• 回答数

    3

  • 浏览数

    349

猪头小队长1982
首页 > 期刊论文 > 煤层气开采论文题目

3个回答 默认排序
  • 默认排序
  • 按时间排序

卓越精品装饰

已采纳

秦勇

(中国矿业大学 江苏徐州 221008)

作者简介:秦勇,1957年生,男,博士,教授,煤田与煤层气地质,yongqin@。

基金项目:国家973计划项目(2002CB211704)及国家自然科学基金项目(40572095)资助。

摘要 基于CNKI中国期刊全文数据库,系统检索和统计了我国煤层气论文的分布特点。以此为基础,分析了我国煤层气论文分布与产业发展特征之间的关系,讨论了产业发展对科学技术的需求趋势。结果显示:分别以1999年和2002年为界,论文分布体现出我国煤层气产业发展经历了三个历史阶段,每一阶段对科技需求的特点在论文分布特征上都有所体现。由此,作者认为:煤层气资源评价及其方法仍是今后研究的主题,进一步深化地质选区理论与方法将有助于选区成功率的提高,开发技术适应性是今后需致力于探讨的重要方向之一,煤层气井产能、采收率及其影响因素的研究应该引起足够重视,全方位探索深部煤层气资源与开发潜力将有可能拓展我国煤层气开发的新领域,研发环境保护、高附加值转化利用和小型化利用储运技术将有助于推进我国煤层气产业健康发展。

关键词 煤层气 论文 分布 产业 发展

CBM Publication Occurrence and Industrial Development in China

Qin Yong

(China University of Mining and Technology,Xuzhou 221008)

Abstract:The occurrence of the coalbed methane(CBM)papers written by Chinese authors from 1994 to 2005 was systematically indexed and analyzed form the CNKI's China Journal Full Database(CJFD).Based up the data or information,the correlation of the paper distribution to the development of Chinese CBM industry was construed and the requirements of the industry to science and technology for the future were was shown that,respectively taking the 1999 and 2002 as a borderline,three developmental stages of the Chinese CBM industry as well as the scientific and technologic requirements of the industry in each stage were unfolded through the distribution of the was farther suggested that the evaluation and methodology of the CBM resources should be taken as one of the subjects in future research,the deep research of the target-selecting theory and method would help to improve the reliability of the CBM target selection,the adaptability of the exploiting technology to the CBM geological conditions should be one of the key aspects which should be engaged in the researches,the CBM-well productivity and CBM recovery ration should be laid much store by investigation,the omni-directional exploration for the potential of the deep CBM resources and development would be helpful to the deploitation of new CBM field in the industry,and the technological advances on the CBM environmental protection,high-additional-value utilization and miniaturized storage and transportation equipment should conduce to promote the benign development of the industry.

Keywords:CBM;paper;occurrence;industry;development

在现代科学技术背景下,新兴产业的发展均与该领域学术技术研究状况密切相关。换言之,一个产业领域内基础、应用基础与技术研究论文的分布状况,蕴涵着该产业发展历程的丰富信息,并在一定程度上可预示产业的发展趋势。我国煤层气产业目前处于商业化生产的启动阶段[1],分析煤层气论文产出特点及其与产业发展的关系,对回顾我国煤层气产业发展历史、展望其发展趋势均有所裨益。为此,本文作者利用中国国家知识基础设施(CNKI)中国期刊全文数据库[2],对1994~2005年期间煤层气论文进行了系统检索。以此为依据,分析了我国煤层气论文在时间和研究方向上分布特点,讨论了产业发展所需注重的主要科学技术问题。

1 CNKI 煤层气论文总体分布

系统检索结果显示,CNKI中国期刊全文数据库收录1994年至2005年煤层气论文1465篇,年均约122篇。

分析检索结果(图1),获得如下总体认识:

第一,我国煤层气论文连年增长,但不同历史阶段的增长速率明显不同。这一特点,与中国煤层气产业的艰难探索过程一致,反映出产业从起始到目前产业化经历了阶段性的发展历程。

第二,不同类别论文的分布特点,揭示出我国煤层气产业当前所处的阶段性特征。在论文总量中,地质与勘探类论文所占比例为,开发技术类论文占,利用与储运类论文占,经济与政策类论文占,环境保护类论文占。以地质勘探类论文为主的分布特点,折射出我国煤层气产业总体上处于发展的初始时期。

第三,各类论文在时间上的分布呈规律性起伏,这正是产业不同发展阶段对科学技术的需求有所不同的集中反映。

图1 CNKI中国期刊全文数据库煤层气论文类别及年度分布

值得注意的是,1994年至2005年期间,CNKI 煤层气论文篇数增长了倍,年均增长率约106%。进一步分析,论文数量呈三阶段式的非线性增长,指示中国煤层气产业发展历程至今经历了三个阶段(图2)。其中:第一阶段论文447篇,年均产出约75篇;第二阶段论文390篇,年均产出130篇;第三阶段论文628篇,年均产出约209篇。同时,不同阶段中各类论文互为消长的状况,与每一阶段对地质研究、勘探评价、开发试验等的不同需求高度对应。

图2 CNKI论文总数时序分布及其展现的中国煤层气产业发展阶段

2 CNKI 论文分布与中国煤层气产业发展阶段

第一阶段:寻证-找气-摸索阶段

该阶段可上溯至20世纪80年代前半期,结束于1999年,历时四个“五年”计划。在此期间,煤层气论文数量从1994年的20篇增加到1999年的129篇,在时间序列上呈线性增加,阶段总增长率545%,阶段年均增长率约91%,作者和单位的数量明显增多(图1)。

从论文类别分布来看:地质与勘探类论文居绝对优势,占阶段论文总数的60%,年均约45篇;开发技术类论文不足8%,年均约6篇;利用与储运、经济与政策、环境保护等类别论文的比例很低,年均都在2篇左右(图1,图2)。这种分布,是各国煤层气产业发展初期的典型特征,即研究和生产都是以寻找“证据”、框定资源、选择区域和验证目标为主。

在地质与勘探类论文中(图3):多数报道的是关于煤层气资源评价与地质选区(42%,年均约19篇)、储层物性和吸附性(34%,年均约15篇)的研究成果,反映出积累资料、摸索经验的特点;成藏条件与过程、煤层气可采性论文年均分别只有2篇和1篇,该方面研究没有得到重视,在一定程度上显示出基础研究不足而致使煤层气地质选区和“找气”具有盲目性,这也是该阶段我国煤层气地质选区成功率较低的一个重要原因[3]。

在该阶段,开发技术类论文多是对国外技术的消化和应用。其中,钻井、试井和完井论文占了较大比例(35%,年均约6篇),排采与增产措施得到了应有重视(24%,年均约4篇),对解吸-扩散-渗流这一煤层气开采的基础有所关注(6%,年均约1篇),但几乎未见关于煤层气井产能和采收率方面研究成果的报道(图4)。此外,综述性论文也多以介绍国外煤层气勘探开发理论和技术为主。

图3 CNKI煤层气地质与勘探类不同研究方向论文分布

图4 CNKI煤层气开发技术不同研究方向论文分布

上述特征揭示:本阶段的研究是针对我国煤层气产业的起始过程而开展的,在煤层气地质研究上表现为寻证,在勘探上表现为找气,在开发试验上表现为摸索,总体上试图通过引进和消化国外相关理论与技术来解决中国的煤层气地质问题,积累了较为丰富的煤层气地质基本条件信息,对全国煤层气资源及其分布规律取得了基本认识,煤储层特性这一煤层气地质核心问题得到应有的重视,开展了适合于中国煤层气地质特点开发技术的试验与探索,并从区域上开始了对全国或区域煤层气产业发展战略的思考。

第二阶段:探因-普查-彷徨阶段

该阶段历时3年,从2000年开始,至2002年结束。在此阶段,每年的煤层气论文稳定在130篇左右,年均论文数量比第一阶段增加了73%,但论文类别构成变化明显(图1)。

从论文类别来看:地质与勘探类论文209篇,占该阶段论文总数的54%,年均篇数(约70篇)比第一阶段显著增加,但从1999年至2001年论文篇数显著递减,在后期有重新增加的趋势;开发技术类论文显著增多,占论文总数的比例比第一阶段增长了10个百分点;经济与政策、利用和储运的研究得到更多的关注,论文比例均上升了5~6个百分点(图1,图2)。

与第一阶段相比:该阶段地质与勘探论文中煤储层物性与吸附性研究成果的数量和比例显著增高(105篇,50%),构成了研究的主题;资源评价与地质选区尽管仍得到较多关注,但比例明显降低(29%);成藏条件与过程论文的比例基本不变(10%),但年均论文篇数(7篇)明显增多(图3)。由此表明,这一阶段常规评价与选区方法趋于成熟,研究的注意力更多地转向与开采地质条件密切相关的煤储层特性,转向了成藏效应等深层次的控制机理问题。

就开发技术而言:钻井、完井、试井论文17篇,年均约8篇,远高于第一阶段,但在阶段论文总数中的比例(25%)有所降低;排采与增产措施论文18篇,比例(27%)有所提高;产能与采收率论文11篇,比例从零增至约16%;解吸-渗流-扩散论文14篇,占阶段论文总数的21%,比例显著增长(图4)。排采与增产措施、产能与采收率的研究得到加强,开采基础和应用基础研究受到高度重视,研究重点向开发技术的中—下游移动,这是为解决我国煤层气产业发展“瓶颈”问题而做出的努力,也是产业逐渐走向成熟的标志之一。

在此阶段:除了进一步拓展勘探选区继续找气之外,更多的力量集中于第一阶段已有一定勘探工程的地区,以进一步缩小勘探靶区,为开发试验提供更为可靠的基地;同时,尽管在近20个地区进行了排采试验,但多未取得理想的效果,致使开发试验徘徊不前,业界信心受到冲击。然而,这一时期煤层气开发基础与技术研究得到了较大发展,尤其是在开采方法与增产措施、煤层气解吸扩散渗流机理、产能与采收率分析等方面取得较多成果,为中国煤层气产业化时代的到来奠定了重要技术基础。

上述论文分布特征,指示我国煤层气产业发展过程由于进入了一个新的阶段而对科学技术的需求发生了较大变化,在煤层气地质研究上表现为探因,勘探上表现为普查,开发试验上表现为访徨,总体上处于为催生中国煤层气产业化时代到来的“阵痛”阶段。

第三阶段:求源-详查-商业阶段

自2003年以来,我国煤层气产业发展进入了一个新的历史时期,即商业化生产阶段。其主要标志为:煤层气地质研究进入了求源,勘探实践进入了详查,开发上步入了商业化生产,中国煤层气产业的雏形已经形成,并呈现出快速发展的势头,这些标志在煤层气论文的数量和结构上均有体现。

在2003~2005年的三年期间,CNKI煤层气论文总数大幅度增加,达到628篇,年均论文约209篇,与第二阶段相比增长了61%,接近第一阶段论文总量的一半(图1,图2)。开发技术类论文的比例有所提高,利用和储运技术研究得到进一步重视,基础研究明显加强,研究重点进一步向煤层气产业的中—下游移动,更加适应于商业化生产阶段对科学技术的需求。

地质与勘探类论文占阶段论文数的比例约51%,仍有较大比重,这是我国煤层气产业目前总体上处于初期阶段的必然特征。其中:煤储层物性与吸附性仍是研究重点,但论文比例下降至39%左右;资源评价与地质选区仍是产业的科技需求,论文比例(27%)与上一阶段基本持平;成藏条件与过程研究得到高度关注,论文比例比上一阶段提高了约9个百分点(图3)。

本阶段开发技术类论文数量的比例为19%,比上一阶段略有提升,显示我国煤层气产业中游领域的研究得到进一步重视。其中:钻井、完井、试井论文(25篇)多于第一阶段,但比例继续下降(约21%);排采与增产措施论文34篇,数量显著增加,比例(29%)略有提高;产能与采收率论文12篇,数量和比例(约10%)均比上一阶段显著减少;解吸-渗流-扩散论文25篇,数量明显增加,比例与上一阶段基本持平(图4)。钻井、完井、试井论文比例相对降低,排采与增产措施论文比例显著提高,解吸-渗流扩散论文数量明显增多,尤其是2005年开发技术类论文数量大幅度跃升(图1,图2),显示出我国煤层气商业性生产、示范工程等对新技术开发和相关基础研究的强烈需求。

在此阶段:新增了一批国家批准的煤层气储量,煤层气成藏条件与机制探索在国家层面上全面展开,标志着中国煤层气地质研究从资源与基本地质条件调查阶段转入了资源“详查”阶段和成藏作用探索过程;大井网煤层气勘探开发试验取得新的突破,水平羽状井、丛式井等技术在煤层气开发中得到初步应用,对二氧化碳注入等新的增产技术进行了现场试验,晋城地区开始了煤层气商业化生产,标志着中国煤层气产业从开发试验阶段转入了商业化生产启动阶段。

3 CNKI 论文分布特点与产业发展需注重的科学技术问题

进一步分析C N KI论文分布特点,发现存在某些问题,而解决这些问题正是发展中国煤层气产业所需要继续努力的方向。

首先,煤层气资源评价始终是20余年研究探讨的主题,尤其是对全国和某些区域的煤层气资源量及其构成众说纷纭,且国家批准的煤层气储量所占比例极低。究其原因,主要在于三个方面:一是评价方法缺乏规范性要求;二是资源估算尚存重大基础问题未能解决;三是资源勘探和探明程度很低。为此,煤层气资源评价及其方法仍是今后相当长一段时期内所要研究的主题,而在国家层面上制定评价方法和要求的规范性文件,加强以吸附机理为核心的基础研究[3],加大勘探和开发试验的力度,将有助于推进这一问题的解决。

其次,文献中涉及的煤层气地质选区多达50余个,但目前实现商业性开发或具有可见前景的地区不超过5个,且某些选区已上过多轮勘探和开发试验工程。造成这种状况的原因是多方面的,包括选区理论和方法在科学性和适应性上的缺陷、早期勘探与开发试验技术发展水平和认识的局限、钻井/完井/排采技术管理经验不足等[3]。因此,在深化研究选区理论与方法的基础上,通过资料复查和新技术应用,总结开发技术上的经验和教训,可能会使我国煤层气地质选区成功率得到一定的提高。

第三,国外几乎所有的传统和先进煤层气开发技术在我国都有引用,但多数情况下的应用效果都不甚理想。正视这一状况,似应考虑如下三个问题:一是所有先进技术是否都适合我国特定选区的煤层气地质条件?二是传统技术在特定选区的开发效果是否就不如先进技术?三是我国自主研究开发出了哪些适合于我国煤层气地质条件的开发技术?对于前两个问题,答案当然是否定的。至于后一个问题,目前尚未见到关于自主研发的关键技术的报道。这三个问题的关键,在于各种开发技术的适应性,这也正是今后需致力于研究的重要方向之一。

第四,见诸报道的煤层气井产能、煤层气采收率及其影响因素的研究成果较少,与煤层气商业性生产阶段的技术需求之间存在较大差距。原因在于,我国前期实践多为开发试验,对此没有太多的需求,积累的资料也十分有限,难以满足开展这一研究的要求。但在进入商业化开发且追求经济效益的现今阶段,该方面的研究应该引起足够重视,包括系统追踪和分析排采动态、注重不同煤层气地质条件的对比分析、深化煤层气解吸-渗流规律与机理的研究、开发科学性更强的数值模拟技术等。

第五,尚未充分注意到深部煤层气开发这一潜在新领域,深部资源及其与常规油气共采可行性的研究成果鲜见报道。我国深部煤层气资源量巨大[4],多数大—中型沉积盆地中煤层气都与常规油气共生,前期少数研究显示了深部煤层气与常规油气共采的可能性[5]。为此,从资源潜力、成藏作用与过程、地质选区、勘探与开发试验等方面,对深部煤层气资源潜力开展全方位的研究探讨,将有助于拓展我国煤层气开发的新视野。

第六,煤层气开采可能诱发的环境保护以及煤层气利用与储运技术问题,应该得到应有重视。在1994年以来的1465篇CNKI煤层气论文中:环境保护方面的论文只有19篇,几乎全为哲学意义上的讨论或介绍国外相关技术;利用与储运方面的论文逐年增长(图1),但多是关于煤层气发电和管网输送技术的探讨。这种状况,可能会影响到我国煤层气产业的健康发展。针对我国煤层气地质和开发特点,开展环境保护技术研究或实例分析,研究开发具有更高附加值的煤层气转化利用技术和适应矿区煤层气分布式开发特点的小型化利用储运技术与装置,将有助于弥补我国煤层气产业在此方面的不足。

参考文献

[1]秦勇.2006.中国煤层气产业化面临的形势与挑战(Ⅰ):当前所处的发展阶段.天然气工业,26(1):4~7

[2]中国期刊全文数据库.

[3]秦勇.2006.中国煤层气产业化面临的形势与挑战(Ⅱ):关键科学技术问题.天然气工业,26(2):6~10

[4]秦勇.2006.中国煤层气产业化面临的形势与挑战(Ⅲ):走向与前瞻性探索.天然气工业,26(3):1~5

[5]秦勇,宋全友,傅雪海.2005.煤层气与常规油气共采可行性探讨.天然气地球科学,16(4):492~498

114 评论

lingshan1226

吕玉民 汤达祯 许 浩 陶 树 张 彪

( 中国地质大学 ( 北京) 能源学院 北京 100083)

摘 要: 研究欠饱和煤层气藏开发过程中独特性的单相水流阶段有助于加深了解这类煤层气藏早期排采特征及其对气井潜在产能的指示作用。本文以沁南煤层气田欠饱和煤层气藏为例,重点研究这类气藏开发初期单相水排采特征,揭示其与后期气井产能大小的关系,并分析其对气井潜在产能的预示意义。研究表明: 沁南地区气井单相水排采特征受断层影响大,其排采时间与累计产量之间存在指数关系; 排采时间介于 50 ~140 d、累计产水量小于 500 m3的气井显示较好的产气能力。

关键词: 欠饱和煤层气藏 单相水 排采特征 指示意义

基金项目: 大型油气田及煤层气开发国家科技重大专项 ( 2011ZX05034 -001) ; 国家重点基础研究发展规划项目 ( 973) ( 2009CB219600) ; 中央高校基本科研业务费专项资金 ( 2011PY0211)

作者简介: 吕玉民,男,1985 年生,江西吉安人,博士生,现从事煤层气地质与开发研究。地址: 北京市海淀区学院路 29 号中国地质大学 ( 北京) 能源学院。电话: 。E-mail: yale1210@163. com

Single-Phase Water Flow Performance and Indication for Coalbed Methane Early Development: A Case of Southern Qinshui Basin

LV Yumin,TANG Dazhen,XU Hao,TAO Shu,ZHANG Biao

( School of Energy Resources,China University of Geosciences,Beijing,100083,China)

Abstract: Research on the unique single-phase water flow performance in the under-saturated reservoir devel- opment is favorable to acquire early pumping characteristics and forecast gas well productivity. This paper takes the case of the under-saturated CBM reservoirs in the southern Qinshui Basin,places emphasis on the characteristics of single-phase water pumping in the infancy of developing those under-saturated reservoirs,reveals the relation- ship between single-phase water pumping performance and gas well productivity,and analyses its indication of gas well potential production capacity. Results show single-phase water flow performance in Southern Qinshui Basin is mainly controlled by faults,and single-phase water pumping time has exponent relation to the accumulative water production. Additionally,those wells with pumping time of 50 ~ 140d and accumulative water production of less than 500 m3show excellent gas production performance.

Keywords: under-saturated coalbed methane reservoirs; single-phase water; pumping characteristics; indication

煤层气藏作为重要的非常规天然气藏,日益受到国内学者的广泛关注。近几年来,一大批国内学者在煤层气藏储层物性(陈振宏等,2007)、水文地质条件(王红岩等,2001;王勃等,2007)、边界及封闭机理(苏现波等,2005;宋岩等,2009)及成藏演化(宋岩等,2009;赵群等,2007;赵孟军等,2005)等方面开展了大量的研究工作并取得一定的成果。但与国外相比,我国煤层气藏基础研究起步晚,在煤储层发育地质环境及形成机理、高温高压下煤的吸附特性及描述模型和煤的吸附性能的地质控制因素等方面需要加强和深化(宋岩等,2005)。我国目前对煤层气藏开发缺乏系统的认识,尤其是对欠饱和煤层气藏开发初期单相水排采特征及其与气井产能之间的关系认识不足,制约了气田的合理开发部署。由于煤储层具有明显的应力敏感特性,因而欠饱和煤层气藏开发初期不合理的单相水排采措施将极大地损害储层绝对渗透率,降低气井潜在的产气能力,甚至影响整个煤层气田的后期开发部署和开发效果。

1 欠饱和煤层气藏气水产出特征

较强的吸附能力是煤储层的显著特点之一,煤层吸附态气体一般能达到80%以上(苏现波等,1999)。这种不同于常规天然气藏的特殊赋存机制,决定了煤层气产出机制的独特性。煤层气产出是一个排水→降压→解吸→扩散→渗流→产出的过程(冯文光,2009)。在这个过程中,煤层气藏气水产出机理受其含气饱和度大小的影响,也就是说煤层气藏含气饱和度不同,煤层气井的气水生产曲线也不同(苏现波等,2001)。

过饱和/饱和煤层气藏气水产出特征

过饱和煤层气藏指含气饱和度大于100%的煤层气藏,其特点是部分煤层气以游离态赋存于煤储层的孔裂隙系统中。当气井开井排水降压后,煤层气迅速解吸扩散,并与游离态的煤层气一同产出(图1a)。因而,开发这类气藏时,气井开井排水后立即产出煤层气,基本上不经历不饱和单相水流阶段,直接进入气水两相流阶段(如图1中III阶段)。

图1 不同含气饱和度的煤层气藏气水产出特征曲线

饱和煤层气藏指含气饱和度等于100%的煤层气藏。当气井开井排水降压后,煤层气立即解吸扩散。随着解吸和扩散的进行,煤层孔裂隙中游离气饱和度逐渐增大,直到其大于残余气饱和度后,气井才开始产出煤层气(图1b)。因而,开发这类煤层气藏,气井经历一段较短的不饱和单相水流阶段(如图1中II阶段),之后才产出煤层气。

欠饱和煤层气藏气水产出特征

欠饱和煤层气藏指含气饱和度低于100%的煤层气藏。当气井开井排水降压后,煤层气基本上尚未发生解吸,直到储层压力低于临界解吸压力后,煤层气才开始解吸。此时气井仍未产出煤层气。只有当煤层孔裂隙中游离气饱和度大于残余气饱和度后,气井才开始产出煤层气(图1c)。因而,开发这类煤层气藏,气井先后经历饱和单相水流、不饱和单相水流(图1中I、II阶段),之后才开始产出煤层气。

欠饱和煤层气藏开发初期单相水排采阶段需要较长的时间,少则1~2个月,多则数年之久。长时间单相水排采期内形成的气水排采特征是认识气藏储层特征和研究气井潜在产能的重要依据。

2 欠饱和煤层气藏开发初期单相水排采特征

表征欠饱和煤层气藏开发初期单相水排采特征的量化参数主要有2个:单相水排采时间和单相水累计产量。

单相水排采时间

单相水排采时间指开发欠饱和煤层气藏时煤层气井早期只产水不产气阶段所经历的时间。长时间的单相水排采时间势必增加煤层气井开发作业成本。因而,单相水排采时间的长短直接影响气田开发成本,是评价煤层气田开发经济性的重要参数。

单相水累计产量

单相水累计产量指开发欠饱和煤层气藏时煤层气井早期只产水不产气阶段地下水累计产出的总量。由于采出水大多具有高矿化度、高盐度等特征,不符合国家排放标准,必须经过处理后才能排放,以便不对地表水系及地下水造成污染(潘红磊等,1998;王志超等,2009)。采出水的处理无疑增加了煤层气开发成本,因而单相水累计产量的大小影响气田的开发成本,是评价煤层气田开发经济性的重要参数。

单相水排采时间与单相水累计产量之间的关系

欠饱和煤层气藏开发初期单相水排采时间与单相水累计产量同时受地质、工程以及人为因素等诸多相同因素的影响,两者之间必然存在一定的关系。从沁南煤层气田煤层气井单相水排采时间与单相水累计产量之间的关系图上可以看出(图2):当单相水排采时间小于250d时,其与单相水累计产量之间呈现较强的线性关系;当单相水排采时间大于250d时,其与单相水累计产量的相关性较差,呈指数关系;整体而言,两者之间呈指数关系:

y=()

式中:x为单相水排采时间,d;y为单相水累计产量,m3。该拟合函数的R2值达到,表明该函数能较好地描述该地区单相水排采时间与单相水累计产量之间关系。

单相水排采特征的影响因素

影响单相水排采特征的因素很多,主要有气藏临储比、排采速度、构造地质条件和水文地质条件。

在排采速度相同的条件下,煤层气藏含气饱和度越高,临解比越大,即临界解吸压力越接近储层压力,意味着气井实现产气所需降压的幅度越小,因而单相水排采时间就越短,累计产水量也相对较小。

图2 单相水排采时间与单相水累计产量之间的关系图

在临储比相近的条件下,煤层气井排采速度越快,储层降压越快,实现产气的时间越短(即单相水排采时间就越短),累计产水量也越小,如表1中的含气饱和度约为的J7与J10。

表1 单相水排采特征与断层的关系

构造地质条件和水文地质条件对单相水排采特征的影响极大。不同构造部分、不同水文地质条件的区域,其储层的渗透性、含水性以及地下水体的活跃性各不相同,造成气井的单相水排采特征也存在差异。沁南煤层气田多发育正断层(王红岩,2005),这些断层附近的水文地质条件复杂,不利于排水降压,单相水排采时间较长、累计产量较大(表1)。

3 单相水排采特征与气井产能的关系

对于应力敏感的煤储层来说,欠饱和煤层气藏开发初期不合理的单相水排采措施(排采过快或过慢)必然引起储层渗透率的损害,降低气井后期的排水产气能力。研究探讨单相水排采特征参数与气井产能之间的关系可以为开发早期制定合理单相水排采方案、提前预测煤层气井产能以及采取必要的储层增产改造措施提供指导。

目前,沁南煤层气田处于开发初期阶段,大部分煤层气井排采时间不长。该区樊庄、潘庄及郑庄区块煤储层含气饱和度大体在80%~90%,属于欠饱和煤层气藏(要惠芳等,2009)。为了科学地评价单相水排采特征与气井产能之间的关系,选择气井产气后连续排采1年形成的平均产气量和最大产气量作为气井产能指标。

单相水排采时间与气井产能的关系

气井排采过快,单相水排采时间过短,往往引起储层不可恢复的应力伤害,降低渗透率,影响产能;同时单相水排采时间过长,储层中水量较大(或连通含水层),不利于气井形成较好产能。

图3显示为沁南地区单相水排采时间与产气量之间的关系。从图中可以清楚地看出,气井的单相水排采时间与气井1年内的产气量之间存在4个明显的特点:1)单相水排采时间大于140d的煤层气井,其平均产气量基本上都小于3000m3/d,最大产气量则小于6000m3/d;2)单相水排采时间小于50d的煤层气井,其平均产气量基本上都小于3000m3/d,最大产气量则小于6000m3/d;3)出现较高产能的煤层气井(平均产气量大于3000m3/d,最大产气量大于6000m3/d),其单相水排采时间均介于50~140d;4)部分单相水排采时间介于50~140d的煤层气井产能偏低。这表明过长/过短的单相水排采时间不利于煤层气井形成高产。

图3 单相水排采时间与气井产能的关系图

在煤储层含气饱和度相当、地下水总体不活跃的沁南地区,部分井出现过长的单相水排采时间意味着该井沟通了活跃的水层,造成气井降压困难,产气有限;而过短的单相水排采时间表明气井排采速度过快,储层渗透率出现不同程度不可逆转的伤害,不利产气。因而,沁南地区单相水排采时间大于140d或小于50d的煤层气井,指示其产能普遍偏低;而介于50~140d的煤层气井比较有利于形成较高的产能。

单相水累计产量与气井产能的关系

单相水累计产量的大小往往指示区域水文地质特征。在相同的水文地质背景下,某些气井长时间大量排采单相水,很可能表明储层与含水层沟通,不利排采,难以形成较好产能。

图4显示沁南地区单相水累计产量与产气量之间的关系。从图中可以清楚地看出:气井的单相水排采时间与气井1年内的产气量之间存在3个明显的特点:1)单相水累计产量大于500m3的煤层气井,其平均产气量基本上都小于2000m3/d,最大产气量则小于4000m3/d;2)出现较高产能的煤层气井(平均产气量大于2000m3/d,最大产气量大于4000m3/d),其单相水累计产量小于500m3;3)有一部分单相水累计产量小于500m3的煤层气井产能偏低。

图4 单相水累计产量与气井产能的关系图

从表1看,沁南地区单相水累计产量偏高的煤层气井大多位于正断层附近。在煤层气藏成藏过程中,正断层绝大部分时间作为煤层气逸散的通道,导致正断层附近的煤层气保存条件较差,煤储层含气饱和度较低,增加了单相水排采阶段的排采时间和累计产水量。同时,正断层沟通附近的含水层,造成单相水排采阶段长时间降压困难,也延长了排采时间,增大了气井产水量。因而,沁南地区单相水累计产量大于500m3的煤层气井,指示其产能普遍偏低;而小于500m3的煤层气井比较有利于出现较高的产能。

4 结论

(1)过饱和、饱和和欠饱和煤层气藏开发过程中的气水产出特征各不相同,其中以欠饱和煤层气藏的气水产出特征最典型。欠饱和煤层气藏的气水产出特征最显著的特点是其开发初期存在较长时间的单相水排采阶段。

(2)单相水排采时间和单相水累计产量是描述欠饱和煤层气藏开发初期单相水排采特征的2个重要参数。单相水排采特征受断层影响大。沁南煤层气田气井的单相水排采时间与单相水累计产量之间存在指数关系。

(3)沁南煤层气田产能较好的煤层气井,其单相水排采时间为50~140d,单相水累计产量小于500m3;单相水排采时间大于140d及小于50d或单相水累计产水量大于500m3的煤层气井,其产能普遍偏低。

参考文献

陈振宏,贾承造,宋岩等.2007.构造抬升对高低煤阶煤层气藏储集层物性的影响.石油勘探与开发,34(4):461~464

冯文光.2009.煤层气藏工程.北京:科学出版社

潘红磊,吴东平.1998.可供借鉴的煤层气采出水处理方法[J].天然气工业,18(2):84~85

宋岩,柳少波,赵孟军等.2009.煤层气藏边界类型,成藏主控因素及富集区预测.天然气工业,29(10):5~11

宋岩,张新民,柳少波.2005.中国煤层气基础研究和勘探开发技术新进展.天然气工业,25(1):1~7

苏现波,陈江峰,孙俊民等.2001.煤层气地质学与勘探开发.北京:科学出版社

苏现波,林晓英,柳少波等.2005.煤层气藏边界及其封闭机理.科学通报,50(增刊):117~120

苏现波,刘保民.1999.煤层气的赋存状态及其影响因素.焦作工学院学报,18(3):157~160

王勃,姜波,王红岩等.2007.低煤阶煤层气藏水文地质条件的物理模拟.煤炭学报,32(3):258~260

王红岩,张建博,刘洪林等.2001.沁水盆地南部煤层气藏水文地质特征.煤田地质与勘探,29(5):33~36

王红岩.2005.山西沁水盆地高煤阶煤层气成藏特征及构造控制作用[D].中国地质大学(北京)博士论文

王志超,邓春苗,卢巍,张万昌.2009.晋城煤层气采出水的水质分析[J].煤炭科学技术,37(1):122~124

要惠芳,王秀兰.2009.沁水盆地南部煤层气储层地质特征[M].北京:煤炭工业出版社

赵孟军,宋岩,苏现波等.2005.沁水盆地煤层气藏演化的关键时期分析.科学通报,50(增刊):110~116

赵群,王红岩,康永尚等.2007.超饱和煤层气藏成藏机理.天然气工业,27(7):19~23

115 评论

小天使006

冯其红 石洪福 张先敏

(中国石油大学(华东)石油工程学院,山东青岛266555)

摘 要:当前制约我国煤层气发展的瓶颈是单井产量低、经济效益差,因此提高煤层气单井产量是我国 煤层气开发亟须解决的问题。注气增产法是一种提高煤层气采收率的增产技术,其原理是通过向煤层中注入 其他气体(CO2、N2或混合气体),与甲烷竞争吸附或降低甲烷有效分压,促进煤层甲烷的解吸。该技术可 以保证煤层的能量,有利于甲烷产出,可大幅度提高煤层气单井产量和采收率,延长煤层气田的开采期。本 文主要对注气开采煤层气增产机理、室内现场实验以及数值模拟等方面的国内外研究现状进行了综述,总结 了该领域目前面临的主要难点,展望了进一步深入研究的方向。

关键词:煤层气;注气;解吸;数值模拟

注气驱替煤层气具有减少温室气体排放和提高煤层气采收率的双赢效果。相比传统的储层压力衰竭法 开采,注入气体可以保持地层能量,延长煤层气井寿命,提高采收率[1],该技术还适用于开发深部低渗透 性松软煤层的煤层气。因此,气体驱替煤层气技术的相关研究受到世界主要发达国家的广泛重视。

1 注气驱替煤层气的机理

煤是一种孔隙高度发育的有机固体物质。气体在煤表面的吸附本质上是一种物理吸附,范德华力起 主要作用,不同气体在煤表面的吸附能力差异主要是分子间作用力的不同。Cunningham[2]和Parkash[3] 认为这种作用力与相同压力下各种吸附质的沸点有关,沸点越高,被吸附的能力越强,因此煤对气体的 吸附能力表现为:CO2 >CH4 >N2。降文萍等[4]则从量子化学的角度计算发现煤表面CO2的吸附势阱要 大于CH4,因此CO2的吸附能力强于CH4。Marco Mazzotti[5]研究发现吸附气体会导致煤岩膨胀且膨胀 量为CO2 >CH4 >N2,因此注入CO2驱替煤层气会导致渗透率明显降低。

后来,杨涛等[6]建议采用注入超临界CO2来开采煤层气,超临界CO2能以气体的身份与CH4进行 竞争吸附,同时还能以液相的性质在渗流通道内萃取出极性较低的碳氢化合物和类脂有机化合物,从而 增加了其孔隙度和渗透性。

N2的吸附能力比CH4弱[7],因此N2驱替煤层气的机理与CO2驱替不同(图1)。注入N2后可以 降低CH4的分压从而促进CH4的解吸,N2置换CH4后煤岩会收缩引起渗透率的上升,加拿大艾伯特省 Felm Big Vaney[8]试验区的单井注入试验已经证明了这一点。

图1 注CO2和N2驱替煤层气的原理示意图

总之,CO2驱替煤层气技术比较适合于高渗透、不可开采煤层,对于我国低渗透、可开采煤层有一 定的局限性。另外N2的成本比较低,提纯容易。因此,建议采用富含N2的混合气体驱替开采我国的 低渗透煤层气,一方面发挥了CO2的高驱替能力,另外一方面发挥了N2的增渗作用。

2 注气开采煤层气的试验

国内外开展了大量注气开采煤层气的室内以及现场试验。室内试验主要以气体的吸附/解吸、形变 和渗透率的测量为主,现场主要进行了CO2煤层埋存以及混合气体驱替煤层气的试验。

室内试验

煤对气体的吸附性大小主要取决于煤的岩石学组成、物理化学结构、煤阶、水分含量等自身因素,另外温度、压力也对煤岩的吸附性有较大的影响。针对煤对单组分气体的吸附,国内外的学者开展了大 量的深入研究[9~24]。

关于煤对多元混合气体的吸附,国内外专家学者[25~39]普遍认为多元气体吸附时,每种气体不 是独立吸附的,而是不同气体间存在着竞争吸附。二元气体的吸附等温线总是介于吸附能力强和吸 附能力弱的纯组分气体吸附等温线之间,混合体系中每一组分的吸附量都小于其单独在相同分压下 的吸附量。

室内的注气驱替实验的一般程序是:煤岩充分吸附CH4,然后注入其它气体,可以边注边抽,也可 以注入后待其它气体与甲烷充分竞争吸附后再抽,然后测试产出气体量和成分以及它们与注气压力、注 气速率等的关系。研究表明CO2/CH4的置换比高达1:7,N2/CH4可以达到1:4,产出气体中初期甲烷含 量几乎为100%,待注入气体突破后,甲烷含量明显降低[40,41]。

现场注气试验

美国、加拿大、日本、欧盟等先后进行了不同规模的注气驱替煤层气现场试验。1993年,美国的 BP Amoco公司在圣胡安盆地进行了世界上第一次注气(83%的N2和12%的CO2)提高采收率的相关 试验[42]。1995年,美国又在圣胡安盆地向Allison和Tiffany煤层进行纯CO2和纯N2注入试验[43]。为 了测试不同地质条件下ECBM技术的适用性,加拿大在Alberta[44]盆地进行了小规模的CO2-ECBM工 程,采收率得到明显提高。中国和加拿大也联合在沁水盆地南部的TL-003井也进行了CO2-ECBM的 微型先导性试验,测试数据显示注气后产气量明显上升,产水量有所下降[45,46]。除此之外,在日本在 北海道,欧盟在波兰也进行过类似的现场试验。

目前看来,几个国家的现场测试结果都比较令人满意,注入CO2后气井产量均有大幅增长,但是近 井周围的渗透率在注气后有所降低,随着排采过程又有一定程度的恢复。一方面是因为CO2的扩散趋 于均匀,不再像注入初期那样聚集在井筒附近,另一方面是排采过程中储层压力降低,煤基质收缩导致 渗透率有所增大。

3 注气开采煤层气的数值模拟

注入气体和煤层甲烷在煤层中赋存运移规律是注气开采煤层气的理论基础。注气开采煤层气的 实质是一个注入气体与甲烷在煤层中竞争吸附、解吸,扩散,以及水、气多相渗流的过程。ECBM 过程中煤层气的运移是一个非常复杂的过程,包括煤层气及注入气体的竞争吸附、解吸、扩散以及 达西流动等。气体的吸附、解吸会使煤岩产生膨胀、收缩变形,从而引起煤岩的孔隙结构变化,进 而引起煤岩渗透系数的变化。煤岩的孔隙结构和渗透系数变化反过来又影响气体在煤岩中的赋存与 流动。因此,ECBM过程是一个多组分气相-水相-煤岩固相耦合的过程。由于该过程非常复杂,即使建立了完整的数学模型,其求解也相当困难,因此,目前国内外学者Ekrem Ozdemir[47~50],Julio Manik,Seto,吴嗣跃,孙可明[50~52]等在建立ECBM过程模型的时候一般都作了一些假设,忽 略某些因素,使求解变得简单。

常规煤层气模拟器一般可以模拟:(1)双重孔隙系统;(2)单组分气体在孔隙系统的吸附和扩散; (3)裂隙系统达西渗流;(4)吸附气体解吸产生的煤岩收缩。模拟ECBM过程还必须考虑:(1)CO2吸附引 起的煤岩膨胀;(2)混合气体吸附;(3)混合气体扩散;(4)由于注入气体和煤层和之间的温差造成的非等 温吸附等。

针对ECBM过程的这些特点,目前,国内外广泛使用的ECBM模拟器主要包括商业的模拟器,如: GEM、ECLIPSE、SIMED11、COMET2,METSIM2和非商业的模拟器,如:GCOMP、TOUGH2、CBM - SIM、IPARS-CO2等。David [53]对注气驱替煤层气数值模拟做了深入的研究,详细比较了上 述几种模拟器的模拟效果,各自的功能特点见表1。

表1 目前主要的ECBM软件的功能特点

4 总结

总结国内外的研究成果,注气提高煤层气采收率的可行性和原理已经得到了充分的论证,然而,前人的研究工作多处于纯理论研究阶段,缺乏理论和实践的结合,而且存在如下可进一步研究的 问题:

(1)深入研究多组分气体在煤样中的竞争吸附/解吸效应,确定相对吸附(解吸)速率、置换速率 与吸附平衡压力、各组分气体分压、时间的关系。

(2)通过注气驱替渗流实验,研究煤层气采收率与注气方式、注气成分、注气周期、注气压力之 间的关系。

(3)研究煤变质程度及煤岩组分对注气效果的影响。

(4)开展高温、高压下的煤岩储层注气效果评价。

(5)采用格子Boltzmann方法[54]和分子动力学方法(MD)[55]进行注气开发的微观模拟。

参考文献

[1]Puri R.,Yee coalbed methane recovery[C].SPE20732 presented at the 65th Annual Technical Conference of the Society of Petroleum Engineers,New Orleans,1990:193-202.

[2]Cunningham in gas and porous media[M].New York:Plenum Press,1980:153-154.

[3]Parksh S.,Chanrabarrtly of coal from Alberta Planes[J].International Journal of Coal Geology,1986,6: 55-70

[4]降文萍,崔永君,张群.煤表面CH4,CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237~240.

[5]Mazzotti M.,Puri R.,Storti coalbed methane recovery[J].The Journal of Supercritical Fluids,2009,47: 619-627.

[6]杨涛.超临界CO2抽提对煤的改性实验研究[D].太原理工大学,2010:38~41.

[7]方志明.混合气体驱替煤层气技术的机理及试验研究[D].中国科学院武汉岩土所,2010,20~30.

[8]Wong S,Law D,Deng X, coalbed methane and CO2 storage in an thracitic coals-Micro-pilot test at South Qinshui Shanxi China[J].International Journal of Greenhouse Gas Control,2007,1(2):215-222.

[9]Levy .,Day .,Killingley capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,74:1-7.

[10]Bustin .,Clarkson controls on coalbed methane reservoir capacity and gas Content[J]. Coal Geol.,1998,38(1-2):3-26.

[11]Lamberson .,Bustin methane characteristics of gates formation coals,Northeastern British Columbia: effect of mineral composition[J].AAPG,1993,77:2062-2076.

[12]Clark .,Busti gas adsorption/ desorption isotherms:effects of moisture and coal composition upon carbon dioxide selectivity over methane[J]. Coal Geol.,2000,42:241-271.

[13]Jouber t .,Grein of methane in moist coal[J].Fuel,1973,52:181-185.

[14]Levine .,Johnson pressure microbalance sorption studies[J].International coalbed methane symposium,1993:187-195.

[15]Castello in the study of methane storage in a porous carbonaceous materials[J].Fuel,2002,81:1777- 1803.

[16]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566~570.

[17]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.

[18]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.

[19]郭立稳,王月红,张九零.煤的变质程度与煤层吸附CO影响的实验研究[J].辽宁工程技术大学学报,2007,26(2):165~168.

[20]郭立稳,肖藏岩,刘永新.煤孔隙结构对煤层中CO扩散的影响[J].中国矿业大学学报,2007,36(5):636~640.

[21]牛国庆,颜爱华,刘明举.煤吸附和解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003,31(4):47~49.

[22]钟玲文,郑玉柱等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].中国矿业大学学报,2002,27(6):581~585.

[23]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报2005,34(4):427~432.

[24]马东民,张遂安等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,3(1):20~23.

[25]于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618~622.

[26]于洪观,范维唐,孙茂远等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化,2005,28(1): 43~47.

[27]崔永君,张群,张庆玲等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].煤田地质与勘探,2005,25(1):61~65.

[28]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607~616.

[29]张庆玲,张群,崔永君等.煤对多组分气体吸附特性研究[J].煤田地质与勘探,2005,25(1):57~60.

[30]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1): 18~20.

[31]Bush,.,Krooss Y.,Gensterblum F.,et adsorption of methane,carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behavior.[J].Journal of Geochemical Exploration,2003,(78- 79):671-674.

[32]Mazumder S.,Hemert .,Busch A.,et gas and pure CO2 sorption properties of coal:A comparative study[J].International Journal of Coal Geology,2006,67:267-279.

[33]Fitzgerald .,Pan Z.,Sudibandriyo M.,et of methane,nitrogen carbon dioxide and their mixtures on wet Tiffany coal[J].Fuel,2005,84:2351-2363.

[34]Hasan Shojaei,Kristian of potential theory to modeling of ECBM recovery[C].SPE144612 prepsented at the SPE Western North American Regional Meeting,Alaska,USA,2011:7-11.

[35]Gruszkiewiez .,Naney .,Blencoe .,et kinetics of CO2,CH4,and their equimolar mixture on coal from the Black Warrior Basin,West-Central Alabama.[J].International Journal of Coal Geology,2009,77:23-33.

[36]Chaback,.,Morgan,et irreversibilities and mixture compositional behavior during enhanced coalbed methane recovery processes[C].SPE 35622-MS,SPE Gas Technology Symposium,28 April-1 May 1996,Calgary,Alberta,Canada.

[37] Sorption Modeling for Coalbed Methane Production and CO2 Sequestration[J].Energy Fuels,2006,20(4):1591-1599.

[38]Ekrem Ozdemir,Badie ,Karl adsorption capacity of Argonne premium coals[J].Fuel,2004,83:1085-1094.

[39],, et hysteresis phenomena in high-pressure sorption of methane and carbon dioxide on coal[C].Proceedings of the 2008 Asia Pacific CBM Symposium,Brisbane,Australia,2008.

[40]杨宏民.井下注气驱替煤层甲烷的机理及规律研究.[D]河南理工大学.2010,85~100.

[41]吴迪.CO2驱替煤层瓦斯的机理与实验研究.[D]太原理工大学2010,50-54.

[42],, Permeability change of coal during Gas -injection processes[J].SPE Reservoir Evaluation &,11(4):792-802.

[43]Tom Tang,Wenjuan Lin,Tanmay Chaturvedi,et laboratory investigation of CO2 injection for enhanced methane recovery from coalbeds[C].Presentations from the 5th International Forum on Geologic Sequestration of CO2:in Deep,Unmineable Coalbeds,2006.

[44]White C M,Smith D H,Jones K L,et of carbon dioxide in coal with enhanced coalbed methane recovery: a review energy fuels[J].Energy&Fuels,2005,19(3):659-724.

[45]Reeves, Coal-Seq Project:Key Results From Field,Laboratory,and Modeling Studies[C]The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7),Vancouver,BC,Canada,September 5-9,2004.

[46]Gunter .,Mayor .,Robinson storage and enhanced methane production:field testing at the Fenn Big Valley,Alberta,Canada[C].The 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7).September 5-9,2004.

[47]叶建平,冯三利,范志强等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80.

[48]Ekrem of the adsorption of carbon dioxide by Argonne premium coals and a model to simulate CO2 sequestration in coal seams[D].University of Pittsburg,2004.

[49]Ekrem of coalbed methane(CBM)production and CO2 sequestration in coal seams[J].International Journal of Coal Geology,2009,77:145-152.

[50]Julio modeling of enhanced coalbed methane recovery[D].The Pennsylvania State University,1999.

[51]., four-component,two-phase flow model for CO2 Storage and enhanced coalbed methane recovery[J].SPEJ,2009,14(1):30-40.

[52]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学,2007,18(4):580~583.

[53]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学博士学位论文,2004.

[54]Law .,Vander Meer,.,Gunter, of numerical simulators for greenhouse gas sequestration in coalbeds,part Ⅰ:pure carbon dioxide injection[C].paper SPE 75669 presented at the SPE gas technology symposium,Calgary,Alberta,Canada,2002.

[55]Akshay Gunde,Tayfun Babadagli,Sushanta method to estimate relative permeabilities for matrix- fracture interaction in naturally fractured reservoirs[C].SPE138255 presented at the SPE Eastern Regional Meeting,Morgantown,West Virginia,USA,2010.

[56]Haixiang Hu,Xiaochun Li,Ning gas sorption and diffusion in coal:Molecular simulation[J].Energy,2010,35:2939-2944.

351 评论

相关问答

  • 煤层气专业导论论文

    秦勇 (中国矿业大学 江苏徐州 221008) 作者简介:秦勇,1957年生,男,博士,教授,煤田与煤层气地质,yongqin@cumt.edu.cn。 基金项

    肖肖肖肖肖雪* 2人参与回答 2023-12-06
  • 论文煤气报警器开题报告

    我觉得最好的办法就是去找本(电气工程)这样的期刊~看下里面别人的论文题目都是什么~然后根据他们的论题找下灵感~肯定是可以的~加油

    向土豆要努力 8人参与回答 2023-12-09
  • 煤矿开采毕业论文结论

    一、煤炭工业发展现状煤炭是我国重要的基础能源和重要原料,煤炭工业的发展支撑了国民经济的快速发展。在20世纪50年代和60年代,煤炭在我国一次能源生产和消费结构中

    可可京99 3人参与回答 2023-12-11
  • 煤矿开采毕业论文开题报告

    毕业论文的开题报告该怎么写 开题报告是指开题者对科研课题的一种文字说明材料,这是一种新的应用写作文体。开题报告,就是当课题方向确定之后,课题负责人在调查研究的基

    越狱兔不越狱 5人参与回答 2023-12-06
  • 中国煤层气是核心期刊吗

    能源安全研究所是国家安全生产监督管理总局信息研究院(煤炭信息研究院)的核心业务部门,主要职能是为全国安全生产领域、国家有关部门及煤炭行业、提供决策、咨询和信息支

    肥猫啃鱼头 4人参与回答 2023-12-06