妞我等你长大
通用汽车中国科学研究院合作评估分析结果表明,新钢种首次在世界上实现了2GPa以上兼具超高强度、优良韧性和延伸率的技术突破。值得一提的是,新钢种可成为汽车A柱、B柱、保险杠、边梁、门梁等重要安全防护部件用钢。
如何制造出超高强钢新钢种?
据人民网辽宁频道介绍,在保证安全性的前提下有效减轻重量是国内外汽车用钢的研究热点。易红亮教授团队提出将钒微合金化、利用热冲压工艺条件耦合实现晶粒细化的设想,并通过纳米碳化钒析出技术降低马氏体中的碳含量,从而在根本上改善了材料韧性,再以钢铁马氏体强化、晶粒细化、纳米碳化钒析出复合强化机制“组合拳”实现强度突破2GPa的目标。
新钢种的应用前景如何?
据《沈阳日报》报道,今年6月,易红亮团队开发的抗拉强度超过2GPa的超高强钢新钢种在本钢集团成功完成批量生产,并应用于北汽新能源纯电动两座车型“LITE”侧防撞区,使车身减重10%~15%。此外,在工艺设计上,该钢板基于创新的材料设计,不需要通过回火来改善韧性,减少了汽车零部件的制造工艺环节,为汽车企业大幅降低了生产成本,经济效益十分可观。
飘零雨迹
低碳调质钢具有高的屈服点(490~980MPa)、良好的塑性、韧性、耐磨及耐腐蚀性。低碳调质钢由于含碳量不高,虽含有一定量的合金元素,但焊接性较好,主要特点是:在焊接热影响区,特别是焊接热影响区的粗晶区有一定的冷裂倾向并有韧性下降的现象;在焊接热影响区受热时未完全奥氏体化的区域,以及受热时其最高温度低于Ac1、高于钢调质处理时的回火温度的那个区域有软化或脆化的倾向。21 试述低碳调质钢的焊接工艺。常用的各种熔焊方法,都可以适用于焊接低碳调质钢。其焊接工艺如下:⑴焊前预热 当板厚较小或接头拘束度也较小时,焊前可不进行预热,如15MnMoVN、14MnMoNbB钢。当板厚小于13mm时,通常采用不预热施焊。随着板厚的增加,为了防止产生冷裂纹,必须进行预热,但是必须严格控制预热温度,因为过高的预热温度会使热影响区的冷却速度过于缓慢,使热影响区强度下降,韧性变坏。几种低碳调质钢的最低预热温度,见表14。允许的最高预热温度与表中最低值相比,不得大于65℃。若有可能,可采用低温预热加后热或不预热,只采用后热的方法来防止低碳调质钢产生冷裂纹,可以减轻或消除过高的预热温度对热影响区韧性的损害。
会飞的猪lucky
根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:毕业论文网: 分类很细 栏目很多毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:
mimi若闻
所有高强度钢和先进高强度钢性能汇总
1、“超高强度钢”的定义是相对于时代要求的技术进步程度而在变化的。一般讲,屈服强度在1 370MPa(140 kgf/mm2)以上,抗拉强度在1 620 MPa(165 kgf/mm2)以上的合金钢称超高强度钢。
分类
按其合金化程度和显微组织分为低合金中碳马氏体强化超高强度钢、中合金中碳二次沉淀硬化型超高强度钢、高合金中碳Ni—Co型超高强度钢、超低碳马氏体时效硬化型超高强度钢、半奥氏体沉淀硬化型不锈钢等。
低合金
低合金中碳马氏体强化型超高强度钢(MART)是在低合金调质钢的基础上发展起来的,合金元素总量一般不超过6%。主要牌号包括传统的镍铬钼调质钢4340(40CrNiMo),碳含量的镍 铬 钼 钒 钢D6AC(45 CrNiMoV),碳含量的铬 锰 硅 镍 钢(30CrMnSiNi2A),在4340钢基础上通过加入硅()和钒()而研制成的300M 钢(43CrNiSiMoV)以及不含镍的硅锰钼钒或硅锰铬钼钒等。通过真空熔炼降低钢中杂质元素含量,改善钢的横向塑性和韧性,由于钢中合金元素含量较低,成本低,生产工艺简单,广泛用于飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。
中合金
中合金中碳二次沉淀硬化型超高强度钢是从5%Cr型模具钢移而来的。由于它在高温回火状态下有很高的强度和较满意的塑性和韧性,抗热性好,组织稳定,用于飞机起落架、火箭壳体等。典型钢种为H11和H13等。其主要成分为:C ;Cr ;Mo ;Si 。
高合金
高合金中碳Ni—Co(9Ni--4Co--××)型超高强度钢,是在具有高韧性、低脆性转变温度的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高钢的Ms(马氏体转变)温度,减少钢中的.残余奥氏体,同时,钻在镍钢中起固溶强化作用,还通过加钻来获得钢的自回火特性,从而使这类钢具有优良的焊接性能。碳在这类钢中起强化作用。钢中还含有少量铬和钼,以便在回火时产生弥散强化效应。主要牌号有HP9-4-25,HP9-4-30,HP9-4-45以及改型的AF1410()等。这类钢综合力学性能高。抗应力腐蚀性好,具有良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇壳体等产品上。
超低碳
超低碳马氏体时效硬化型超高强度钢,通常称马氏体时效钢。钢的基体为超低碳的铁镍或铁镍 钴 马氏体。其特点是,马氏体形成时不需要快冷,可变温及等温形成;具有体心立方结构;硬度约为HRC20,塑性很好;再加热时不出现像在低碳马氏体中发生的回火现象,并有很大的逆转变温度迟滞,因而可以在较高温度进行马氏体基体内的时效硬化。在这样的高镍马氏体中含有能引起时效强化的合金元素,借助于时效强化,从过饱和的马氏体中析出弥散分布的金属间化合物,使钢获得高强度和高韧性。按镍含量,马氏体时效钢分为25%Ni、20%Ni、18%Ni和12%Ni等类型。18%Ni型应用较广,为含有钼、钛等强化原素的超低碳铁-镍(18%)-钻()合金,包括3个牌号:18%Ni(200)、18%Ni(250)、和18%Ni(300)(200、250、300为抗拉强度等级,单位为Ksi)。这种钢是通过金属间化合物的析出使钢强化。借无碳的马氏体基体取得高塑性,最后达到很高的强度塑性配合。这类钢具有良好的成形性能、焊接性能和尺寸稳定性,热处理工艺也较简单,用于航空、航天器构件和冷挤、冷冲压模具等。
半奥氏体
半奥氏体沉淀硬化型不锈钢是一类高合金的超高强度钢,如常见的17-7PH(OCr17Ni7Al)、PH15-7Mo(OCr15Ni7Mo2Al)和AFC-77(15Cr15Mo5Co14V)等。这类钢经固溶化处理,冷却到室温为奥氏体组织,再经过冷加工、冷处理或者加热到750℃进行调整处理后,奥氏体转变为马氏体。最后在400-550℃时效,便得到在回火马氏体基体上弥散分布着第二相强化组织的超高强度钢。这类钢在315℃以上长时间使用时,会因为金属间化合物沉淀而使材料变脆,所以使用温度要限制在315℃以下。这类钢主要用于制造航空器件构件、高压容器和高应力腐蚀化工设备零件等。
高强度钢板是指牌号Q420钢,强度高,特别是在正火或正火加回火状态有较高的综合力学性能。主要用于大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件。
2、先进高强度钢,也称为高级高强度钢,其英文缩写为AHSS(Advanced High Strength Steel)。国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。传统高强钢主要包括碳锰钢(C -Mn)、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相钢(DP)、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相钢(CP)、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。
分类
双相钢
双相钢组成是铁素体基体包含一个坚硬的第二相马氏体。通常强度随着第二相的体积分数的增加而增加。在某些情况下,热轧钢需要在边缘提高抗拉强度(典型的措施是通过空穴的扩张能力),这样热轧钢便需要具有了大量的重要的贝氏体结构。
在双相钢中,在实际冷却速度中形成的马氏体中的碳式钢的淬硬性增加。锰、铬、钼、钒、和镍元素单独添加或联合添加也能增加钢的淬硬性。碳、硅和磷也加强了作为铁素体溶质的马氏体的强度。
高强度及高延性钢(TRIP)
高强度及高延性钢的微观组织是在铁素体基体中还保留着残余奥氏体组织。除了体积分数最少为5%的残余奥氏体外,还存在着不同数额的马氏体和贝氏体等坚硬组织。
多相钢
具有代表性的多相钢需要很高的抗拉强度极限才能转变成钢。多相钢的组成是有细小的铁素体组织和体积分数较高的坚硬的相,并且细小的沉淀使其强度进一步加强。和双相钢和高强度、高延性钢一样,多相钢也包含了很多和它们相同的合金元素,但也经常有少量的 铌 、钛、和钒形成细小的、高强度的沉淀物。在抗拉强度值在800MPa或更高时,多相钢表现出了更高的屈服强度。多相钢的典型特征是具有高的成形性、很高的能量吸收和很高的残余变形能力。
马氏体钢
为了生成马氏体钢,在热轧或退火中存在的奥氏体在淬火和连续退火曲线中的冷却阶段全部转变成马氏体。该结构也会在成形后的热处理过程中形成。马氏体钢具有非常高的强度,抗拉强度极限达到了1700MPa。马氏体钢经常需要用等温回火来提高其韧性,这样便能在具有极高的强度的同时具有很好的成形性。
先进高强钢的生产
所有的先进高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在最后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。
小小暖和
18Ni马氏体时效钢的特性及用途:18Ni钢的代表钢号有00Ni18Co8Mo3TiAl[18Ni(200)]022Ni18Co8Mo3TiAl、00Ni18Co8Mo5TiAl[18Ni(250)]022Ni18Co8Mo5TiAl、00Ni18Co9Mo5TiAl[18Ni(300)]022Ni18Co9Mo5TiAl和00Ni18Co13Mo4TiAl[18Ni(350)]022Ni18Co13Mo4TiAl钢。18Ni钢是典型的马氏体时效钢,钢中碳含量较低,对时效硬化起作用的合金元素是Ti、Al、Co、Mo,杂质对马氏体时效硬化钢的性能影响很大,对屈服强度较高的钢影响效果更明显。这就要求该类钢要经过真空冶炼,减少杂质、偏析和钢锭中的含气量,以保证钢具有较好的韧性和抗疲劳性能。在18Ni钢中,碳对钢的强度影响很大,即使碳含量极少,也会使马氏体强度显著提高。但在把碳的质量分数增至以后,又会降低钢的屈服强度,所以18Ni马氏体时效钢中碳的质量分数不宜超过。18Ni钢中的S是有害的。S以硫化物存在于钢内,并沿热轧方向分布,导致钢的各向异性,因此要求尽量降低钢的硫含量。18Ni钢中加入大量的Ni,主要作用是保证固溶体淬火后能获得单一的马氏体,其次Ni对Mo的作用是形成时效强化相Ni3Mo。当Ni的质量分数超过10%时,还能提高马氏体时效钢的断裂韧度。18Ni钢固溶以后形成超低碳马氏体,硬度为28~30HRC;时效处理后,由于各种类型的金属间化合物的脱溶析出得到时效硬化,硬度可以上升到50HRC。这类钢在高强度、高韧性的条件下,仍具有良好的韧性和高的断裂韧度。同时,这类钢无冷作硬化,时效热处理变形小,焊接性良好,表面还可以渗氮处理等。18Ni类低碳马氏体时效钢主要用于制造高精度、超镜面、型腔复杂、大截面、大批量生产的机械零件和塑料模具,但由于价格昂贵,使用受到限制。18Ni马氏体时效钢的化学成分:18Ni钢化学成分见表1。表1 18Ni钢的化学成分(质量分数,%)钢号 C≤ Ni Co Mo Si≤ Mn≤ Ti Al P≤ S≤18Ni(200) (250) (300) (350) 马氏体时效钢的临界点:18Ni钢的临界点温度见表2,其他钢号可参考。表2 18Ni钢临界点温度临界点/℃ Ac1 Ac3 Ms Mf温度(近似值)/℃ 540~610 740~750 154~210 90~10018Ni马氏体时效钢的热处理:固溶温度为815~830℃,油冷或空冷(加热时间,盐浴炉1min/mm、空气炉2~),硬度为28HRC。18Ni马氏体时效钢的时效温度:18Ni(250)、18Ni(300)钢的时效温度为480℃,保温时间3h,硬度为43HRC;保温6h,硬度为52HRC。18Ni(350)钢的时效温度为510℃,时效时间6h,硬度为57~60HRC。18Ni马氏体时效钢的渗氮处理:18Ni(300)钢气体渗氮工艺:渗氮温度为(455±10)℃,保温时间为24~28h。18Ni马氏体时效钢的力学性能:18Ni类钢的力学性能见表3。表3 18Ni类钢的力学性能钢号 固溶温度/℃ 时效温度/℃ 时效后硬度HRC σb/MPa σs/MPa δ(%) ψ(%)18Ni(250) 815~830 480±5 50~52 1850 1800 10~12 48~5818Ni(300) 815~830 480±5 53~54 2060 2010 12 6018Ni(350) 815~830 510±5 57~60 2490 - - -马氏体时效钢包含高强度钢的一个专门类别,它们与传统钢的区别在于它们通过冶金反应来硬化,而与C没有关系。这些钢在大约480℃的温度下由金属间化合物沉淀而强化。术语`maraging`是从`马氏体时效硬化`而来,其所指的是低碳马氏体的时效硬化。工业上,马氏体时效钢设计用来提供屈服强度从1030-2420兆帕的特定水平。一些实验性马氏体时效钢具有高达3450兆帕的屈服强度。这些钢具有很高的镍、钴和钼的含量,并具有极低的含碳量。事实上,碳在这些钢中是杂质,并尽量保持工业尽可能低的水平。马氏体时效钢的其它变型已经研制出来,作为特殊使用。马氏体时效钢在美国和国外的不少钢铁公司中已进行大量生产。VascoMax® C-300 Specialty Steel 是美国Allvac公司生产的特种高镍合金钢,这类钢国内常称马氏体时效钢。maraging steel意思是时效处理后金相组织为马氏体。C300与国标:00Ni18Co9Mo5TiAl相近,价格较贵。Applications: Missile components, jet engine shafts. Spring wire for valve springs in high-performance internal combustion engines。Physical PropertiesDensity g/ccMechanical PropertiesHardness, Brinell 485Hardness, Knoop 535Hardness, Rockwell C 50Hardness, Vickers 511Tensile Strength, Ultimate 1966 MPaTensile Strength, Yield 1897 MPa OffsetElongation at Break %Reduction of Area %Component Elements PropertiesAluminum, Al , C %Cobalt, Co %Iron, Fe %Manganese, Mn %Molybdenum, Mo %Nickel, Ni %Phosphorous, P , Si %Sulfur, S %Titanium, Ti %模具热处理后变形是模具热处理的三大难题之一(变形、开裂、淬硬)。预硬型塑料模具钢解决了模具热处理变形问题,但模具要求硬度高又给模具加工造成困难。熔化既保持模具的加工精度,又使模具具有较高硬度,对于复杂、精密、长寿命的塑料模具,是模具材料面临的一个重要难题。为此发展了一系列的时效硬化型塑料模具钢。模具零件在淬火(固溶)后变软(硬度约为28~34HRC),便于切削加工成形,然后再进行时效硬化,获得所需的综合力学性能。时效硬化型塑料模具钢有马氏体时效硬化钢和析出(沉淀)硬化钢两大类。马氏体时效钢有高的屈强比、良好的切削加工性和焊接性能,热处理工艺简单等优点。典型的高合金马氏体时效硬化钢有18Ni(200)(00Ni18Co8Mo3TiAl)钢、18Ni(250)(00Ni18Co8Mo5TiAl)钢、18Ni(300)(00Ni18Co9Mo5TiAl)钢、18Ni(350)(00Ni18Co13Mo4TiAl)钢等,固溶以后形成超低碳马氏体,硬度约为30~32HRC;时效处理以后,由于各种类型的金属间化合物的脱、析出,得到时效硬化,硬度可上升到50HRC以上。这类钢在高强度、高韧性的条件下仍具有良好的塑性、韧性和高的断裂韧度。为了降低材料费用,近年来开发了一类低钴、无钴、低镍的马氏体时效钢,其代表钢种如06Ni(06Ni6CrMoVTiAl)钢、AFC-77(1Cr14Co13Mo5V)钢;另一类为低合金时效硬化钢,代表钢号如我国自行开发的25CrNi3MoAl钢,PMS(1Ni3MnMoCuAl)钢、PCR(0Cr16Ni4Cu3Nb)钢、SM2(20CrNi3AlMnMo)钢等,另外还有美国的P2(20CrNi4AlV)钢,日本大同特殊钢公司的NAK80、NAK55(15Ni3MnMoAlCuS)钢等,这类钢经固溶处理后,硬度为30HRC左右,时效处理后,由于金属间化合Ni3Al析出而强化,硬度可以上升到38~42HRC。如再进行渗氮处理,可以使模具表面硬度达到110HV左右。
在项目建设中,材料的选择直接影响着工程造价,尤其是新型建筑材料的投入往往会使工程造价大幅度增减。下面是我为大家整理的材料工程 毕业 论文,供大家参考。 材料
组稿 [ zǔ gǎo ] 出版社或报刊的编辑人员按照出版、编辑计划向作者约定稿件。 组稿是指编辑部门按计划向作者约定稿件。组稿是发现、选择、组织作者完成作品创
对于专业学位艺术硕士(MFA)声乐方向的研究生来说,学位音乐会既是一次学习成果的展示,又是对自身专业学习的阶段性总结。为了能充分展示硕士近三年的学习成果,经过和
于化江, 熊亮, 熊中琼, 张国庆, 复合电沉积制备TiO2/泡沫镍光催化材料及其催化活性研究., 化工进展, 2011,30(9)Xiong L, Zhang
对于 企业管理 来说,企业组织架构管理的创新,可以充分提升企业整体协调能力,改变企业内部沟通方式,让企业在沟通过程中更加高效和迅速,提升企业协同工作的能力。