• 回答数

    3

  • 浏览数

    304

冰心草堂123
首页 > 期刊论文 > 汽车碰撞安全性研究现状分析论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

missohmygod

已采纳

网上搜集 仅供参考目前学术不端检测系统比较完善,在撰写论文时一定要避免抄袭《科技传播》杂志 国家级科技学术期刊中英文目录知网万方全文收录编辑部直接收稿百度空间有期刊详细信息摘 要 本文论述了目前国内外汽车安全气囊控制的一些主要算法,并解释了该算法中的核心内容和研究特点。在结合传统方法的同时,提出了两种新的算法——数据融合控制算法和模式识别控制方法。 关键词 安全气囊;汽车碰撞;数据融合;模式识别1 引言 汽车安全气囊的应用拯救了许多乘员的生命。但随着汽车的应用越来越多,气囊错误弹出的情况也时有发生,这样反而会威胁到乘员的安全,所以必须提高安全气囊的控制性能。因此,我们也需要进一步研究气囊控制算法。 汽车安全气囊技术发展到今天,其优劣已经不在于是否能够判断发生碰撞和实现点火,现代的安全气囊控制的关键在于能够在最佳时间实现点火和对于非破坏性碰撞的抗干扰。只有实现最佳时间点火,才能够更好的保护驾驶员和乘客。 最佳时间的确定在于当汽车发生碰撞的过程中,乘员向前移动接触到气囊,此时气囊刚好达到最大体积,这样的保护效果最好。如果点火慢了,则乘员在接触气囊的时候,气囊还在膨胀,这样会对乘员造成额外的伤害。如果点火快了,乘员在接触到气囊的时候气囊已经可以萎缩,则气囊不能对乘员的碰撞起到最好的缓冲作用,也就不能很好的起到对乘员的保护作用。图1 气囊示意图 第二个是气囊的可靠性问题,也就是对于急刹车、过路坎和其他非破坏性碰撞时引起的冲击信号的抗干扰。汽车在颠簸路面上行驶或以很低速度的碰撞产生的加速度信号可能会令气囊误触发,一个好的控制系统应该能够很好的识别这些信号,从而在汽车产生非破坏性碰撞时不会使气囊系统误打开。 第三个就是气囊控制技术的基本指标,包括避免以下情况:①气囊可能在很低的车速时打开。车辆在很低车速行驶而发生碰撞事故时,只要驾驶员和乘员系上了安全带,是不需要气囊打开起保护作用的。这时气囊的打开造成了不必要的浪费。②当乘客偏离座位或座位上无人,气囊系统的启动不仅起不到应有的保护作用,还可能对乘客造成一定伤害[1]。2 安全气囊点火控制的几种算法 1) 加速度法 该算法是通过测量汽车碰撞时的加速度(减速度),当加速度超过预先设定的阈值就弹出安全气囊。 2) 速度变量法 该算法是通过对汽车加速度进行积分从而得到加速度变化量,当加速度变化量超过预先设定的阈值时就弹出安全气囊。 3) 加速度坡度法 该方法是对加速度进行求导得到加速度的变化量作为判断是否点火的指标。 4) 移动窗积分算法[2] 对加速度曲线在一定时间内进行积分,当积分值超过预先设置的阈值时,就发出点火信号。 移动窗积分算法 下面具体介绍一下移动窗积分算法,选定以下几个观察量作为气囊点火的条件指标。①汽车碰撞时的水平方向加速度(或减速度)ax。ax是直接反映碰撞激烈程度的信号,而且ax在最佳点火时刻的选取中起关键作用。②汽车碰撞时垂直方向的加速度ay,气囊控制系统加入ay对非碰撞信号能起到很大的抗干扰作用,当汽车发生正向碰撞时,ay与ax有很大的不一致性[3];而当汽车受到路面干扰,例如汽车与较高的台阶直接相撞时,ay与ax有很大的一致性[3],可以由此来判别干扰信号。结合这几个量,得出一个判断气囊点火的最佳指标。 需要采样一个时间段(从碰撞开始)ax的值,根据这一系列的值才能判断碰撞的激烈程度. 气囊点火控制算法应在发生碰撞后20~30ms内做出点火判断,因为气囊膨胀到最大需要时间大概为30ms[4],在碰撞初速度为时,人体向前移动5inch到达接触气囊的时间大概为70ms,则目标点火时刻为70-30=40ms,所以气囊打开应该在碰撞后的40ms时刻,所以算法必须在20~30ms内做出点火决定。这样可以采样碰撞后的20个加速度值(频率是1kHZ)作为算法的输入值。而对于垂直方向也可以如此采样。则可得两组值:ax(1),ax(2)……ax(20);ay(1),ay(2)……ay(20). 移动窗算法中对ax的处理为(1)式: (1)图2 移动窗口算法示意图 其中t为当前时刻,w为时间窗宽度(采样时间宽度),对ax(t)进行积分,得到指标S(t,w),当S(t,w)超过预先设定值时,则发出点火信号。 写成离散形式,如式(2): (2) n为当前时间点,k为采样点数,f为采样频率。 加上垂直加速度之后,可以提高对路面干扰的抗干扰能力[3],形式如式(3): (3) S(n,k,ρ)为双向合成积分量,n,f,k如上定义;ρ为合成因数,表征两个方向加速度在合成算法中的权重。这种算法主要是考虑了汽车碰撞时的加速度因素,当加速度的积分达到一定值的时候,表示汽车的碰撞剧烈程度也到达一定值,会给乘员带来一定伤害。而且这种算法对于判断最佳点火时刻也是很有优势的,经过实验,利用这种算法得出的点火时刻离汽车碰撞的最佳点火时刻(利用摄像得出)仅差几毫秒[2],符合要求的精度。 但是这种算法也有其不足,例如没有考虑碰撞时的速度以及座位上有没有人的因素,这样当汽车低速运行的时候,还是有可能引起误触发。如果将速度和座位上是否有人的信号引入,则可以进一步减少误触发的机会。 利用数据融合提出的改进算法 由上面的叙述中我们可以知道,移动窗积分算法对于气囊弹出与否进行判断主要是根据积分量S,现在我们对积分量进行一些改造,可以克服上述缺点。具体做法如下,加入以下几个观察量:(1)汽车碰撞时的水平方向速度v,v可以反映汽车碰撞时乘客的受伤害程度。v越大,乘客的动能就越大,碰撞时受到的伤害就越大。v是判断气囊是否应该打开的最直接的指标。(2)坐位上是否有乘员的信号[5]。坐位上无人时,当发生碰撞则可以不弹出气囊,这样做可以减少误触发的几率,同时避免对其他乘员的伤害。 引入函数,这个函数的波形为:图3 函数波形图 当v超过30km/h的时候,y的值就大于1;反之就小于1。现在普遍采用的标准是,安全带配合使用的气袋引爆车速一般为:低于20km/h正面撞击固定壁时,不应点爆。而在大于35km/h碰撞时,必须点爆。在20km/h和35km/h之间属于可爆可不爆的范围。所以我们取v0=30km/h为标准点,这样结合上面的移动窗积分算法,提出新的S1,则S1为: (4) 这样当v>v0时,汽车点火引爆的灵敏度就比原来大了;而vv0时引爆气囊的灵敏度不需要太大,可以适当调整的系数为1/∏,此时y函数图形如图4。 由图4可看到,采用增加了速度函数的算法后,使到v>v0时的灵敏度适当增加,同时也有效的减少了v P(w2|x),则把x归类于弹出状态w1,反之P(w1|x)

204 评论

洛林小叮当

1、雷正保,王素娟,付爱军,林骥,汽车碰撞的安全与吸能,国防科技大学出版社,ISBN 978-7-81099-549-8, 、雷正保,谢玉洪,李海侠. 大变形结构的耐撞性,国防科技大学出版社,ISBN7-81099-184-1/,、雷正保,唐波,刘兰. 车-路-护栏系统的碰撞安全性,国防科技大学出版社,ISBN978-7-81099-714-0,、雷正保. 汽车纵向碰撞控制结构设计的理论与方法,湖南大学出版社,ISBN7-81053-279-0/,、雷正保. 汽车覆盖件冲压成形CAE技术,国防科技大学出版社,ISBN7-81024-960-6/U,、雷正保主编,乔维高,姜华平副主编,王建军主审. 交通安全概论,人民交通出版社,交通类高等院校素质教育教材,ISBN978-7-114-08044-9, PART 1 汽车碰撞安全性研究方面的论文1、雷正保,罗献华,张晓园. 汽车/护栏碰撞实验室的总体设计[C],2010中国汽车安全技术国际研讨会,, 中国重庆,568-5742、雷正保,王素娟,彭作. 第二代螺纹剪切式汽车碰撞吸能系统的研制,2009中国汽车安全技术国际研讨会论文集,august 11-13,2009,中国武汉,PP:149-1543、雷正保,彭作. The third-time leap of automotive safety technique[C],Seventh Asia-Pacific Transportation Development Conference & ICCTP 2008,Southeast University, Nanjing, China,May 25-28, 20084、雷正保,付爱军,杜青云,侯石静. 轻型客车车身的翻滚安全性设计方法[J],交通科学与工程,(1):63-71,765、雷正保,颜海棋,周屏艳,余进修,周志刚. 山区公路混凝土护栏碰撞特性仿真分析[J],交通运输工程学报,(1):85-926、雷正保, 周屏艳,颜海棋. 护拦防护重型车辆撞击的能力[J], 长沙理工大学学报:自然科学版, (3):65-737、雷正保,杨兆. 汽车-护栏碰撞系统的安全性研究[J],汽车工程, (2):152-1588、雷正保,周屏艳,颜海棋,钱小敏. 汽车-护拦系统耐撞性研究的有限元模型,中国安全科学学报,(8):9-169、雷正保,杨兆.三波护栏的耐撞性研究,公路交通科技,(7):130-13610、雷正保,杨兆.汽车撞击护栏时乘员的安全性研究,振动与冲击,(2):5-1111、雷正保,彭子荣. 微型客车的碰撞安全性设计与改进技术研究[J], 长沙理工大学学报:自然科学版, (1):54-6012、雷正保,龙建强. 汽车碰撞CAE技术中几个尚未解决的问题[J], 长沙交通学院学报, (3):8-1313、雷正保. 大力开展半刚性护栏防撞新机理的研究[J], 振动与冲击, (1):1-614、雷正保,钟志华,李岳林. 汽车碰撞过程中乘员冲击响应的分析方法及应用[J],中国公路学报,(2):115-11915、雷正保. 汽车纵向碰撞控制结构设计的理论与方法研究综述[J], 振动与冲击, (1): 39-40,1116、雷正保,钟志华,李光耀,刘振闻,罗云飞. 受冲薄壁结构动力效应的显式有限元分析[J], 力学学报, (1):70-7717、雷正保, 钟志华. 受冲薄壁结构后屈曲分析的显式有限元法[J], 应用力学学报, (4):158-16318、雷正保,钟志华. 受冲板壳结构的弹塑性力学特性分析[J], 振动工程学报, (1):78-8319、雷正保. 汽车结构的大变形动态相似准则及相似计算精度[J], 实验力学, (4): 429-43520、雷正保, 钟志华. 汽车被动安全性研究中的几个问题有对策[J], 湖南大学学报:自然科学版, (1): 33-36,4221、雷正保, 钟志华. 结构碰撞分析中的动态显式有限元方法及应用[J], 振动与冲击, (3): 71-7622、雷正保, 钟志华. 相似结构动力响应的外推方法及精度特性[J], 振动与冲击, (2):17-2223、雷正保, 钟志华. 汽车碰撞仿真研究发展趋势[J], 长沙交通学院学报, (1):18-2224、雷正保, 钟志华. 汽车安全车身评定标准发展趋势[J], 上海汽车, 1997.(9):36-4025、Zhengbao Lei, Xiaoyuan Zhang, Muxi Lei. Overall Design Method for Large Structure Crash Testing Laboratory,2011 International Conference on Civil Engineering and Building Materials (2011 CEBM),July 29-31, 2011 Kunming, China26、Zhengbao LEI , Xiaoyuan ZHANG, Muxi LEI, Ziju LI, Zuo Peng. Key technologies of the new concept safety system for vehicle automatic anti-collision, MACE 2011, July 15 -17, 2011 Inner Mongolia, China27、李素霞,雷正保,付爱军. 带有CST的微型客车正面碰撞仿真分析[J], 交通科学与工程, (2): 78-8428、唐宁,雷正保. 矩形螺纹剪切吸能影响因素研究[J], 公路与汽运,2010.(2): 11-1429、朱海文, 雷正保,李静. 螺纹剪切式碰撞吸能系统快速推进装置研究[J], 机械设计与研究, 2009.(6): 90-9330、杜青云,雷正保,魏书彬,王志起. 螺纹剪切式汽车碰撞吸能系统控制新方法[C],台湾逢甲大学人言大楼启垣厅(台中市西屯区文华路100号),2009 海峡两岸智能型运输系统学术研讨会,2009年5月20、21日31、杨兆,朱荣福,颜海棋,雷正保. 新型前纵梁结构碰撞吸能特性分析[J], 黑龙江工程学院学报, (4): 21-2532、付爱军,雷正保,罗建国,黄充. GL6460L轻型客车的翻滚碰撞安全性[J],公路与汽运,(1):1-333、罗 义,雷正保. 螺纹剪切式汽车碰撞吸能装置的应用研究[J],公路与汽运,(4):4-634、杨兆,雷正保,周宇. 碰撞事故再现的快速仿真[J], 长沙理工大学学报:自然科学版, (1):36-4035、周宁,雷正保. 客车动态翻滚试验仿真研究[J], 汽车科技, 2005.(5):37-4036、周宇,雷正保,杨兆. 基于预变形控制理论的汽车前纵梁仿真设计[J], 长沙理工大学学报:自然科学版, (4):34-3837、唐波,雷正保. 高速公路防撞护栏立柱改进设计[J], 客车技术, 2004.(3):30-3238、李海侠,雷正保,谢玉洪. 地基中护栏立柱的有限元模型[J], 长春工业大学学报:自然科学版, (2):24-2539、唐波,雷正保. 大型豪华客车动态翻滚试验设计方案[J], 客车技术, 2003.(4):19-2040、谢玉洪,雷正保,李海侠, 宁英. 高速公路防撞护栏的研究现状与发展趋势[J], 工程建设与设计, 2003.(12):40-4341、刘振闻, 雷正保. 汽车传动轴受冲抗力峰值的显式有限元分析[J], 中国公路学报, (2): 110-11542、刘振闻, 雷正保. 受冲薄壳弹塑性大变形力学特性的有限元分析[J], 长沙交通学院学报, (2):17-2143、AI Run1, LEI Muxi, LEI Zhengbao, OU Bifeng. The Safety Monitoring System of Ship/bridge Crash Testing Laboratory, 2011 CEBM,July 29-31, 2011 Kunming, China44、Bifeng Ou, Chenchen Chen, Zhengbao Lei, Xinchao Zhang, Muxi Lei, Yonghan Li. Project Design of Neotype Wire rope safety Barrier, 2011 CEBM,July 29-31, 2011 Kunming, China45、Chen Chenchen, Lei Zhengbao, Zhang Xinchao, LIU Guobin. Research on Design of Neotype Wire rope safety Barrier, 2011 CEBM,July 29-31, 2011 Kunming, China46、LIU Guobin, LEI Muxi, LEI Zhengbao, CHEN Chenchen, OU Bifeng. Design of collision-proof equipments for non-navigable hole of inland river bridge, 2011 CEBM,July 29-31, 2011 Kunming, China47、YanzhaoWang,Muxi LEI,ZhengbaoLei,Jianjun Ling. High Speed Photography system of Vehicle/Barrier Crash Testing Laboratory, 2011 CEBM,July 29-31, 2011 Kunming, China48、Sujuan WANG, Zhengbao LEI, Yonghan LI, Muxi LEI, Jian ZHAO. A Research of Real-time Protective Barrier System for Automobile Safety, The International Conference on Information Engineering and Mechanical Engineering (IEME2011), April 16-18, 2011 Xianning,China49、Xiaoyuan ZHANG, Zhengbao LEI, Muxi LEI, Yonghan LI. Influence of vehicle weight on CST shear fracture and blunt edge roundness, IEME2011, April 16-18, 2011 Xianning,China50、Jianqiu Xu, Zheng-bao Lei, Mu-xi Lei, Yiheng Liu. The impact of different shapes of thread section on inverse identification while cutting the thread, IEME2011, April 16-18, 2011 Xianning,China51、Shubin WEI, Muxi LEI, Zhengbao LEI, Yiheng Liu. The comparative analysis of the crank-slider-CST and traditional low rear protective device of truck, IEME2011, April 16-18, 2011 Xianning,China52、Fu Jianghua, Lei Zhengbao, Lei Muxi, Luo Xianhua. The CST design method of matching both European and American crash regulations, MACE 2011, July 15 -17, 2011 Inner Mongolia, China53、Hao Qiu, Zhengbao Lei, Tom Ziming Qi, Xiaochun Zhu & Zhijun Deng. A Novel Design of an Electric Vehicle with Lateral Moving and In Situ Steering, MACE 2011, July 15 -17, 2011 Inner Mongolia, China54、YAN Yifu, LEI Zhengbao, LEI Muxi. Matching research between ZOTYE AUTO and a new generation of Double-CST, MACE 2011, July 15 -17, 2011 Inner Mongolia, China55、GUO Jianbao, LEI Zhengbao, Li Yonghan, LEI Muxi. Research on Security Measures under overpass Bridge, CEEE 2011, Inner Mongolia, China,July 15-17, 201156、He Ru, Lei Zhengbao, Lei Muxi, Li Yonghan. Research on the Setting of Vertical Clearance under the Overpass Bridge, CEEE 2011, Inner Mongolia, China,July 15-17, 201157、Peng Qingyu, Lei Zhengbao, Lei Muxi, Li Yonghan. The Roadside Clear Zone Distance Research, CEEE 2011, Inner Mongolia, China,July 15-17, 201158、彭作,雷正保,王志起. 用于众泰2008汽车的螺纹剪切式碰撞吸能装置的设计计算,机械科学与技术,(1):10-15PART 2 优化设计方面的论文59、Zhengbao LEI, Shubin WEI, Qingyun DU. Explicit optimization method for cutting-screw-thread on basis of dual-RSM[J],Frontiers of Mechanical Engineering in China,(4):、LEI Zhengbao,LIU Lan,PENG Zuo,HOU Shijing. Research on the crashworthiness optimization of curved-road concrete barriers, ICCTP 2009: Critical Issues in Transportation Systems Planning, Development, and Management ©2009 ASCE, 277-28661、雷正保,彭作,刘兰,侯石静. 弯道混凝土护栏碰撞特性的优化设计[J],振动与冲击,(5): 6-9,2662、雷正保,侯石静,周志刚,余进修,彭作. 定墩长间断式直道混凝土护栏的最优结构参数[J], 交通运输工程学报, (4): 110-11563、雷正保,余进修, 颜海棋,周志刚,周屏艳. 基于正交试验设计的间断式砼护栏研究[J],振动与冲击,(7):13-17,5864、雷正保,刘兰,侯石静. Research on the optimal structure parameter of interrupted type concrete guardrail with certain length concrete frusta,FM2007国际会议主题演讲及论文集论文,2007年10月31日-11月5日65、雷正保, 钟志华. 汽车前部纵向冲击力学特性加权优化设计[J], 振动与冲击, (4):49-5266、雷正保, 钟志华. 汽车前部纵向力学特性优化设计[J], 上海汽车, 1998.(2):9-1067、雷正保. 汽车起重机副臂优化设计数学模型的建立与分析[J], 建筑机械:上半月, 1993.(10): 28-30,2768、雷正保,吴炎. 全路面汽车起重机三桥转向遥臂机构优化设计[J], 工程机械, (4):16-1969、雷正保. 汽车起重机伸缩臂在等强度条件下的优化设计[J], 工程机械, (12):8-1170、魏书彬,雷正保,杜青云. 汽车碰撞时吸能螺纹剪切分析的网格优化[J], 机械强度, 2010, 32(5):859-86471、李静,雷正保,朱海文. 基于APDL的CST系统零部件参数化有限元模型[J], 交通科学与工程, (1): 85-8972、徐见秋,雷正保,罗宪华. 螺纹剪切式碰撞吸能装置最优螺纹参数设计[J], 交通科学与工程, (1): 90-9673、李素霞,雷正保,陈志,王志起. 面向中级轿车的低成本螺纹剪切吸能结构优化设计[J], 长沙理工大学学报:自然科学版, (2): 51-5674、Shubin WEI, Muxi LEI, Zhengbao LEI, Yonghan LI. Parameters optimization for the thread of crank-slider-CST type low rear protective device of truck, IEME2011, April 16-18, 2011 Xianning,China75、XU Jinqiu, LEI Zhengbao , LEI Muxi. Inverse identification research for dynamic constitutive parameters of thread material based on MSARS algorithm, MACE 2011, July 15 -17, 2011 Inner Mongolia, China76、Chenchen CHEN, Muxi LEI, Zhengbao LEI, Yonghan LI. Optimization Design of C-post Wire rope safety Barrier, The WorkShop on Civil Engineering and Energy Engineering(CEEE 2011), Inner Mongolia, China,July 15-17, 201177、ZHAO Jian, LEI Zhengbao, WANG Sujuan, Li Yonghan, LEI Muxi. Optimization of the Level of SS Crash Barrier Overpass Bridge on Highway, CEEE 2011, Inner Mongolia, China,July 15-17, 201178、Muxi LEI, Zhengbao LEI, Shubin WEI, Yonghan LI. Geometry optimization design for crank-slider-CST type low rear protection device of truck, IEME2011, April 16-18, 2011 Xianning,ChinaPART3 动力学及其控制方面的论文79、Zhengbao LEI,Sujuan WANG2,Xiaoyuan ZHANG. The Electronic Control System of The Second-generation CST Vehicle Collision Energy Absorption System,ICCTP 2010: Integrated Transportation Systems—Green·Intelligent·Reliable © 2010 ASCE, 710-72180、雷正保,付爱军, 黄充,钟志华. 拉延筋模拟方法对覆盖件CAE结果影响的工业试验[J],汽车工程,(1): 73-77,9781、雷正保, 钟志华. 大力开展汽车前部纵向冲击主动控制研究[J], 中南汽车运输, 1998.(4):1-482、雷正保,钟志华. 砂轮破裂后磨床工作机构动态过程的仿真分析[J], 系统仿真学报, (6): 465-46883、雷正保, 钟志华. 磨床砂轮破裂后防护罩变形过程的有限元分析[J], 机械科学与技术, (4):592-59584、雷正保,王素娟,张晓园. 第二代螺纹剪切式汽车碰撞吸能装置的电子控制系统,汽车工程,2009243,(12):1185-1188,116185、李自菊, 雷正保,曾雁. 基于制动系统的CST电控系统智能设计[J], 交通科学与工程, (2): 71-7786、甘辉,雷正保,王素娟. 基于实车的螺纹剪切式吸能装置单电机传动系统设计[J], 中南林业科技大学学报:自然科学版, (6): 132-13587、李自菊,雷正保,曾雁. 基于制动系统实时监测的CST电控系统[J], 公路与汽运,2010.(1): 5-888、杜青云,雷正保,魏书彬,王志起. 基于汽车安全状况的CST控制方法[J],交通科学与工程,(2):83-8989、王素娟,雷正保,赵建. 带保险杠系统的螺纹剪切式汽车碰撞吸能装置的电子控制系统[J], 振动与冲击, (2):181-18690、杜青云,雷正保,魏书彬. 基于主被动结合的螺纹剪切式汽车碰撞智能吸能控制系统[J],公路与汽运,(1):6-9,2391、王素娟,雷正保,赵建. 螺纹剪切式汽车碰撞吸能装置的电控系统[J],公路与汽运,(3):11-1492、Ding Zhi-hua, Lei Zheng-bao, Lei Mu-xi, Liu Yiheng. Research on Damping Characteristics of New Recycling Vibrational Energy Hydraulic Damping System, IEME2011, April 16-18, 2011 Xianning,China93、杨兆,雷正保. 基于ADAMS仿真求解集装箱正面吊运机作业稳定系数[J], 港口装卸, 2005.(3):7-994、Ding Zhi-hua, Lei Zheng-bao, Lei Mu-xi. Research on New Method of Automobile Developing Process Reengineering, The 2nd International Conference on Mechanic Automation and Control Engineering (MACE 2011), July 15 -17, 2011 Inner Mongolia, China95、Ding Zhi-hua, Lei Zheng-bao, Lei Mu-xi. Research on New Vibratory Energy-Recycling Hydraulic Damping System, MACE 2011, July 15 -17, 2011 Inner Mongolia, China96、ZHANG Xiaoyuan,LEI Muxi,LEI Zhengbao,OU Bifeng. The Study for the Electronic Control Technology of the Electric Power Traction System in the Bridge/ Shipping Crash Testing Laboratory, 2011 CEBM,July 29-31, 2011 Kunming, China

329 评论

堕落紅尘

ABS与汽车制动系统 汽车的制动性也是汽车的主要性能之一。自从汽车诞生之日起,汽车的制动性就显得至关重要;并且随着汽车技术的发展和汽车行驶车速的提高,其重要性也显得越来越明显。制动性直接关系到交通安全,重大交通事故往往与制动距离太长、紧急制动时发生侧滑等情况有关。所以,汽车的制动性是汽车行驶的重要保障。 汽车的制动性及其评价指标 汽车行驶时能在短距离内停车并且维持行驶方向稳定性和在下长坡时能维持一定车速的能力,以及汽车在一定坡道上能长时间停车不动的驻车制动器性能称为汽车的制动性。汽车的制动性主要由制动效能、制动效能的恒定性和制动时汽车的方向稳定性三方面来评价。 一、提高汽车安全性的制动控制系统 有汽车参与的交通事故中,事故的预防、事故的回避、乘客保护等安全领域与汽车的运动性能有密切的关系。事故预防中起主要作用的是驾驶员,事故发生瞬间对乘客保护主要是汽车的被动安全设备起作用,而事故的回避则与汽车的制动控制系统有紧密的关系。在事故预防环节中人和环境的作用是主要的,在事故回避环节中车的作用是主要的。在汽车中,提高安全性的制动控制系统除了ABS、TCS、ESP(VSC、VDS)等,另外还有BAS(Brake Assist System,制动器辅助系统)。制动辅助系统BAS是当紧急刹车时,根据踩的速度、力度,制动系统自动感知而输出更强的制动力。它的工作原理是,令刹车泵里的真空量增加,使你一脚踩下去,制动力度大大提高,从而提高了驾驶安全性。即使车子已经熄火了,它还会使刹车制动能力保持一段时间。它的功能是在紧急制动时,提供一个附加的制动力来帮助没能及时形成较大制动力的驾驶员,制动助力加快制动踏板的移动;当司机施加在制动踏板上的制动力不太大时,增加制动力,使车辆的紧急制动性能最佳。有关调查显示,约有90%的汽车驾驶员紧急情况刹车时缺乏果断,而BAS则能从驾驶员踩下制动踏板的速度,探测车辆行驶情况。紧急情况下,当驾驶员迅速踩下制动踏板力度不足时,BAS便会启动,并在不足1秒的时间内把制动力增至最大,从而缩短紧急制动刹车距离。 ABS虽然能够缩短刹车距离,但如果驾驶员采用点刹时,车轮往往不会抱死,ABS没有机会发挥作用。而制动辅助BAS,则让现有的ABS具有一定的智能。当驾驶者迅速用力踩下刹车踏板时,BAS就会判断车辆正在紧急刹车,从而启动ABS,迅速增大制动力。 二、 ABS系统的保养与正确使用 ABS(防抱死制动系统)作为一种主动安全装置,在现代汽车上运用已经很广泛了。由于其在制动过程中的控制方式及工作过程与以往普通的制动系统有所区别,因此在使用保养方面也与传统的制动系统有所不同,否则会引发ABS系统故障。总结多年的维修经验,笔者认为车主在使用装有ABS系统的汽车时要做到“四要”、“四不要”。 四要 (1)要始终将脚踩住制动踏板不放松。这样才能保证足够和连续的制动力,使ABS有效地发挥作用。 (2)要保持足够的制动距离。当在良好路面上行驶时,至少要保证离前面的车辆有3s的制动时间;在不好的路面上行驶,要留给制动更长一些的时间。 (3)要事先练习使用ABS,这样才能使自己对ABS工作时的制动踏板振颤有准备和适应能力。 (4)要事先阅读汽车驾驶员手册。这样才能进一步理解各种操作。 四不要 (1)不要在驾驶装有ABS的汽车时比没有装ABS的汽车更随意。有些车主认为汽车装有ABS后,安全性加大,因此在驾驶中思想就会放松,为事故埋下隐患。 (2)不要反复踩制动踏板。在驾驶有ABS的车时,反复踩制动踏板会使ABS的工作时断时续,导致制动效能降低和制动距离增加。实际上,ABS本身会以更高速率自动增减制动力,并提供有效的方向控制能力。 (3)不要忘记控制转向盘。在制动时,ABS系统为驾驶者提供了可靠的方向控制能力,但它本身并不能自动完成汽车的转向操作。在出现意外状况时,还得需要人来完成转向控制。 (4)不要在制动过程中,被ABS的正常液压工作噪声和制动踏板振颤吓住。这种声音和振颤都是正常的,且可让驾驶者由此而感知ABS在工作。 检举 回答人的补充 2009-04-28 17:10 经过了一百多年的发展,汽车制动系统的形式已经基本固定下来,但是随着电子(特别是大规模、超大规模集成电路)的发展,汽车制动系统的形式也将发生变化。BBW(全电路制动,Break-By-Wire)系统的出现,将会彻底颠覆使用液压油或空气作为传力介质的传统制动系统。全电制动不同于传统的制动系统,因为其传递的是电,而不是液压油或压缩空气,可以省略许多管路和传感器,缩短制动反应时间。与传统的制动系统相比,BBW具有很多优点:结构简单,省去了传统制动系统中的制动油箱、制动主缸、助力装置、液压阀、复杂的管路系统等部件,使整车质量降低;制动时间短,提高制动性能;无制动液,维护简单;系统总成制造、装配、测试简单快捷,制动分总成为模块化结构;采用电线连接,系统耐久性能良好;易于改进,稍加改进就可以增加各种电控制功能。作为一种全新的制动系统,BBW给制动系统带来了巨大的变革,为将来的车辆智能控制提供条件。但是,要想全面推广,还有不少问题需要解决,比如:当前汽车的电力系统不能满足制动能量要求、控制系统失效时的处理和如何清除其它干扰信号对控制系统造成的影响等。目前BBW系统主要是应用在混合动力制动控制系统汽车上,采用液压制动和电制动两种制动系统;但是随着未来技术的发展,BBW全电路制动系统取代传统制动系统将成为现实。 (抱歉,字数不够,请加些例子)

293 评论

相关问答

  • 汽车雷达研究现状论文

    我也求啊

    夏沫儿6652 3人参与回答 2023-12-06
  • 大众汽车可靠性研究分析论文

    你好 大众的质量真的非常一般,但是在更昂贵领域的大众车,比如说途锐,途昂则质量相当的可靠。当然,一分钱一分货的道理到什么时候都有道理的。

    创艺麦香包 4人参与回答 2023-12-07
  • 论汽车市场现状分析毕业论文

    1.飞速发展,前景好2.价格低廉,国内竞争相对弱小。发展空间巨大3.技术低下。油价问题。国家政策。、4.保险、销售、售后、装潢、美容、用品超市、二手交易等。

    loveless0122 7人参与回答 2023-12-09
  • 汽车安全性能研究论文

    随着中国的经济改革进程,中国人民的财富安全性和经济安全性在不断提高,这将有助于中国金融体系的稳定和的长期增长...上海大众汽车厂只能从德国大众公司迸口高成本的零

    流浪的好吃狗 4人参与回答 2023-12-12
  • 汽车碰撞钣金修复毕业论文

    直接打枪手去

    凹凸威小姐 4人参与回答 2023-12-09