• 回答数

    5

  • 浏览数

    169

树果衣嘎凌
首页 > 期刊论文 > 常见育种方法的研究性论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

小小小雨桐

已采纳

单倍体及单倍体育种中存在的理论问题论文

摘要: 单倍体一般是指由生物产生的配子发育而来的个体,染色体组数是正常生物体的一半。单倍体育种是现代作物育种中的重要的育种方法之一,利用花药培养等方法诱导产生单倍体,并使其单一的染色体各自加倍成对,成为有活力、能正常结实的纯合体,从而选育出作物新品种的方法。由于多数的植物是二倍体,此育种方法具有快速获得纯合正常植株的优点。

关键词: 单倍体 染色体组 单倍体育种 不育?摇育种年限 染色体变异

高中生物教材重点介绍了单倍体和单倍体育种及其与其他育种方法的异同。在涉及该部分知识点时,存在不少理论上的值得讨论的问题。以下就主要的问题加以讨论:

一、单倍体都来自配子发育

通常教材中讲到的单倍体是由雄核发育(孤雄生殖)或雌核发育(孤雌生殖)而来,即由配子发育而来。且雄核发育一般是在人工条件下完成,如花药离体培养得到单倍体。

事实上,自然界中的单倍体还有其他来源。

①自发产生。该来源与多胚现象常有联系,其中最可能的原因是温度骤变或异种、异属花粉的刺激。

②假受精。即雌配子经花粉或雄核刺激后未受精而产生的单倍体植株。

③半受精。雌雄配子都参加胚发生,但不发生核融合,因而产生具父母本来源的嵌合植株。

人工获得单倍体的途径除了最常用的花药和花粉离体培养,还有多种其他的方法。

①利用远缘的异属花粉授粉:刺激柱头,使胚囊中卵细胞发育成种子;

②弱化花粉授粉:花粉人工贮藏一段时期后进行授粉,由于花粉萌发能力弱,不能完成正常的受精作用,但可引起卵细胞发育成种子;

③化学药剂处理:如用2、4-D、赤霉素、秋水仙素等处理柱头;

④用高剂量射线照射过的花粉授粉;

⑤异常温度处理、机械刺激子房等;

⑥将近缘作物相互授粉,一段时间后将幼胚置于培养基上进行离体培养,在胚胎发育的早期,其中一方的染色体消失,即可获得单倍体植株。

从以上事实可以看出,虽然有些单倍体不是由配子直接发育而来,但几乎都是在胚胎发生的时候由于某种原因丢失了来自雄配子或雌配子的染色体,即单倍体只含有双亲中一方的遗传物质。

二、单倍体能成活的原因

单倍体生物的染色体组数是正常生物体的一半。一个完整的染色体组中的染色体是一组非同源染色体的组合,这些染色体在形态和功能上各不相同,但是包含了控制生物体生长发育、遗传和变异的全部信息。单倍体至少含有一个完整染色体组,也就具备了生物生长发育、遗传变异的遗传信息,通过相关遗传信息的表达可以控制所需的所有性状。

三、为什么植物中单倍体常见,动物中却少见

大部分植物是没有性染色体的,多为雌雄同株,有的为雌雄同花,只有少数植物为XY型性别决定。植物花粉中的配子一般含有本物种的全套遗传信息,几乎不缺生长发育所需的任何基因,在自然条件或经离体培养也就易得单倍体,且易成活。

动物绝大多数是雌雄异体且有性染色体,配子中往往缺少生长发育的某些必需基因,即使能得到幼体,但往往不能成年。像动物中的蜜蜂、蚂蚁等,其性别不是性染色体决定而由“常染色体”的组数决定,所以可产生单倍体。但为什么蜜蜂、蚂蚁中的单倍体都是雄性还不得而知。当然还有其他的人工培养的一些单倍体动物,但往往表现很多的遗传缺陷,在自然界中这些单倍体动物几乎都不能成活。

四、单倍体是否真的不育

通常单倍体只含一个染色体组,在减数分裂形成配子时,由于无同源染色体联会配对,所以一般不能形成正常的配子。染色体组数为奇数的'单倍体都与此情况相同。

那么是不是含偶数染色体组的单倍体就能产生正常配子呢?关键还是看有无同源染色体,如八倍体小黑麦的花粉培育得到的单倍体植株含四个染色体组,但却不能得到正常配子,即不可育。又如基因型为AA的植株甲,经染色体加倍可变成新物种乙(基因型为AAAA),若用乙的花粉培育出单倍体植株(AA),则该单倍体植株是可育的。

其实,只含一个染色体组的单倍体在理论上还是可育的,如某单倍体只有一个染色体组共8条染色体,那么该单倍体产生正常配子的概率为(1/2)8,由于概率极小,所以一般不育。所以教材中只强调单倍体是高度不育,而非完全不育。

五、单倍体育种一定能缩短育种年限

单倍体育种方法最大的优点是能明显缩短育种年限,这主要是相对杂交育种而言。其中最主要的原因是,得到的所需新品种多为杂合体(即利用*种优势)或显性纯合体。而若要获得隐性个体新品种,则单倍体育种所需时间并不能比杂交育种短。如用基因型为AaBbDd的植株为亲本培育aabbdd的子代植株,用单倍体育种和杂交育种的时间均是2年。即在选育性状中有显性性状时,使用单倍体育种可显著缩短育种时间。

六、单倍体育种的结果一定是二倍体或纯合体

单倍体育种是以正常植株的花粉为起点,经花药离体培养和诱导染色体加倍,最终筛选得到所需品种的过程。由于植株多为二倍体,通过单倍体育种方法获得的品种一定是二倍体且为纯合体。若花粉来源于多倍体,就会出现截然不同的结果。如用取自四倍体植株(基因型为AAaa)的花粉离体培养,那么得到的单倍体植株的基因型有三种,即AA、Aa和aa。显然将其中基因型为Aa的单倍体植株进行诱导,得到的植株基因型是AAaa,它并非纯合体,也不是二倍体。

七、单倍体育种过程真的不能产生新的基因

以题为例。下面是2008年广东高考生物卷第8题:

改良缺乏某种抗病性的水稻品种,不宜采用的方法是(?摇)

A.诱变育种?摇B.单倍体育种?摇C.基因工程育种?摇D.杂交育种

参考答案给出的是B。

有学者认为该题不严谨,建议增加相关的限制条件。例如:仅用一种育种方法,改良缺乏某种抗病性的水稻品种,不宜采用的方法是(?摇?摇)

A.诱变育种?摇?摇B.单倍体育种?摇?摇C.基因工程育种?摇?摇D.杂交育种

由于题中加入了“仅用下列育种方法”,就不会出现单倍体育种能否引入基因的争论了。答案为B。

那么增加了限制条件后是不是就完整了呢?其实不然。就单倍体育种的过程来看,从正常植株取出花药(花粉)后要进行离体培养。在培养的过程中,精子细胞脱分化形成愈伤组织,而愈伤组织有很强的分裂能力,分裂时易产生突变,此时有可能产生所需的新性状。在人教版普通高中生物新课标选修教材三《植物细胞工程的实际应用》中,其中应用之一是“突变体的利用”。原文如下:“在植物组织培养过程中,由于培养细胞一直处于不断分生状态,因此容易受到培养条件和外界压力(如射线、化学物质等)的影响而产生突变体。从这些产生突变的个体中可以筛选出对人们有用的突变体,进而培育成新品种。”

八、单倍体育种变异的原理只有染色体变异

依据单倍体育种的基本过程,该方法产生的可遗传变异只有染色体变异。但目前较多的学者认为,单倍体育种具有狭义和广义之分。狭义的单倍体育种仅指从某植株(一般为二倍体)采集花药(花粉)最终获得纯合体植株;而广义的单倍体育种还包括获得提供花粉的植株(符合生产要求的品种)的过程,即狭义的过程只涉及染色体变异,广义的过程除了染色体变异还有基因重组。再根据第7点的分析,在某些时候广义的过程还可能出现基因突变。

169 评论

曾涛~家居建材

六种育种方法包括植物的四种(杂交育种、远缘杂交、诱变育种、分子育种)和动物的两种(杂交育种、基因工程育种)。

一、杂交育种:

1、原理:基因重组,通过基因重组产生新的基因型,从而产生新的优良性状。

2、过程:

杂交前的准备工作首先要熟悉各种鱼类的生殖习性;

选择适当的受精方法进行杂交杂交前期在临近性成熟和生殖季节到来之时,一定要将雌雄两种鱼分池饲养,避免自群交配;

记载、挂牌和管理用不同品种(或种)的鱼类进行杂交;

加速育种进程从杂交到新品种育成推广;

杂交后代的选择采用个体选择法时,选择一般从子二代开始,因子二代变异范围最大,可望从中选出合意的变异体。

3、优点:可以将两个或多个优良性状集中在一起。

4、缺点:不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。

二:远缘杂交

1、原理:基因重组,通过基因重组产生新的基因型,从而产生新的优良性状。

2、优缺点:可以把不同种、属的特征、特性结合起来,突破种属界限,扩大遗传变异,从而创造新的变异类型或新物种。产生的后代为远缘杂种。由于远缘杂交往往重演物种的进化的历程,故也是研究生物进化的重要实验手段。远缘杂交一般不易结实,即使结实,杂种也通常不育或夭亡,杂种后代分离幅度大,分离世代长且不易稳定。

三:诱变育种

1、原理:在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。

2、优缺点:诱变育种存在的主要问题是有益突变频率仍然较低,变异的方向和性质尚难控制。因此提高诱变效率,迅速鉴定和筛选突变体以及探索定向诱变的途径,是当前研究的重要课题。

四:分子育种

1、原理:将基因工程应用于育种工作中,通过基因导入,从而培育出一定要求的新品种的育种方法。

2、优缺点:传统育种方法属於杂交育种,品种改良主要受种原变异之限制,而不同物种(species) 间之杂交颇为困难,育种成果难有大突破,「绿色革命」(green revolution) 很难再发生。利用基因工程技术进行作物品种改良,系指以遗传工程(genetic engineering) 技术,将特定基因或性状导入缺乏此基因或特性之目标作物(target crop) 的育种方法;因此利用基因工程技术进行作物品种改良,可以突破种原之限制及种间杂交之瓶颈,创造新性状或新品种,亦即未来「基因革命」(gene revolution) 很可能迅速取代「绿色革命」。

五、基因工程育种

1、原理:基因重组(或异源DNA重组)。

2、优缺点:不受种属限制,可根据人类的需要,有目的地进行。可能会引起生态危机,技术难度大。

128 评论

小眼睛晶

1.杂交育种: (1)原理:基因重组(通过基因分离、自由组合或连锁交换,分离出优良性状或使各种优良性状集中在一起)(2)方法:连续自交,不断选种。(3)举例: 已知小麦的高秆(D)对矮秆(d)为显性,抗锈病(R)对易染锈病(r)为显性,两对性状独立遗传。现有高秆抗锈病、矮秆易染病两纯系品种。要求使用杂交育种的方法培育出具有优良性状的新品种。操作方法:(参见右面图解)①让纯种的高秆抗锈病和矮秆易染锈病小麦杂交得F1 ;②让F1自交得F2 ;③选F2中矮秆抗锈病小麦自交得F3;④留F3中未出现性状分离的矮秆抗病个体,对于F3中出现性状分离的再重复③④步骤(4)特点:育种年限长,需连续自交不断择优汰劣才能选育出需要的类型。(5)说明:①该方法常用于:a.同一物种不同品种的个体间,如上例;b.亲缘关系较近的不同物种个体间(为了使后代可育,应做染色体加倍处理,得到的个体即是异源多倍体),如八倍体小黑麦的培育、萝卜和甘蓝杂交。②若该生物靠有性生殖繁殖后代,则必须选育出优良性状的纯种,以免后代发生性状分离;若该生物靠无性生殖产生后代,那么只要得到该优良性状就可以了,纯种、杂种并不影响后代性状的表达。2.诱变育种 (1)原理:基因突变(2)方法:用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙脂等)来处理生物,使其在细胞分裂间期DNA复制时发生差错,从而引起基因突变。(3)举例:太空育种、青霉素高产菌株的获得(4)特点:提高了突变率,创造人类需要的变异类型,从中选择培育出优良的生物品种,但由于突变的不定向性,因此该种育种方法具有盲目性。(5)说明:该种方法常用于微生物育种、农作物诱变育种等3.单倍体育种 (1)原理:染色体变异(2)方法:花药离体培养获得单倍体植株,再人工诱导染色体数目加倍。(3)举例:已知小麦的高秆(D)对矮秆(d)为显性,抗锈病(R)对易染锈病(r)为显性,两对性状独立遗传。现有高秆抗锈病、矮秆易染病两纯系品种。要求用单倍体育种的方法培育出具有优良性状的新品种。操作方法:(参见下面图解) ①让纯种的高秆抗锈病和矮秆易染锈病小麦杂交得F1 ;②取F1的花药离体培养得到单倍体;③用秋水仙素处理单倍体幼苗,使染色体加倍,选取具有矮秆抗病性状的个体即为所需类型。(4)特点:由于得到的个体基因都是纯合的,自交后代不发生性状分离,所以相对于杂交育种来说,明显缩短了育种的年限。(5)说明:①该方法一般适用于植物。②该种育种方法有时须与杂交育种配合,其中的花药离体培养过程需要组织培养技术手段的支持。4.多倍体育种:(1)原理:染色体变异(2)方法:用秋水仙素处理萌发的种子或幼苗,从而使细胞内染色体数目加倍,染色体数目加倍的细胞继续进行正常的有丝分裂,即可发育成多倍体植株。(3)举例:①三倍体无子西瓜的培育(同源多倍体的培育)过程图解:参见高二必修教材第二册第55页图解说明:a.三倍体西瓜种子种下去后,为什么要授以二倍体西瓜的花粉?西瓜三倍体植株是由于减数分裂过程中联会紊乱,未形成正常生殖细胞,因而不能形成种子。但在三倍体植株上授以二倍体西瓜花粉后,花粉在柱头上萌发的过程中,将自身的色氨酸转变为吲哚乙酸的酶体系分泌到西瓜三倍体植株的子房中去,引起子房合成大量的生长素;其次,二倍体西瓜花粉本身的少量生长素,在授粉后也可扩散到子房中去,这两种来源的生长素均能使子房发育成果实(三倍体无籽西瓜)。 b.如果用二倍体西瓜作母本、四倍体西瓜作父本,即进行反交,则会使珠被发育形成的种皮厚硬,从而影响无子西瓜的品质。②八倍体小黑麦的培育(异源多倍体的培育):普通小麦是六倍体(AABBDD),体细胞中含有42条染色体,属于小麦属;黑麦是二倍体(RR),体细胞中含有14条染色体,属于黑麦属。两个不同的属的物种一般是难以杂交的,但也有极少数的普通小麦品种含有可杂交基因,能接受黑麦的花粉。杂交后的子一代含有四个染色体组(ABDR),不可育,必须用人工方法进行染色体加倍才能产生后代,染色体加倍后的个体细胞中含有八个染色体组(AABBDDRR),而这些染色体来自不同属的物种,所以称它为异源八倍体小黑麦。(4)特点:该种育种方法得到的植株茎秆粗壮,叶片、果实和种子较大,糖类和蛋白质等营养物质的含量有所增加。(5)说明:①该种方法常用于植物育种;②有时须与杂交育种配合。(二)依据“工程原理”进行育种 1.利用“基因工程”育种 (1)原理:DNA重组技术(属于基因重组范畴)(2)方法:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,放到另一种生物的细胞里,定向地改造生物的遗传性状。操作步骤包括:提取目的基因、目的基因与运载体结合、将目的基因导入受体细胞、目的基因的检测与表达等。(3)举例:能分泌人类胰岛素的大肠杆菌菌株的获得,抗虫棉,转基因动物等(4)特点:目的性强,育种周期短。(5)说明:对于微生物来说,该项技术须与发酵工程密切配合,才能获得人类所需要的产物。 2.利用“细胞工程”育种 原理 植物体细胞杂交 细胞核移植方法 用两个来自不同植物的体细胞融合成一个杂种细胞,并且把杂种细胞培育成新植物体的方法。操作步骤包括:用酶解法去掉细胞壁、用诱导剂诱导原生质体融合、将杂种细胞进行组织培养等。 是把一生物的细胞核移植到另一生物的去核卵细胞中,再把该细胞培育成一个新的生物个体。操作步骤包括:吸取细胞核、将移植到去核卵细胞中、培育(可能要使用胚胎移植技术)等。举例 “番茄马铃薯”杂种植株 鲤鲫移核鱼,克隆动物等特点 可克服远缘杂交不亲合的障碍,大大扩展了可用于杂交的亲本组合范围。说明 该种方法须植物组织培养等技术手段的支持。 该种方法有时须胚胎移植等技术手段的支持。(三)利用植物激素进行育种 1.原理:适宜浓度的生长素可以促进果实的发育2.方法:在未受粉的雌蕊柱头上涂上一定浓度的生长素类似物溶液,子房就可以发育成无子果实。3.举例:无子番茄的培育4.特点:由于生长素所起的作用是促进果实的发育,并不能导致植物的基因型的改变,所以该种变异类型是不遗传的。5.说明:该种方法适用于植物。

107 评论

tobyzhao520

植物组织培养及其应用研究概况在世界各国科学家的不断努力下,近几十年来,植物组织培养技术迅速发展。利用组织培养,不仅可以大量生产优良无性系,获得人类需要的多种代谢物质,还可获得单倍体、三倍体、多倍体及非整倍体。通过细胞融合可以打破种属间的界限,克服远缘杂交不亲合性,在植物新品种的培育和种性的改良中发挥了巨大作用。组织培养的植物细胞是在细胞水平上分析研究的理想材料,从植物快繁、花药培养发展到细胞器培养、原生质融合以及DNA重组技术等,植物组织培养技术广泛应用于植物科学的各个领域及农业、林业、工业、医药等多种行业,已经成为当代生物科学中最有生命力的一门学科。1 植物组织培养的基本概念、原理和试验步骤1.1概念植物组织培养是在无菌条件下,将离体的植物器官(根尖、茎尖等)、组织(形成层、花药组织等)、细胞(体细胞、生殖细胞等)、胚胎(成熟或未成熟的胚)、原生质体等在人工配制的培养基上培养,给予适宜的培养条件,诱发其产生愈伤组织或潜伏芽或长成完整的植株的技术。1.2原理 植物组织培养的依据是植物细胞的“全能性”及植物的“再生作用”。1902年,德国著名植物学家 G.Haberlandt根据细胞学理论提出了一个观点,“高等植物的器官和组织可以不断分割,直至单个细胞,即植物体细胞,体细胞在适当的条件下具有不断分裂、繁殖并发育成完整植株的潜力”。1943年,美国人White在烟草愈伤组织中偶然发现形成一个芽,证实了G.Haberlandt的论点。 不同植物所需要的生长条件不同,所用的培养基也有所不同。较常用的基础培养基有MT、MS、 SH、N6、White等。在组织培养中,愈伤组织和胚状体能否形成是培育出新植株的关键。通过在基础培养基里添加一定浓度的外源激素,可以诱导出愈伤组织、胚状体、不定芽、根等器官,最终获得再生植株或次生物质。 用于植物组织培养的材料称为外植体,其主要形式有器官、胚胎、单细胞、原生质体等。根据外植体的不同,所需要的培养基种类、培养条件、外源激素的种类及比例等均不同。植物组织培养中,影响培养力的因素是多方面的,诱导愈伤组织成败的关键在于培养条件,植物激素是诱导愈伤组织和绿苗分化的关键因素。最常用的诱导愈伤组织的生长素是IAA、NAA和2,4一D,所需浓度为O.01~10 mg/L。最常用的细胞分裂素是KT和ABA,使用浓度为O.1~10 mg/L。KT的主要作用是促进细胞分裂和愈伤组织分化。ABA对植物体细胞胚的发生与发育具有重要作用。各类植物激素的生理作用虽有相对专一性,但是植物的各种生理效应是不同种类激素之间相互作用的综合表现。1.3试验步骤1.3.1选择和配制培养基 培养基是植物组织培养中的“血液”,血液的成分及其供应状况直接关系到培养物的生长与分化,因此了解培养基的成分、特点及其配制至关重要。1.3.2灭茵灭菌是组织培养中的重要工作之一,通常采用物理的或化学的灭菌方法。培养基用常压或高压蒸煮等湿热灭菌、器械采用灼烧灭菌、玻璃器皿及耐热用具采用干热灭菌、不耐热的物质采用过滤灭菌、植物材料表面用消毒剂灭菌、物体表面用药剂喷雾灭菌、接种室等空间采用紫外线或熏蒸灭菌。1.3.3接种将已消毒好的根、茎、叶等离体器官,经切割或剪裁成小段或小块放入培养基,整个接种过程要在无菌条件下进行。 .4培养把培养材料放在有一定光照和温度等条件的培养室里,使之生长、分裂和分化,形成愈伤组织或进一步分化成再生植株。1.3.5试管苗驯化移栽 试管苗是在特殊环境条件下生长的幼苗,与自然生长的幼苗有很大差异,只有通过驯化,使之适应自然环境后才能移栽。2 植物组织培养的应用2.1植物快速繁殖和无病毒种苗生产植物快速繁殖技术始于20世纪60年代,法国的Morel用茎尖培养的方法大量繁殖兰花获得成功,从此揭开了植物快速繁殖技术研究和应用的序幕。目前,通过离体培养获得小植株并且具有快速繁殖潜力的植物已有100多科1 000种以上,有的已经发展成为工业化生产的商品。世界上80%~85%的兰花是通过组织培养进行脱毒和快速繁殖的。培养的植物种类也由观赏植物逐渐发展到园艺植物、大田作物、经济植物和药用植物等。在我国,同类的研究始于20世纪70年代。马铃薯无毒种薯和甘蔗种苗已在生产上大面积种植,30余种植物已进行规模化生产或中间试验。利用组织培养进行植物快速繁殖及无病毒种苗生产,不仅能够挽救珍惜濒危物种,而且能够解决植物野生资源缺乏的问题。2.2植物花药培养和单倍体育种 将植物花药培养成单倍体植株,再经过染色体加倍,能很快得到纯合的二倍体,这样将大大缩短育种年限。到目前为止,世界上通过花粉和花药培养已获得了几百种植物的单倍体植株。印度科学家应用这种方法培育的水稻品系,比对照产量提高15%~49%。韩国先后育成了5个优质、抗病、抗倒伏的水稻品种。我国自20世纪70年代开始该领域的研究,已经培育了40余种由花粉或花药发育成的单倍体植株,其中有10余种为我国首创。玉米获得了100多个纯合的自交系;橡胶获得了二倍体和三倍体植株。仅“九五”期间就育成高产、优质、抗逆、抗病的农作物新品种44个,种植面积超过660万 hm2。2.3植物胚胎培养杂交育种中,杂种胚常常败育,因此将早期生长的胚取出,应用组织培养方法,就有可能培育出杂交植物。已经有100篇以上幼胚培养成为植株的报道。国内外科学家应用植物胚胎培养技术获得了多种远缘杂交的重组体、栽培种和杂交品种。2.4植物愈伤组织或细胞悬浮培养利用植物愈伤组织或细胞悬浮培养可以生产用于预防和治疗疾病的植物次生代谢产物。近年来,这一领域的发展极为迅速,已经研究了400多种植物,从培养细胞中分离到600多种次级代谢产物,其中60多种在含量上超过或等于原植物,20种以上干重超过原植物的1 9,6。例如,从薯芋愈伤组织和悬浮细胞生产的diosgenin用于合成甾体药物。最近抗癌药物紫杉醇一红豆杉细胞培养物,可用75t发酵罐培养,已达到商业化生产水平。另外,达到商品化水平的还有紫草、人参、黄连、老鹳草等;长春花、毛地黄、烟草等已实现工业化生产;牙签草、红花等20多种植物正在向商品化过渡。2.5细胞融合与原生质体培养自1960年英国学者Cocking首次利用纤维素酶从番茄幼苗的根分离原生质体获得成功以来,到1990年已有100种以上植物的原生质体能再生植株。我国获得了30余个品种的原生质体再生植株,其中包括难度较大的重要粮食作物和经济作物,如大豆、水稻、玉米、小麦、谷子、高梁、棉花等。在木本植物、药用植物、蔬菜和真菌原生质体培养方面的进展也十分迅速。国外已先后获得了种内及种间的体细胞杂种植株。植物原生质体培养还可应用于外源基因转移、无性系变异及突变体筛选等研究,因而越来越受到人们的重视。2.6植物细胞突变体筛选植物细胞突变体的筛选最早始于1959年,G. Melchers在金鱼草悬浮细胞培养中获得了温度突变体。1970年,P.S.Carlson,H.Binding和Y.M. Heimer等分别分离出烟草营养缺陷型细胞、矮牵牛抗链霉素细胞系及烟草抗苏氨酸细胞系。迄今为止,已经在不少于15个科45个种的植物细胞培养中筛选出100个以上的植物细胞突变体或变异体。其中包括抗病细胞突变体,如玉米抗小斑病突变体和小麦抗赤霉病、根腐病突变体;抗氨基酸及其类似物细胞突变体,如甘蓝型油菜抗HYP突变体[263;抗逆境胁迫细胞突变体,如水稻耐盐突变体和小麦抗盐突变体;抗除草剂细胞突变体及营养缺陷型细胞突变体,如玉米抗除草剂变异体;株高突变体的筛选,如水稻矮秆变异体。2.7植物体细胞胚胎和人工种子1958年,Reinert在胡萝卜的组织培养中最先发现了体细胞胚胎(胚状体)。据不完全统计,能大量产生胚状体的植物有43科92属100多种。一些重要作物如水稻、小麦、玉米、珍珠谷等,也能通过离体培养产生胚状体。这些胚状体用褐藻酸钠等包埋,再加上人工种皮,就形成了人工种子。人工种子的优点是:繁殖快速,成苗率极高;不受气候影响,四季皆可工厂化生产。上世纪80年代初,美、日、法等国家相继开展了人工种子的研究,我国也于“七五”期间开展了此项研究,并于1987年列入了国家“863”高技术研究发展计划。2.8 植物组织细胞培养物的超低温保存与种质库建立植物细胞全能性的发现和证实,为植物种质资源的长期保存开辟了一条新途径。采用液氮超低温保存技术,能保持很高的存活率,并且能再生出新植株和保持原来的遗传特性。如建立茎尖分生组织培养物的超低温保存种质库,不仅可以防止种质的遗传变异和退化,而且可以长期保存无病毒的原种。2.9 植物组织培养与转基因技术的应用 我国第一个T—DNA插入突变体库的构建和研究为我国水稻功能基因组学研究奠定了良好的技术和材料基础,为确保我国拥有一批有自主知识产权的基因资源做出了积极贡献。由中国水稻研究所农业部水稻生物学重点开放实验室和中科院上海植物生理研究所合作,通过建立大规模、高效的农杆菌介导的转基因技术体系,将玉米转座子Ac—Ds等外源基因导入水稻未成熟胚和种子诱导的愈伤组织,获得了1.2万个独立的T—DNA插入株系,并构建了水稻突变体的数据库。 3 展望植物组织培养研究与应用是20世纪科技进步的重大成果之一,为研究植物生长发育、抗性生理、激素及器官发生与胚胎发生等提供了许多良好的实验材料和有效途径。植物组织培养方法不断提高的同时,也相应拓宽了其应用范围。由于组织培养在人工控制的条件下进行,容易掌握花芽分化和开花成因;通过胚胎培养,能够得到杂种或自交种;通过分离单倍体细胞,能培育纯合的二倍体优良品系;提高育种多样性的同时缩短了育种时间;通过突变体筛选,提高植物的品质,增强抗逆境胁迫能力,扩大植物的生长范围;将体细胞冷藏在低温下,建立基因库,达到保存物种的目的;获得药用价值高和工业生产所需要的次生产物,加快药物生产的时间并且减少了单纯依靠天然植物的被动性。植物组织培养技术已经渗透到科研、生产和生活各个领域,必将日臻完善。黑龙江农业科学2006,(3)

203 评论

美味偏执狂

微生物育种-诱变育种摘要:分析了近几年来我国常用的几种物理诱变和化学诱变育种方法的原理、特点以及成功案例等, 为微生物诱变育种提供了依据。综述了其在酶制剂、抗生素、氨基酸、维生素、杀虫剂等高产菌种选育中的应用进展;对该技术与离子束技术、空间技术的结合在微生物菌种选育中的应用前景进行了展望。关键词:诱变;微生物育种;应用进展;展望 微生物与酿造工业、食品工业、生物制品工业等的关系非常密切, 其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以培育优质、高产的微生物菌株十分必要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导, 或者促使细胞内发生基因的重新组合优化遗传性状, 人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。此外,原生质体诱变技术已广泛地应用于酶制剂、抗生素、氨基酸、维生素等的菌种选育中,并且取得了许多有重大应用意义的成果。1、诱变育种物理诱变紫外照射紫外线照射是常用的物理诱变方法之一, 是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm, 因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。电离辐射γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基, 这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。离子注入离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性, 随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。离子注入法进行微生物诱变育种, 一般实验室条件难以达到,目前应用相对较少。 激光激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用, 都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。 微波微波辐射属于一种低能电磁辐射, 具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。 航天育种航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间, 利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。航天育种较其它育种方法特殊, 是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。2.1 化学诱变 烷化剂烷化剂能与一个或几个核酸碱基反应,引起DNA 复制时碱基配对的转换而发生遗传变异, 常用的烷化剂有甲基磺酸乙酯、亚硝基胍、乙烯亚胺、硫酸二乙酯等。甲基磺酸乙酯( ethylmethane sulphonate ,EMS) 是最常用的烷化剂,诱变率很高。它诱导的突变株大多数是点突变,该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。N- 甲基- N'- 硝基- N- 亚硝基胍( NTG) 是一种超诱变剂,应用广泛,但有一定毒性,操作时应该注意。在碱性条件下,NTG 会形成重氮甲烷(CH2N2),它是引起致死和突变的主要原因。它的效应很可能是CH2N2 对DNA 的烷化作用引起的[2]。硫酸二乙酯( DMS) 也很常用,但由于毒性太强,目前很少使用。乙烯亚胺,生产的较少,很难买到。使用浓度,高度致癌性,使用时需要使用缓冲液配置。 碱基类似物碱基类似物分子结构类似天然碱基,可以掺入到DNA 分子中导致DNA 复制时产生错配,mRNA 转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有5- 氟尿嘧啶( 5- FU) 、5- 溴尿嘧啶( 5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 对产色素菌( 分枝杆菌T17- 2- 39) 细胞进行诱变,生物量平均提高. 无机化合物诱变效果一般,危险性较小。常用的有氯化锂,白色结晶,使用时配成的溶液, 或者可以直接加到诱变固体培养基中,作用时间为30min~2d。亚硝酸易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成 的浓度, 使用时加入等浓度等体积的盐酸即可。 其他盐酸羟胺,一种还原剂,作用于C 上,使G- C 变为A- T。也较常用,使用浓度为~,作用时间60min~2h。此外,诱变时将两种或多种诱变因子复合使用,或者重复使用同一种诱变因子,效果更佳。顾正华等[7]以谷氨酸棒杆菌ATCC- 13761 为出发菌株,经DMS 和NTG 多次诱变处理,获得一株L- 组氨酸产生菌。2、诱变剂 诱变剂的选择在选择诱变剂时, 需要注意诱变剂的专一性, 即某一诱变剂或诱变处理优先使基因组的某些部分发生突变而别的部分即使有也很少发生突变。对诱变剂专一性的分子基础不十分了解万尽管有关的修复途径必定对此有影响, 但它们的关系并不那么简单, 其它各种因素,包括诱变处理的环境条件也能影响突变类型。工业遗传学家很难正确地预言改良某一菌种时需要何种类型的分子水平的突变。因此, 为了产生类型尽可能多的突变体, 最适当的方法是采用几种互补类型的诱变处理。远紫外无疑是所有诱变剂中最为合适的, 似乎可以诱导所有已知的损伤类型。采取有效、安全的预防方法也很容易。在化学诱变剂中, 液体试剂比粉末试剂更易进行安全操作。的另一个不利因素是它有产生紧密连锁的突变丛的趋势, 尽管这种效应在某些体系中能成为有利条件。最后, 必须认识到可能某些特异菌系用某些诱变剂是不能被诱变的。当然这一点通过测定易检出的突变体, 如抗药性突变体或原养型回复突变体的诱变动力学可以相当容易地得到验证。[8] 诱变剂的剂量从随机筛选的最佳效果看, 诱变剂的最适剂量就是在用于筛选的存活群体中得到最高比例的所需要的突变体, 因为这会使在测定效价的阶段更省力。因此在菌株改良以前,为了决定所用诱变剂的最适剂量, 并为突变性的增强技术打下基础, 聪明的做法通常是测定不同诱变剂处理不同菌种时的突变动力学。用高单位突变本身来测定最适剂量有时是不可能的, 因为这种突变的检测很困难。但如使用容易检出的标记如耐药标记, 只要估计到方法的局限性, 还是可以提供一些有价值的资料的。[9]3、原生质体诱变在工业微生物育种中的应用进展 在酶制剂菌种选育中的应用酶制剂是活的有机体产生的有催化活性的蛋白质,是所有新陈代谢过程必不可少的要素。应用原生质体诱变技术对酶制剂的生产菌株进行诱变,已经获得了许多高产菌株。胡杰等[10 ]对沪酿(Aspergillus oryzae) 31042米曲霉的原生质体进行紫外线-氯化锂、N-甲基- N′-硝基-N - 亚硝基胍( N - methyle - N′- nitro - N -nitrosogunidinc, NTG)复合诱变,筛选到8 株高产中性蛋白酶突变株群,其中最高产酶活力为出发菌株的1162倍,为以后的细胞融合、基因组改组等提供了优良的候选文库。3.2抗生素高产菌种选育中的应用抗生素是微生物细胞的次级代谢产物,目前主要采用微生物发酵法进行生物合成。由于生产菌种产量的高低受多步代谢调控的制约,高产菌株的选育也很困难。原生质体诱变作为一种诱变技术,在抗生素的高产菌种选育中已有着广泛的应用。朱林东等[ 11 ] 通过紫外线诱变始旋链霉菌( S treptom ycespristinaespiralis)的原生质体, 得到了产普那霉素为1159g/L的高产突变株,比出发菌株提高10113%。 在氨基酸、生产溶剂及有机酸菌种选育中的应用氨基酸是生物功能大分子蛋白质的基本组成单位,在食品、饲料、医药、化学工业、农业等行业中应用广泛,各国都在大力发展氨基酸生产。发酵法已成为氨基酸生产的主要方法。因此选育高产菌株是氨基酸工业发展的重要方向。生产溶剂和有机酸是微生物的初级代谢产物,原生质体诱变技术在生产溶剂和有机酸生产菌种选育中也取得了成效。 生素菌种选育中的应用维生素是维持人和动物生命活动必需的、但不能自身合成的一类有机物质,在生长、代谢、发育过程中发挥着重要的作用。韩建荣等用激光处理青霉( Penicillium sp) PT95 的原生质体,选育到一株菌核生物量和类胡萝卜素含量均有显著提高的突变株L05。该突变株的菌核生产量提高 ,菌核中的类胡萝卜素含量提高 ,类胡萝卜素产率的增加幅度达到。 虫菌种选育中的应用苏云金杆菌(B acillus thuringiensis)是从自然界中筛选出来的一大类细菌型微生物杀虫剂,多应用于农林害虫的防治中。王丽红等[ 12 ] 对苏云金杆菌NU- 2的原生质体进行紫外线-氯化锂复合诱变,筛选到的突变株发酵周期从44h缩短到,晶体蛋白含量提高。4、 展望未来近年来,随着新的诱变源的出现,原生质体诱变技术的应用也会有新的进展。离子束作为一种新的诱变源,有其特有的作用机理[ 13 ] ,使得离子束诱变具有诱变谱广、变异幅度大、突变率高等优点,其应用也取得了很多重要的成果,特别是运用离子注入选育Vc菌株的成功,为我国的VC 行业增添了活力。航天搭载的微生物菌种,能借助微重力、空间辐射、超真空等综合空间环境因素的转换,在较短时间里创造目前其它育种方法难以获得的罕见基因突变,以此来进行微生物育种是空间技术育种的一个重要的应用领域。利用空间技术对某些抗生素的产量提高及酶制剂研究曾有些可喜的结果。将离子注入、空间技术与微生物原生质体技术结合起来,微生物原生质体诱变技术将会有更加广阔的应用前景。5、结语随着遗传学和分子生物学领域的飞速发展, 许多新型复杂的技术被应用于菌种选育, 如原生质体融合育种技术和基因工程育种技术等, 但是诱变育种技术仍是提供菌株生产能力的重要有效手段。它获得的正突变率相对较高,可以得到多种优良突变体和新的有益基因类型。另一方面,诱变育种存在一定的盲目性和随机性,在实际应用中,研究者应根据出发菌株及实验室条件等具体情况来选择合适的诱变方法。本实验室将物理因子和化学因子结合起来对多种酵母菌株进行复合诱变,均得到了理想菌株。此外,我们正在尝试反复采用几种诱变因子进行多次诱变,以期得到更为理想的菌株。参考文献:[1] Madigan,(美),(美),Parker,J.(美).微生物生物学[M].北京:科学出社,2001:390.[2] 曹友声,刘仲敏.现代工业微生物学[M].长沙:湖南科学技术出版社,1998.[3] 陈义光,李铭刚,徐丽华,等.新型物理诱变方法及其在微生物诱变育种中的应用进展[J].长江大学学报,2005,2(5):46- 48[4] 余增亮.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):251- 257.[5] 胡卫红.激光辐照微生物的研究概况[J].激光生物学报,1999,8(1):66- 69.[6] Leach and reproductive effects of microwave radiation[J].Bull NYAcademicMedicine,1980,55(2):249- 257.[7]顾正华.L- 组氨酸产生菌的选育[J].无限轻工大学学报,2002,21(5): 533- 535.[8]施巧琴,吴松刚.工业微生物育种学(2 版)[M].北京:科学出版社,2003:1- 4,76- 78.[9]戴四发, 黎观红, 吴石金.现代工业微生物育种技术研究进展.微生物学杂志, 2000 年6 月, 20 卷, 2 期.[ 10] 胡杰,潘力,罗立新,等1米曲霉孢子原生质体复合诱变及高活力蛋白酶菌株选育[ J ]1食品工业科技, 2007, 28 (5) :116~1191[ 11 ] 朱林东,金志华1普那霉素产生菌的原生质体诱变育种[ J ]1中国抗生素杂志, 2006, 31 (10) : 591~5941[ 12 ] 王丽红,郭爱莲1苏云金杆菌NU- 2原生质体复合诱变的研究[ J ]1微生物学杂志, 2006, 26 (4) : 23~261[ 13 ] Huiyun Feng, Zengliang Yu, Paul K Chu1 Ion imp lantationof organisms [ J ] 1Materials Science and Engineering, 2006, 54(3- 4) : 49~1201

194 评论

相关问答

  • 常见育种方法的研究性论文

    单倍体及单倍体育种中存在的理论问题论文 摘要: 单倍体一般是指由生物产生的配子发育而来的个体,染色体组数是正常生物体的一半。单倍体育种是现代作物育种中的重要的育

    树果衣嘎凌 5人参与回答 2023-12-07
  • 论文的研究方法定性研究方法

    有关于论文的研究方法有哪些 有关于论文的研究方法有哪些,论文是一种常见的写作方式。而论文的研究方法则是为了论文的写作去进行调查、实验等的一种研究方式,下面分享有

    小墩子921 3人参与回答 2023-12-10
  • 论文的研究方法种类

    有九大研究方法,分别是:调查法、实验法、文献研究法、个案研究法、数量研究法、话题发散法、跨学科研究法、观察法。 4、个案研究法。这种研究方法在MBA专业被广泛应

    呲呲呲呲呲呲 3人参与回答 2023-12-07
  • 论文的研究方法常有哪几种

    常用的有六种第一种:调查研究法它的主要方式有访谈形式、电话调查形式问卷调查形式等 这个是对研究对象进行周密和系统的了解并收集大量的资料进行比较、分析、归纳从而总

    木小蹬蹬民 2人参与回答 2023-12-10
  • 论文资料收集常见的3种方法

    百度与论题直接有关的资料,文献以及查看知名学者、专家在重要刊物上发表的实证或案例研究成果。

    辣椒与泡菜~ 7人参与回答 2023-12-10