育学刊,2004(1):62~65 [2]郭德红.案例教学:历史、本质和发展趋势[J].高等理科教育,2008(1):22~24 [3]孙军业.案例教学[M].天津:天津教育出版社,2004 [4]陈卫忠、杨晓华主编.高等数学[M].苏州:苏州大学出版社,2012 [5]李心灿主编.高等数学应用205例[M].北京:高等教育出版社,1997
丁国栋3
其实割圆法就是画一个内接于圆形的正六边形.透过不断倍增内接多边形的边数,他发现其周界会越来越接近圆周.就是把正六边形画成正十二边形,又把正十二边形画成正二十四边形.就这样,到了后来,就已经是一个圆了.像电脑里的圆形一样,以前电脑里是没有圆的.但是把一个正方形的角平均的剪了,这个正方形就会变成八角形了,再把一个八角形的角平均的剪了,就成了十六角形了.就这样不断重复,最后的圆,看似是圆的,其实就是一个很多边的图形.
真巧穆斯林
刘徽从圆内接正六边形开始,使边数逐次加倍,作出正十二边形、正二十四边形…,并依次计算出它们的面积,这些结果将逐渐逼近圆面积,这样就可以求出圆周率的值,这种方法被称为刘徽割圆术。用刘徽的话来说,“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思就是说把圆周分得越细,即圆内接正多边形的边数越多,用它的面积去代替圆面积,就丢失的越少。不断地分割下去,让边数不断地增多,那么边数无限多的正多边形的面积就与圆面积相等了。
我们曾学过长方体、正方体的表面积与体积的计算,掌握的都很清楚。今天,我又学了两个立体图形的表面积的计算,那就是圆柱与圆锥。掌握了这两个立体图形体积与表面积是如何
怎样写劳动争议申请仲裁书 法律分析: 应该具有以下内容,可以在仲裁网站下载格式文本。 法律依据: 根据《劳动仲裁法》第二十八条规定:申请人申请仲裁应当提交书面仲
如果不影响打印,这可能只是被显示了的标记,这个方法可以解决: 打开你的一篇word文档,菜单栏里依次点击“工具---选项---视图---格式标记---取消勾选‘
1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成
毕业论文检测系统软件 ,有免费试用优惠哦