• 回答数

    5

  • 浏览数

    260

为何不信2013
首页 > 期刊论文 > 波粒二象性研究论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

飞扬嗒兜兜

已采纳

意识具有波粒二象性的革命性认识是以著名的单电子双缝实验为可靠的实验基础,以数学家冯·诺依曼对双缝实验整个过程的严谨数学分析而论证出只有意识才能导致波函数坍缩这一重要结论,在此基础上进一步逻辑推导出意识必然具有波粒二象性的全新认识。 单电子双缝实验是量子力学最根本最重要的一个实验,2002年,美国《物理世界》杂志将其评选为物理学十大最出色实验的第一名 [1] ,也可以说它是人类历史上最神奇的一个物理实验。这个小小实验把波粒二象性和量子之谜的诡异性展现得淋漓尽致,极大的冲击了我们的世界观,长期以来困惑了包括爱因斯坦在内的众多物理学家,围绕这个实验现象的解释,至今依然争论不休。物理学家理查德·费恩曼说:“单电子双缝实验包含了量子力学的核心,事实上,它包含着独一无二的奥秘。我们不能通过说明它如何作用来消除这个奥秘.我们只是告诉你,它是怎样起作用的。在告诉你它怎样起作用的同时,我们也将告诉你所有量子力学的基本特色。” [2] 单电子双缝实验是最严格可靠的经验现象,也是最深邃难解的经验现象,它也是唯一的将观察者的意识不得不考虑在内的物理实验,它是哲学思考最可靠的逻辑起点,包含了哲学的几乎所有重大问题和根本奥秘,涉及到实在和反实在(本体论)、先验和经验(认识论)、因果律(薛定谔演化和狄拉克抉择)、自由意志(海森堡抉择)、逻辑论(形式逻辑、辩证逻辑和量子逻辑)、时空本质(二象性时空)以及心物交互(相干叠加性)等几乎全部重大哲学问题,其中甚至暗含了灵魂不朽和终极归宿的神学问题,也是哲学、科学和神学重新获得统一的最关键的起点。甚至也可以这样说, 以单电子双缝实验为哲学思考的阿基米德基点,可以撬动整个宇宙。 关于这个实验可以详细查看以下动画演示,该动画非常形象生动的演示了电子双缝实验的神奇现象。 在电子双缝实验中,当我们将一束电子流经过中间的双缝打到最终的显示屏上,根据经验常识,电子只是类似足球一样的颗粒状的单一微小物体,在日常世界中,假如我们连续的踢出大量足球而经过中间有两道狭缝的墙,那么最终的球网上只会形成两道条纹,绝无可能形成多道干涉条纹。可是,电子双缝实验的结果却与我们的常识经验严重背离,屏幕上最终形成的是只有波才能形成的干涉条纹。 那么会不会是大量电子互相碰撞才造成如此呢?它们如果互相碰撞确实有可能改变电子运动的路径,虽然不一定形成干涉条纹,但还是应该把这种可能性彻底排除掉。于是我们可以改进实验装置, 让电子枪一个一个地先后发射电子,间隔时间可以超过一秒钟 ,然后再看一下实验结果究竟如何。 当一个电子被打过去时,屏幕上只出现一个亮点,更多的电子过去,就有更多的亮点出现。初看起来,这些点杂乱无章,而随着时间的推移,当越来越多的电子被打过去时,大量的电子形成的大量的点逐步组成了只有波才能形成的干涉条纹! 由于电子是一个一个的前后相隔很长时间才发射出去的,那么根据这个可以逻辑推断出单个电子必须是一种广延性的波,同时通过双缝进而自身和自身发生干涉,如此才能形成只有波才能形成的干涉条纹,可是这怎么可能呢?一个电子根本不可能是一个波,因为我们日常观察到的波都是多粒子的集群波动现象,单个的局域小粒子怎么可能是广延的集群性的波?又怎么可能如分身术一样同时通过两道狭缝?这是双缝实验产生的神秘难解的现象之一。 为了解决上面的困惑,我们需要观察电子到底是如何通过双缝的,是不是真的有神奇的“电子分身术”,于是我们在双缝旁边安装了探测器,看看电子到底从哪条缝通过,如何通过的,这个实验被称为“which-way”实验,1998年德国Konstanz大学的Dürr和Rempe完成了该实验。 [3] 实验结果再次超出了人们的想象,当我们去通过探测器观察电子到底如何同时通过双缝时,电子竟然又老老实实地从一个缝隙穿过去,干涉条纹也随之消失!屏幕上出现的是两条经典亮条纹!也就是说, 小小的观察竟然改变了电子的存在特性,使得电子从波动又变成了粒子,观察为什么会有如此的神奇作用? 这样的实验结果更让我们迷惑不已,这究竟是为什么呢? 单电子双缝实验最初是物理学家费曼在1961年提出的思想实验。由于这个实验需要的缝隙大小在纳米量级,当时的技术条件无法实现。1974年意大利Bologna大学的科学家Merli、Missiroli和Pozzi用“单电子”来实验[4],他们让单个电子穿过双棱镜,一种和双缝有类似功能的电子光学器件。让电子有间隔地、一个一个发射出去。然后在荧屏上记录电子的位置,最终观察到干涉条纹的出现。 真正实现了费曼提出的单电子双缝实验,是2013年美国和加拿大科学家罗杰·巴赫(Roger Bach)和达米安·波普( Damian Pope)等人所完成的实验[5]。他们在镀金硅膜上制造了一个宽62纳米,长4微米,缝间距为272纳米的双缝。为了每次遮住一条缝,一个由压电致动器控制的微小遮罩可以在两缝间来回滑动。实验中电子由一个钨灯丝产生,并在600伏电场中被加速,之后校准成电子束。在电子穿过双缝后,将会在一个多通道感光底片上被观测到。在这个实验中,两个狭缝都可以随意机械式地打开和关闭,最重要的是,它具备了一次检测一个电子的功能,该实验的电子源强度很低以至于每秒仅约一个电子被观测到,这保证每次仅单个电子将穿过双缝,经过长达两个多小时的实验,最终实验图像显示的依然是干涉条纹。 从1801年最早的杨氏双缝实验到2013年的单电子双缝实验,跨度达到200年,让我们见证了波粒二象和量子世界的神奇。 双缝实验有力的证明了电子这样的物质粒子也有波动性,但是对物质粒子波动性的理解却经过了长期的激烈争论,德布罗意以及薛定谔等量子物理的开创者们,包括爱因斯坦在内,对波动性的理解都受到了经典物理观念的影响,产生了种种错误,甚至爱因斯坦直到临死之前,都没有接受量子力学对波粒二象的理解。 对双缝实验的第一种解释是纯粒子观点的解释,这种观点认为电子只能是粒子,而不可能是波动。之所以形成干涉条纹是因为不同粒子之间相互作用而导致的,所谓的波动性是由于有大量电子分布于空间而形成一种疏密波,类似于空气振动出现的纵波,由于分子密度疏密相间而形成的一种波动性分布。但是这种看法却与实验现象是明显矛盾的,因为在试验中,我们让电子一个一个地从电子枪发射而出,虽然刚开始无法形成干涉条纹,但只要时间足够长,屏幕上仍将出现明暗相间的干涉条纹。这表明电子的波动性并不是很多电子在空间聚集在一起时才显现出来,单个电子也有波动性。将电子理解成纯粒子,夸大了粒子性的一面,抹杀了波动性的一面,这是一种片面的错误理解。 对双缝实验的第二种解释是纯波动观点的解释,这种观点认为电子并非离散性的小颗粒,而是三维空间连续分布的物质波包,波包大小即粒子大小,波包的群速度即电子的运行速度,因而产生了干涉现象,薛定谔早期就坚持这种观点。但是这种观点也遇到了非常严重的困难,因为经过严格的计算以后,随着时间的推移,单个粒子的物质波包必定要扩散,也就是说,粒子将会越来越胖,这又明显违背实验结果,因为试验中我们观察到的单个电子,都是局域在空间内的很小区域,是颗粒状的。而且如果电子是三维空间的物质波包,那么在电子衍射实验当中,电子波碰到晶体发生衍射,我们在空间中不同方向上将看到电子的一部分,这又和实验是严重矛盾的,我们从来观察到的都是一个一个的完整的电子。将电子理解成纯波动,夸大了波动性的一面,抹杀了粒子性的一面,也是一种片面的错误理解。 1926年,量子论的奠基人之一马克斯·波恩在《碰撞过程的量子力学》 [6] 这篇论文第一次提出波函数的统计诠释,从而化解了这个难题,并且被无数实验所确证,波恩也因此而获得1954年的诺贝尔物理学奖。根据波函数的统计诠释,电子的波动并非真实三维空间的物理波,而是一种抽象的概率波。在数学上,用一个函数表示描写粒子的波,这个函数叫波函数。描述粒子的波函数,实际上刻画的是粒子在空间的概率分布。当电子通过双缝时,概率波发生了自身和自身的相干叠加,此时表现为波动性,进而产生了干涉条纹。当电子到达屏幕时,我们对它进行观测,电子的波函数就发生了瞬时性的随机坍缩,进而呈现为显示屏的上的一个小亮点,此时表现为粒子性。虽然一个电子的出现是随机的,但大量电子却符合概率分布,于是,当大量电子出现的时候,便形成了干涉条纹。 电子从开始发射到通过双缝,再到达最后的屏幕上究竟是如何的行踪呢?彼得·柯文尼教授如此回答:"如果认为量子力学给出了最基本的描述,那么询问电子的行踪就没有意义,除非电子已经打到了屏幕上。因此我们只好得出结论说,电子是以某种方式扩散在空间和时间之中,它从两条狭缝中都穿过并且自己与自己发生干涉,直到最后奇迹般地瞬间瓦解在屏幕上某一点处,这地点完全是随机的。因而,我们可以说,电子是处处在,同时又是处处不在。" [7] 电子的处处在,意思是说它在全空间(整个宇宙)都有分布的概率,即便遥远的仙女星系依然有分布概率,只是概率值非常微小。电子的处处不在,意思是说尽管它在全空间都有分布的概率,但是它却没有出现在任何空间位置上(这里的空间是指物理空间),除非对电子的波函数进行观测,促使其坍缩到一个具体的空间位置上,让其显现出来。而电子一旦坍缩显现出来,那么它在全空间范围内的其他空间位置的不同的分布概率值,瞬间全部变为零,即便是遥远的仙女星系的概率分布值也瞬间变为了零。 经典物理中的波动,指的是某一实在的物理量在空间中通过介质的周期性连续传播过程,并且可以产生相干叠加现象,波动的特性由振幅 、频率 、波长等物理量来描述。经典波动弥散性的分布在空间中,一列波通过某地,另一列波同样也能通过某地,两列波在同一地点是可以相干叠加的,波具有可“入”性。经典物理中的粒子,则是一整份地出现在空间中的分立性(离散性)的客体,这种客体具有确定的位置,质量、电荷、动量等,并且在时空中有一条确定的连续性轨道,经典粒子整体性的集中于某个区域空间,一个粒子在某地,它就不能同时在另一地,一地被一粒子所占据,另外的粒子就不能占据,粒子是不可“入”的[8]。粒子运动的特征由动量、质量、密度、粒子的几何尺寸等物理量来描述。在传统的经典物理学看来,波动性和粒子性是完全对立的。一个弥散,一个集中;一个连续,一个分立;一个可叠加,一个不可叠加,二者不可能共存于一个客体中。 电子究竟是什么?它既不是经典粒子,也不是经典波动,但我们可以说它是粒子和波动两重性矛盾的统一,这就是波粒二象性。 电子不是经典的粒子,是因为它没有经典粒子确定的连续性轨道,它在空间中非连续性的跃迁,量子粒子保留了经典粒子的颗粒性(分立性,离散性)。电子不是经典的波动,是因为它并非真实的物理波,而是抽象的概率波,量子波动保留了经典波动的相干叠加性。马根瑙(H . Margenau )在指出对波粒二象性的一些常见误解后也说道:“电子既不是粒子也不是波动,按照今天最广泛地持有并且同已经建立起来的量子力学理论程式相协调的观点,一个电子是一件抽象的事物,它不再能使用日常经验所熟悉的样子去直觉地理解。” [9] 对波粒二象性,我们要尽量避免使用直观图像的方式去想象,因为任何直观的图像,都是来自于经验性的经典认识,而固守经典认识必定对波粒二象产生曲解,要真正理解波粒二象性,必须彻底抛弃经典物理和经验性认识的观念束缚。 当我们不观察时,电子是一种不确定的量子叠加态,由波函数所描述,并且波函数是全空间的概率性分布,因而是概率波,其实全空间性的波函数正是一个整体性的完整抽象粒子。当我们观察电子的波函数时,全空间性的整个电子波函数随机坍缩成了局域空间上的单一具体粒子。电子的叠加态似乎意味着它可以“同时”在很多地方,处处在,却又处处不在。但是我们却从未经验观察到这种奇怪的量子叠加态,我们看到的任何宏观物体以及自我都是只能在空间的一个位置上,而不可能既在北京,又在上海。 对波粒二象的解释,和我们的日常经验以及形式逻辑的排中律都有严重的冲突。也因此,量子力学的开创者们,包括德布罗意、薛定谔、爱因斯坦在内的物理学家,都难以接受玻尔、海森堡以及波恩等人提出的整个量子理论的解释。爱因斯坦和玻尔还为此争论了几十年,屡战屡败,屡败屡战,是物理学上持续时间最长,争论最激烈也最富有哲学意义的世纪辩论。虽然量子力学的解释众说纷纭,然而实验却一再证明了量子理论的正确性,可是它的基础问题却至今让人困惑不解,难怪玻尔说:“谁不惊异于量子理论,谁就不理解它”。物理学家理查德·费曼(Richard Feynman)也在康奈尔大学的一个讲座上说道:“我想我可以有把握地说,没有人真正理解量子力学”。 量子力学逐渐成为了一种计算工具,大多数物理学家们觉得只要理论实用就可以,干吗非要理解它呢?就像鸵鸟一样,将头埋在沙里,不去看它吧,这就是“闭嘴,计算”解释。这种实用主义和工具主义的闭嘴计算解释并不能让我这样喜欢追根问底的人满意,现在我们就要深入的考察波粒二象之谜,这就需要谈到冯诺依曼的一个惊天认识: 意识导致波函数坍缩 。 参考文献: 1.乔治·约翰逊.最美丽的十大物理实验[J]. 物理教学探讨. 2009(18): 24-25. 2.[美]费曼.《费恩曼物理学讲义(第3卷)》[M].上海科学技术出版社.2013 P G, Missiroli G F and Pozzi G On the statistical aspect of electron interference phenomena[J].. Phys. 306–7 ürr S, Nonn T, Rempe G. Fringe Visibility and Which-Way Information in an Atom Interferometer[J]. Physical Review Letters. 1998, 81(26): 5705-5709. R, Pope D, Liou S. Controlled double-slit electron diffraction[J]. New Journal of Physics. 2013, 15. ,"Zur Quantenmechanik der Stossvorgange",Z. Physik 37,863-867 7.彼得·柯文尼. 《时间之箭-揭开时间最大奥秘之科学旅程》[M]. 湖南科学技术出版社, 2002. 8.赵国求. 波粒二象性的有机统一[J]. 武钢大学学报. 2000(02): 1-6. 9.关洪. 《一代神话:哥本哈根学派》[M].武汉出版社, 2002. 下一篇:※  意识波粒二象的详细论证(4) 上一篇: ※ 意识波粒二象的详细论证(2) ※意识波粒二象的完整系列论证 ——

353 评论

不服沙拉

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。1924年,路易-维克多•德•布罗意注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。德布罗意的方程三年后通过两个独立的电子散射实验被证实于电子(具有静止质量)身上。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,George Paget Thomson以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。Thomson和Davisson因为他们的实验工作共享了1937年诺贝尔物理学奖。

266 评论

大鹏村长

光和微观粒子的波粒二象性如何统一的问题是人类认识史上最令人困惑的问题 ,至今不能说问题已经完全解决(物质的结构是核式的,原子如此,光子、电子、质子、大到天体都有自己的核心,都有绕核心运动的物质存在,每个核式结构体在运动中由于核式结构的特点,都做具有波动的直线运动,都有测不准的因素存在,都有量子化的物理特征,各有能级的存在,各有特定的能量吸收才可以发生跃迁。张各高中物理教师提出的自己的观点,欢迎指正)1926年M.玻恩提出概率波解释,较好地解决了这个问题。按照概率波解释,描述粒子波动性所用的波函数Ψ(x、y、z、t)是概率波,而不是什么具体的物质波;波函数的绝对值的平方|ψ|2=ψ*ψ表示时刻t在x、y、z处出现的粒子的概率密度,ψ*表示ψ 的共轭波函数。在电子通过双孔的干涉实验中,|ψ|2=|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*,强度|ψ|2大的地方出现粒子的概率大 ,相应的粒子数多,强度弱的地方,|ψ|2小 ,出现粒子的概率小,相应的粒子数少,ψ1*ψ2+ψ1ψ2*正是反映干涉效应的项,不管实验是在粒子流强度大的条件下做的,还是粒子流很弱,让粒子一个一个地射入,多次重复实验,两者所得的干涉条纹结果是相同的。在粒子流很弱、粒子一个一个地射入多次重复实验中显示的干涉效应表明,微观粒子的波动性不是大量粒子聚集的性质,单个粒子即具有波动性。于是,一方面粒子是不可分割的,另一方面在双孔实验中双孔又是同时起作用的,因此,对于微观粒子谈论它的运动轨道是没有意义的。由于微观粒子具有波粒二象性,微观粒子所遵从的运动规律不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

282 评论

淘气lulu

所谓粒子,主要是指它具有集中的、不可分割的特性。微观客体和其他物质相互作用时,取粒子的方式,而不是波动方式,我们接收到的是一颗一颗的粒子,接收不到分数颗粒子。其次,提到波就意味着场的概念,所谓波不过是周期性地传播运动的场而已。场是弥散的。微观客体的传播取波动的方式,而不像经典粒子一样有一条轨道。波动性和粒子性是在不同实验条件下得到的概念。-----摘自 柯善哲《量子力学》 科学出版社

159 评论

幸福的考拉721

德布罗意在1924年提出一个假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都具有波粒二象性。

他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h跟粒子动量mv的比,即λ= h/(mv),这个关系式后来就叫做德布罗意公式。

通过两个独立的电子衍射实验,德布罗意的方程被证实可用来描述电子的量子行为。在阿伯丁大学,乔治·汤姆孙将电子束照射穿过薄金属片,并且观察到预测的干涉样式。在贝尔实验室,克林顿·戴维森和雷斯特·革末做实验将低速电子入射于镍晶体,取得电子衍射图样,结果符合理论预测。

扩展资料:

爱因斯坦在波和粒子上的发现

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

爱因斯坦将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”,其中, Wo是逃逸电子的最大动能, 是逸出功。

1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。从麦克斯韦方程组,无法推导出普朗克与爱因斯坦分别提出的这两个非经典论述。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。

参考资料来源:百度百科-波粒二象性

292 评论

相关问答

  • 颗粒弹性动力特性研究论文

    物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质

    哈毛小子 4人参与回答 2023-12-06
  • 物理研究性论文高二

    万有引力真的失灵了吗!美国科学家质疑"万有引力定律",中国科学家的反映是"基本定律"不容质疑。问题是"引力定律"是否是基本定律?基本定律又是什么涵义?基本定律就

    丁国栋3 3人参与回答 2023-12-08
  • 颗粒变性发生机理研究论文

    人类经过漫长的奋斗历程,在改造自然和发展经济方面建树了辉煌的业绩;与此同时,由于工业化过程中的处置失当,不合理地开发利用自然资源,以致造成了全球化的环境污染和生

    小树旁的小树 4人参与回答 2023-12-05
  • 调查性研究论文的研究对象

    调查对象没必要写的太详细,在论文中调查对象一般写,叫她对象是在校大学生校查人数一共有多少人,以及是哪个学校哪个班级'。

    婷婷1029 5人参与回答 2023-12-10
  • 女性形象研究论文结论

    影视作品中的[人物形象]应该如何分析?影视作品中的人物形象有哪些作用?靳迪编导艺考公开课为您解答。

    火焰天堂 3人参与回答 2023-12-06