• 回答数

    6

  • 浏览数

    155

miss樱桃小米虫
首页 > 期刊论文 > 多斐波那契论文学术

6个回答 默认排序
  • 默认排序
  • 按时间排序

必须匿名

已采纳

现在有很多人都想要不劳而获,轻轻松松过上富有的生活,可是这是不可能的。在这一类的人中,就有不少想利用彩票发家致富的,可是这个想法实现的概率实在是太低。在国外曾经有一个人,利用彩票规则的漏洞,连续中了14次彩票头奖。他利用的公式其实很简单,就是普通的中学数学公式。

1、简单的数学公式

曼德尔生活在一个普通的家庭,他的家里并没有钱让他上学,尽管他对于数学是那么热爱。虽说他的学历不是很高,但是凭借着自己的天赋,还是找到了一个每月88美金的会计工作。虽说如此,但是依旧无法维持家庭的生计。有一次在他研究数学公式的时候,他发现可以利用数学家斐波那契的数列,来进行购买彩票。之后他写了一个“数字挑选算法”,可以从六个中奖号码中,算出可能中奖的5个。自此他就开始购买大量的彩票,让自己获得成功。

2、彩票的漏洞

我们都知道现在彩票的规则,就算我们把所有的彩票都买了,中奖的钱可能还没有彩票钱多。可是在当时不一样,曼德尔利用第一桶金完成了移民,在澳大利亚继续购买彩票。当时购买可能中奖的彩票所花的钱,比头奖的钱要少很多,这个漏洞让曼德尔看到了希望。他让大量的人购买他看重的彩票,很快就中了不少的头奖。而后来他更是把买彩票做成了生意,让越来越多的人加入到其中。而他所利用的,正是一个普通高中生都可以算出来的公式。

3、曼德尔的落幕

曼德尔的人生是充满传奇性的,而他的做法也受到了各国的关注,甚至还接受了十几个国家的调查。为了防止曼德尔的做法重复出现,各个国家都开始改变中奖策略和相应法律。正是由于这些限制,让曼德尔的做法开始失效。

323 评论

厦门混世小魔王

华罗庚 华罗庚同志是伟大的数学家中国共产党优秀党员、中国民主同盟卓越领导人、杰出的科学家、教育家和社会活动家、中国人民政治协商会议全国委员会副主席、中国科学院主席团委员及学部委员、中国科学技术协会副主席华罗庚同志,因心脏病突发,抢救无效,于一九八五年六月十二日晚在日本东京不幸逝世,终年七十四岁。华罗庚同志的逝世是我们党和人民在科学技术事业上的一个重大损失。全国人民为失去一位伟大的科学家而万分悲痛。 华罗庚同志1910年11月12日出生于江苏省金坛县一个城市贫民的家庭。一九二四年他从金坛县立中学初中毕业,入上海中华职业学校学习,因家庭贫困,一年后离开了学校,在父亲经营的小杂货铺当学徒。在此期间,他利用业余时间自学数学。一九二九年,他在金坛中学任庶务会计,开始在上海《科学》杂志发表论文。他的论文《苏家驹之代数五次方程式解法不能成立的理由》受到清华大学数学系主任熊庆来教授的重视。经熊教授推荐,他一九三一年到清华大学工作。他只用了八年的时间,从管理员、助教、讲师进而到英国剑桥大学研究深造,一九三八年受聘任昆明西南联大教授。在极为艰苦的生活条件下,他白天教学,晚上在菜油灯下孜孜不倦地从事研究工作,写下了名著《堆垒素论》。但在国民党统治下,这一名著无法出版,只好送到国外出版,直到解放以后才以中文版在我国正式发行。一九四六年秋,迫于白色恐怖,他出走美国,先后任普林斯顿高等研究院研究员、伊利诺大学终身教授。195O年,华罗庚同志响应祖国召唤,毅然从美国回到北京,先后任清华大学教授,中国科学院数学研究所所长,中国数学会理事长,中国科学院数理化学部委员、学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长,中国优选法统筹法与经济数学研究会会长等职。他把自己的毕生精力,投入到发展祖国的科学事业、特别是数学研究事业之中。 华罗庚同志是当代自学成才的科学巨匠,是萤声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变数函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于一九五七年荣获我国科学一等奖。他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔--加当--华定理”、“华--王(元)方法”。华罗庚同志一生为我们留下了二百篇学术论文,十部专著,其中八部为国外翻译出版,有些已列入本世纪数学经典著作之列。他还写了十余部科普作品。由于他在科学研究上的卓越成就,先后被选为美国科学院外籍院士,第三世界科学院院士,法国南锡大学、美国伊利诺大学、香港中文大学荣誉博士,联邦德国巴伐利亚科学院院士。他的名字已载人国际著名科学家的史册。华罗庚同志是中国科学界的骄傲,是中华民族的骄傲,是十亿中国人民的骄傲。 华罗庚同志也是我国最早把数学理论研究和生产实践紧密结合作出巨大贡献的科学家。从五十年代末期开始,他就走出书斋和课堂,来到广阔的工农业生产实践之中。他把数学方法创造性地应用于国民经济领域,筛选出了以改进生产工艺和提高质量为内容的“优选法”和处理生产组织与管理问题为内容的“统筹法”(简称“双法”),并用深入浅出的语言写出了《优选法乎话及其补充》和《统筹法平话及补充》两本科普读物。二十多年来,华罗庚同志为推广“双法”,足迹遍及全国二十六个省、市、自治区。他组织和领导了广大工人、农民、战士和工程技术人员参加推广“双法”,使“双法”得到大面积普及和推广,以至运用到国家重点建设项目的研究,不仅为节约能源,增加产量,降低消耗,缩短工期取得了显著的经济效益,而且培养了一支为国民经济服务的科技队伍。毛泽东同志对华罗庚同志在科学上的这一创新曾给予高度评价,一九六四年和一九六五年两次写信给华罗庚同志,”祝贺和勉励他“壮志凌云,可喜可贺”,“奋发有为,不为个人而为人民服务。”十年动乱期间,当华罗庚同志受到林彪、江青反革命集团迫害时,周恩来同志以大无畏的精神挺身而出,保护华罗庚同志,支持他继续从事“双法”的研究和推广工作。胡耀邦同志一九八二年给华罗庚同志写信,充分肯定他把数学理论应用于生产实践,号召“更多的同志投身到新技术、新工艺攻关的行列中去,从而把我国的四个现代化建设推向前进”,共同建造中国的“通天塔”。 华罗庚同志是一位经历过新旧两个不同时代,从爱国主义者转变为共产主义战士的我国知识分子的优秀代表。早年,他曾参加中国共产党领导的抗日民主爱国运动,是李公朴、闻一多烈士的挚友。一九四六年春,他应邀赴苏联访问,写下了《访苏三月记》,表达了他对社会主义的向往。新中国的诞生,更加激发了他的爱国热忱。他看到“祖国已黎明”,放弃在美国终身教授的优厚待遇,冲破重重封锁,回到祖国的怀抱。在横渡太平洋的航船上,他致信留美同学:“为了抉择真理,我们应当回去;为了国家民族,我们应当回去;为了为人民服务,我们也应当回去……为我们伟大祖国的建设和发展而奋斗!”他爱国不怕险,纯真赤子心,受到广大人民群众和一切爱国知识分子的称颂。华罗庚同志在长期的科学研究工作中,特别是在把科学研究与生产实践相结合的过程中,努力学习马列主义、毛泽东思想,提高思想政治觉悟,强烈要求加人中国共产党,为共产主义事业奋斗。十年动乱期间,他虽然身处逆境,但也未动摇对党的信念。拨乱反正以来,他衷心拥护党的十一届三中全会以来的路线、方针、政策,心情舒畅,精神振奋。一九七九年,在党中央的亲切关怀下‘他光荣地加入了中国共产党,实现了多年的宿愿。他在答邓颖超同志的祝贺中兴奋地写道:“沧海不捐一滴水,洪炉陶冶砂成金,四化作尖兵”,“横刀哪顾头颅白,跃马紧傍青壮人,不负党员名”;充分表现了一个共产主义战士的坚定信念和高尚情操。他把入党作为自己前进道路的新起点,更加严格要求自己,不顾年老体弱多病,以惊人的毅力,经过三年的拼搏,终于把十年浩劫中被盗走的手稿重新追忆出来,写成了《计划经济大范围最优化的数学理论》不仅完整地记述了以往的研究成果,而且有了新的发展。 华罗庚同志还是一位著名的社会活动家。他是一至六届全国人大常委会委员、第六届全国政协副主席、中国民主同盟副主席.他关心国家大事,积极参加国家政治生活,为经济建设和科学、文化教育事业的发展献计献策。他积极参加民盟的活动,为民盟工作的开展,扩大爱国统一战线和实现祖国统一作出了重要贡献。近年来,他多次出国访问,广交朋友,在华裔知识分子中从事大统一、大团结的工作,常以“海外有知己,天涯成比邻”的诗句,来激励海外华人为祖国四化建设和实现国共第三次合作,完成祖国统一大业出力,并为加强我国和各国人民的友好合作和科学文化交流,作出了可贵的贡献。华罗庚同志是推动我国科学事业前进的伟大数学家,是中华民族一代人自学成才的典范。华罗庚同志的一生是光荣的、战斗的、为人民服务的一生。为了振兴中华和人类进步,他把毕生精力献给了人民的科学事业。他走过的道路,一是本世纪我国知识分子前进的光明大道。华罗庚同志给我国和世界科学文化宝库增添了新的财富,也为我们留下了丰富的精神遗产。他是我国人民、特别是青少年一代学习的榜样。华罗庚同志自学成才,勤奋求实,勇于开拓,永远向前。他一共上过九年学,只有一张初中毕业文凭,最后能成为蛮声中外的杰出科学家,完全是依靠刻苦自学取得成功的。他即使到了晚年,在学术界的声望和地位已经很高,仍然手不释卷,顽强地读和写。他从不迷信天才,认为:“天才由于积累,聪明在于勤奋”。他提出“树老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实而终”的名言,作为对自己的告诫。直到他逝世前不久,还这样写道:“发白才知智叟呆,埋头苦干向未来,勤能补拙是良剂,一分辛苦一分才。”这就是华罗庚同志成功之路的秘诀。 华罗庚同志热爱祖国,热爱党,全心全意为人民服务。他常说:“科学没有国界,但科学家是有自己的祖国的。”他企对社会主义祖国的热爱和对党的热爱有机地联系在一起,只要是党的需要他愿赴汤图火。他把“一心为人民”作为自己的座右铭,用以衡量一切是非真谬的尺度。他把自己的思想、行为、追求、理想,溶于祖国、党、人民的最高利益之中,不愧为一位品德高尚的共产党人。华罗庚同志精心扶持年轻一代茁壮成长。他十分注意发现和推荐脱颖而出的拔尖人才。他是新中国在中学生中开展数学竞赛的创始人和组织者,引导青少年从小热爱科学,进人数学研究领域,扶持他们成为我国新一代的数学家。华罗庚同志顽强拼搏,为四化奋斗到最后一息。十年前,华罗庚同志第一次患心肌梗塞症,出院后曾留下这样的诗句:“壮士临阵决死,哪管些许伤痕。向千年老魔攻战,为百代新风斗争,慷慨掷此身!”一九八二年秋,他因日夜写作,劳累过度,第二次患心肌梗塞住进了医院。他在病床上谆谆要求助手们坚持为国民经济服务的方向,在解决实际问题中推动应用数学的发展。今年六月三日,他带领一批中年业务骨干赴日本进行学术交流。十二日下午,在向日本数学界作学术报告的讲坛上,当他讲金最后一句话时,心脏病突发,不幸逝世。我们敬爱的华罗庚同志,为祖国的四化建设,为加强中日两国人民和科技界人士的友好合作献出了宝贵的生命,实现了他“最大希望就是工作到生命的最后一刻”为共产主义事业奋斗终生的壮丽誓言。华罗庚同志与我们永别了,华罗庚精神将永存。欧几里德(eucild)生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。 古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。 《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。 欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。” 欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。” 欧氏还有《已知数》《图形的分割》等著作。 华罗庚 华罗庚,数学家,中国科学院院士。 1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对.哈代与.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著 《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。 爱奥尼亚最繁盛的城市是米利都(Miletus,小亚细亚西南角海岸).地居东西方交通的要冲,也是古希腊第一个享誉世界声誉的学者泰勒斯(Thales 约公元前640-546年)的故乡.泰勒斯早年是一个商人,以后游历了巴比伦,埃及等地,很快学会了天文和几何知识. 自然科学发展的早期,还没有从哲学分离出来.所以每一个数学家都是哲学家,就像我国每一个数学家都是历法家一样.要了解人与自然的关系,以及人在宇宙中所处的位置,首先要研究数学,因为数学可以帮助人们在混沌中找出秩序,按照逻辑推理求得规律. 泰勒斯是公认的希腊哲学家的鼻祖.他创立了爱奥尼亚哲学学派,摆脱了宗教,从自然现象中寻找真理,否认神是世界的主宰.他认为处处有生命和运动,并以水为万物的根源.泰勒斯有崇高的声望,被尊为希腊七贤之首. 泰勒斯在数学方面的划时代的贡献是开始了命题的证明.他所得到的命题是很简单的.如圆被任一直径平分;等腰三角形两底角相等;两条直线相交,对顶角相等;相似三角形对应边成比例;半圆上的圆周角是直角;两三角形两角与一边对应相等,则三角形全等.并且证明了这些命题. 泰勒斯游历了许多地方,他在埃及的时候,应用相似三角形原理,测出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大为惊讶.泰勒斯对于天文也很精通,据说在他的故乡附近曾经存在过两个国家:美地亚国(Media)和吕地亚国(Lydia).有一年发生了激烈的战争.连续五年未见胜负,横尸遍野,哀声载道.泰勒斯预先知道有日食要发生,便扬言上天反对战争,某月某日将大怒,太阳将被消逝.到了那一天,两军正在酣战不停,突然太阳失去了光辉,百鸟归巢,明星闪烁,白昼顿成黑夜.双方士兵将领大为恐惧,于是停战和好,后来两国还互通婚姻.据考证,这次日食发生在公元前585年5月28日.这大概是应用了迦勒底人发现的沙罗周期,根据公元前603年5月18日的日食推得的. 泰勒斯被誉为古希腊数学,天文,哲学之父,是当之无愧的. 斐波那契(Leonardo Fibonacci,约1170-约1250) 意大利数学家,12、13世纪欧洲数学界的代表人物。生于比萨,早年跟随经商的父亲到北非的布日伊(今阿尔及利亚东部的小港口贝贾亚),在那里受教育。以后到埃及、叙利亚、希腊、西西里、法国等地游历,熟习了不同国度在商业上的算术体系。1200年左右回到比萨,潜心写作。 他的书保存下来的共有5种。最重要的是《算盘书》(1202年完成,1228年修订),算盘并不单指罗马算盘或沙盘,实际是指一般的计算。 其中最耐人寻味的是,这本书出现了中国《孙子算经》中的不定方程解法。题目是一个不超过105的数分别被 3、5、7除,余数是2、3、4,求这个数。解法和《孙子算经》一样。另一个「兔子问题」也引起了后人的极大兴趣 。题目假定一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就有生殖能力,问从一对大兔子开始, 一年后能繁殖成多少对兔子?这导致「斐波那契数列」:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。这数列与后来的「优选法」有密切关系。 拉格朗日〔Lagrange, Joseph Louis,1736-1813〕 法国数学家。 涉猎力学,着有分析力学。 百年以来数学界仍受其理论影响。 法国数学家、力学家及天文学家拉格朗日于1736年1月25日在意大利西北部的都灵出生。少年时读了哈雷介绍牛顿有关微积分之短文,因而对分析学产生兴趣。他亦常与欧拉有书信往来,于探讨数学难题「等周问题」的过程中,当时只有18岁的他就以纯分析的方法发展了欧拉所开创的变分法, 奠定变分法之理论基础。后入都灵大学。 1755年,19岁的他就已当上都灵皇家炮兵学校的数学教授。不久便成为柏林科学院通讯院院士。两年后,他参与创立都灵科学协会的工作,并于协会出版的科技会刊上发表大量有关变分法、概率论 、微分方程、弦振动及最小作用原理等论文。这些着作使他成为当时欧洲公认的第一流数学家。 到了1764年,他凭万有引力解释月球天平动问题获得法国巴黎科学院奖金。1766年,又因成功地以微分方程理论和近似解法研究科学院所提出的一个复杂的六体问题〔木星的四个卫星的运动问题〕而再度获奖。 同年,德国普鲁士王腓特烈邀请他到柏林科学院工作时说:「欧洲最大的王」的宫廷内应有「欧洲最大的数学家」,于是他应邀到柏林科学院工作,并在那里居住达20年。其间他写了继牛顿后又一重要经典力学着作《分析力学》〔1788〕。书内以变分原理及分析的方法,把完整和谐的力学体系建立起来,使力学分析化。他于序言中更宣称:力学已成分析的一个分支。 1786年普鲁士王腓特烈逝世后,他应法王路易十六之邀,于1787年定居巴黎。其间出任法国米制委员会主任,并先后于巴黎高等师范学院及巴黎综合工科学校任数学教授。最后于1813年4月10日在当地逝世。 拉格朗日不但于方程论方面贡献重大,而且还推动了代数学的发展。他在生前提交给柏林科学院的两篇着名论文:《关于解数值方程》〔1767〕及《关于方程的代数解法的研究》〔1771〕中,考察了 二、三及四次方程的一种普遍性解法,即把方程化作低一次的方程〔辅助方程或预解式〕以求解。 但这并不适用于五次方程。在他有关方程求解条件的研究中早已蕴含了群论思想的萌芽,这使他成为伽罗瓦建立群论之先导。 另外,他在数论方面亦是表现超卓。费马所提出的许多问题都被他一一解答,如:一正整数是不多于四个平方数之和的问题;求方程x2 - A y 2 = 1〔A为一非平方数〕的全部整数解的问题等。他还证明了π的无理性。这些研究成果都丰富了数论之内容。 此外,他还写了两部分析巨着《解析函数论》〔1797〕及《函数计算讲义》〔1801〕,总结了那一时期自己一系列的研究工作。 于《解析函数论》及他收入此书的一篇论文〔1772〕中企图把微分运算归结为代数运算,从而拼弃自牛顿以来一直令人困惑的无穷小量,为微积分奠定理论基础方面作出独特之尝试。他又把函数f(x) 的导数定义成f(x + h)的泰勒展开式中的h项的系数,并由此为出发点建立全部分析学。可是他并未考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,实只回避了极限概念,因此并未达到使微积分代数化、严密化的想法。不过,他采用新的微分符号,以幂级数表示函数的处理手法对分析学的发展产生了影响,成为实变函数论的起点。 而且,他还在微分方程理论中作出奇解为积分曲线族的包络的几何解释,提出线性变换的特征值概念等。 数学界近百多年来的许多成就都可直接或简接地追溯于拉格朗日的工作。为此他于数学史上被认为是对分析数学的发展产生全面影响的数学家之一。 拉格朗日〔Lagrange, Joseph Louis,1736-1813〕 法国数学家。 涉猎力学,着有分析力学。 百年以来数学界仍受其理论影响。 法国数学家、力学家及天文学家拉格朗日于1736年1月25日在意大利西北部的都灵出生。少年时读了哈雷介绍牛顿有关微积分之短文,因而对分析学产生兴趣。他亦常与欧拉有书信往来,于探讨数学难题「等周问题」的过程中,当时只有18岁的他就以纯分析的方法发展了欧拉所开创的变分法, 奠定变分法之理论基础。后入都灵大学。 1755年,19岁的他就已当上都灵皇家炮兵学校的数学教授。不久便成为柏林科学院通讯院院士。两年后,他参与创立都灵科学协会的工作,并于协会出版的科技会刊上发表大量有关变分法、概率论 、微分方程、弦振动及最小作用原理等论文。这些着作使他成为当时欧洲公认的第一流数学家。 到了1764年,他凭万有引力解释月球天平动问题获得法国巴黎科学院奖金。1766年,又因成功地以微分方程理论和近似解法研究科学院所提出的一个复杂的六体问题〔木星的四个卫星的运动问题〕而再度获奖。 同年,德国普鲁士王腓特烈邀请他到柏林科学院工作时说:「欧洲最大的王」的宫廷内应有「欧洲最大的数学家」,于是他应邀到柏林科学院工作,并在那里居住达20年。其间他写了继牛顿后又一重要经典力学着作《分析力学》〔1788〕。书内以变分原理及分析的方法,把完整和谐的力学体系建立起来,使力学分析化。他于序言中更宣称:力学已成分析的一个分支。 1786年普鲁士王腓特烈逝世后,他应法王路易十六之邀,于1787年定居巴黎。其间出任法国米制委员会主任,并先后于巴黎高等师范学院及巴黎综合工科学校任数学教授。最后于1813年4月10日在当地逝世。 拉格朗日不但于方程论方面贡献重大,而且还推动了代数学的发展。他在生前提交给柏林科学院的两篇着名论文:《关于解数值方程》〔1767〕及《关于方程的代数解法的研究》〔1771〕中,考察了 二、三及四次方程的一种普遍性解法,即把方程化作低一次的方程〔辅助方程或预解式〕以求解。 但这并不适用于五次方程。在他有关方程求解条件的研究中早已蕴含了群论思想的萌芽,这使他成为伽罗瓦建立群论之先导。 另外,他在数论方面亦是表现超卓。费马所提出的许多问题都被他一一解答,如:一正整数是不多于四个平方数之和的问题;求方程x2 - A y 2 = 1〔A为一非平方数〕的全部整数解的问题等。他还证明了π的无理性。这些研究成果都丰富了数论之内容。 此外,他还写了两部分析巨着《解析函数论》〔1797〕及《函数计算讲义》〔1801〕,总结了那一时期自己一系列的研究工作。 于《解析函数论》及他收入此书的一篇论文〔1772〕中企图把微分运算归结为代数运算,从而拼弃自牛顿以来一直令人困惑的无穷小量,为微积分奠定理论基础方面作出独特之尝试。他又把函数f(x) 的导数定义成f(x + h)的泰勒展开式中的h项的系数,并由此为出发点建立全部分析学。可是他并未考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,实只回避了极限概念,因此并未达到使微积分代数化、严密化的想法。不过,他采用新的微分符号,以幂级数表示函数的处理手法对分析学的发展产生了影响,成为实变函数论的起点。 而且,他还在微分方程理论中作出奇解为积分曲线族的包络的几何解释,提出线性变换的特征值概念等。 数学界近百多年来的许多成就都可直接或简接地追溯于拉格朗日的工作。为此他于数学史上被认为是对分析数学的发展产生全面影响的数学家之一。 更多可以去百度 数学家吧

312 评论

princess小姐

很多人都对彩票并不陌生,对于中彩票就是很走运了,对于中头奖的概率更是比被闪电劈中概率还低,但是就有这么一个人却中了14次彩票,真的种了14次彩票,但是他的公式是绝对保密的,但是我们可以知道的是对于这个公式来说并不是固定可以每次得出来的一串数字,这个公式其实是一串可能中奖的组合数字,也就是不止一组的号码,而且是很多组,他自己称自己的公式组合可以猜中开奖6个数字中的5个,得到的是可能中奖的几个数字,但数字顺序是如何的,他并不能确定,所以还是需要购买几千张可能的数字组合而成的号码,但是相对几百万张彩票才能中1注的奖池而言,他已经把概率缩减的很小了。

这串大大缩减中奖范围的公式来由具体的这一切得从20世纪60年代讲起,当时的曼德尔虽然是犹太人,但是其实那时候他的头脑还没有完全的展露出来,他只是罗马尼亚矿业公司的一名小会计,生活也十分拮据,为了改善生活状况,加上自己天生对于数字就比较敏感,偶然间接触到了彩票,他认为彩票事可以改变它的生活框框的,通过他自己每周对于数字的研究,自己称研究出了一套:“数字挑选法”,通过自己的理论以及他说服了他的好友们,冒着尝试的想法,一起购买了几千个不同的彩票组合数字,于是很神奇的事情发生了,他中了头奖,他获得了78783罗马尼拉列伊(罗马尼亚官方货币),相当于19300美金,相当于他当时18年的工资总和。除去成本,他个人赚得了4000美金。要知道他那时候每个月薪水只有可怜的88美元一个月。

而因此他也一炮而红,多家媒体都前来采访他,究竟是什么样的公式能够将彩票中奖范围缩小在这么小的一个范围内,但他开玩笑的说了一句,可口可乐也永远不会公开他的配方呀。

在多次中了头奖之后,也正所谓人红是非多,引来了相关部门对他购买彩票使用非法手段进行牟利的审查,但是在检察部门和多个监管部门连续的多方面调查之后,发现曼德尔真的没有使用不正当的手段进行牟利,在证实了这一切都是他自己写出来的彩票组合之后,美国相关部门相当重视,因为他也更改了彩票的规则,就此,曼德尔也再没有购买过彩票,但是他那时候已经达到了财富自由,也可能因此他也再也没有触碰这一块了。

简单来说,彩票在那个时候可能是有一定算法的漏洞的,但是在如今的社会彩票公开的公布,以及机器滚出号码的流程而言,现在的彩票是不可能在存在公式了,彩票只能作为一个闲情逸致时候投机玩一下的事情,在目前的社会脚踏实地的好好工作,努力实现自己的梦想才是真呐。

305 评论

丘比特來來

后来他用中彩票得到的钱开了一家公司,而且生意也很好。彩票公司最后也修改了自己的规则。

109 评论

南京1942

我原来是数学课代表 我写过的 并不难 比如说斐波那契数列的研究斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。定义斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368特别指出:第0项是0,第1项是第一个1。这个数列从第二项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)通项公式的推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2, X2=(1-√5)/2.则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1 解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s。使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。则r+s=1, -rs=1。n≥3时,有。F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。……F⑶-r*F⑵=s*[F⑵-r*F⑴]。联立以上n-2个式子,得:F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。∵s=1-r,F⑴=F⑵=1。上式可化简得:F(n)=s^(n-1)+r*F(n-1)。那么:F(n)=s^(n-1)+r*F(n-1)。= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。=(s^n - r^n)/(s-r)。r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}与黄金分割关系有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割、前一项与后一项的比值越来越逼近黄金分割)1÷1=1,1÷2=,2÷3=...,3÷5=,5÷8=,…………,55÷89=…,…………144÷233=…46368÷75025=…...越到后面,这些比值越接近黄金比.证明a[n+2]=a[n+1]+a[n]。两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]。若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。所以x=1+1/x。即x²=x+1。所以极限是黄金分割比..特性平方与前后项从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)与集合子集斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。奇数项求和偶数项求和平方求和隔项关系f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]两倍项关系f(2n)/f(n)=f(n-1)+f(n+1)其他公式应用生活中斐波那契斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。黄金分割随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值..…杨辉三角将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f⑴=C(0,0)=1。f⑵=C(1,0)=1。f⑶=C(2,0)+C(1,1)=1+1=2。f⑷=C(3,0)+C(2,1)=1+2=3。f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。……F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)质数数量斐波那契数列的整除性与素数生成性每3个连续的数中有且只有一个被2整除,每4个连续的数中有且只有一个被3整除,每5个连续的数中有且只有一个被5整除,每6个连续的数中有且只有一个被8整除,每7个连续的数中有且只有一个被13整除,每8个连续的数中有且只有一个被21整除,每9个连续的数中有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)斐波那契数列的素数无限多吗?尾数循环斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,…进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。自然界中巧合斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。数字谜题三角形的三边关系定理和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。推广斐波那契—卢卡斯数列卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。卢卡斯数列的通项公式为 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)n12345678910…斐波那契数列F(n)11235813213455…卢卡斯数列L(n)776123…F(n)*L(n)7798725846765…类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。斐波那契—卢卡斯数列之间的广泛联系①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),n12345678910…F[1,4]n097157…F[1,3]n776123…F[1,4]n-F[1,3]n0112358132134…F[1,4]n+F[1,3]n279162540…②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如n12345678910…F[1,1](n)11235813213455…F[1,1](n-1)0112358132134…F[1,1](n-1)0112358132134…F[1,3]n776123…黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5F[1,4]数列:|4*4-1*5|=11F[2,5]数列:|5*5-2*7|=11F[2,7]数列:|7*7-2*9|=31斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。当p=1,q=1时,我们得到斐波那契—卢卡斯数列。当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。当p=-1,q=2时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关数学排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。兔子繁殖问题斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔对数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0123456789101112幼仔对数101123581321345589成兔对数011235844总体对数11235844233幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)数列与矩阵对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义F(n)=f(n-1)+f(n-2)F(1)=1F(2)=1对于以下矩阵乘法F(n+1) = 11 F(n)F(n) 10 F(n-1)它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:10 F(n-1)F(n+1)=F(n)+F(n-1)F(n)=F(n)可见该矩阵的乘法完全符合斐波那契数列的定义设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*11 0 F(n) F(0) 0这就是斐波那契数列的矩阵乘法定义。另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘。因此可以用递归的方法求得答案。数列值的另一种求法:F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]其中[ x ]表示取距离 x 最近的整数。斐波那契弧线斐波那契弧线,也称为斐波那契扇形线。第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:, 50%和的无形垂直线交叉。斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变,因为弧线是圆周的一部分,它的形成总是一样的。于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。斐波那契数列在股市中的应用时间周期理论是股价涨跌的根本原因之一,它能够解释大多数市场涨跌的奥秘。在时间周期循环理论中,除了利用固定的时间周期数字寻找变盘点之外,还可以利用波段与波段之间的关系进行研究。但无论如何寻找变盘点,斐波那契数列都是各种重要分析的基础之一,本文将简单阐述斐波那契数列及其与市场的关系。工具/原料步骤/方法斐波那契数列由十三世纪意大利数学家斐波那契发现。数列中的一系列数字常被人们称之为神奇数奇异数。具体数列为:1,1,2,3,5,8,13,21,34,55,89,144,233等,从该数列的第三项数字开始,每个数字等于前两个相邻数字之和。而斐波那契数列中相邻两项之商就接近黄金分割数,与这一数字相关的、、和等数字就构成了股市中关于市场时间和空间计算的重要数字。大到整个宇宙空间到小到分子原子,从时间到空间,从自然到人类社会,政治、经济、军事等,各种现象中的规律都能找到斐波那契数的踪迹。世界著名建筑如巴黎圣母院、埃菲尔铁塔、埃及金字塔等均能从它们身上找到的影子。名画、摄影、雕塑等作品的主题都在画的处。报幕员站在舞台的处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的位置,人的膝盖是从脚底到肚脐眼长度的。战争中的运用也是无所不在,小到兵器的制造、中到排兵布阵到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。在金融市场的分析方法中,斐波那契数字频频出现。例如,在波浪理论中,一轮牛市行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;在空间分析体系中,反弹行情的高度通常是前方下降趋势幅度的、、;回调行情通常是前方上升趋势的、和。斐波那契数列在实际操作过程中有两个重要意义:第一个实战意义在于数列本身。本数列前面的十几个数字对于市场日线的时间关系起到重要的影响,当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的阶段变盘点向未来市场推算,到达时间时市场发生方向变化的概率较大。图1综合指数(1A0001)2009年7月29日—12月31日日线图如图1所示,综合指数(1A0001)2009年8月4日的3478点到2009年9月1日阶段低点2639点的时间关系是21个交易日,2009年9月1日的阶段低点2639点到2009年9月18日的高点3068点是13个交易日的时间,到2009年9月29日的低点2712点是21个交易日,到2009年10月23日的高点3123点的时间是34个交易日,到2009年11月24日的年度次高点3361点的时间是55个交易日。图2综合指数(1A0001)2009年7月10日—12月31日周线图如图2所示,综合指数(1A0001)2009年8月4日的高点3478点到2009年9月4日2639点的运行时间是5周;2009年9月4日的低点2639点到2009年11月27日反弹高点3361点的时间是13周。斐波那契数列在股市中的应用斐波那契数列在股市中的应用第二个实战意义在于本数列的衍生数字是市场中纵向时间周期计算未来市场变盘时间的理论基础。这组衍生数列分别是:、、、、、2、、、等一系列与黄金分割相关的数字。在使用神奇数列时主要有六个重要的时间计算方法:第一、通过完整的下跌波段时间推算未来行情上涨波段的运行时间。第二、通过完整的上涨波段时间推算未来行情下跌波段的运行时间。这两种比例关系就像生活中我们经常见到的作用力与反作用的关系,乒乓球垂直掉到地面的高度决定乒乓球触击地面以后反弹的高度是同样的道理。第三、通过上升波段中第一个子波段低点到高点的时间推算本上升波段最终的运行时间。第四、通过下降波段中第一子波段高点到低点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的推动力与惯性的关系,当古代弓箭的弓与弦被拉开的距离直接决定了未来箭向前飞行的距离。第五、通过本上升波段中第一子波段的两个相邻低点的时间推算未来上升波段的最终运行时间。第六、通过下降波段中第一子波段的两个相邻高点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的建筑物地基宽度影响未来高度一样重要。在材质相同的情况下,地基宽度越大,未来高度越高。5在这六种重要的时间计算方法中最为重要的就是计算过程中实际使用的参数,利用不同的参数会得到不同的答案,而使用过程中几乎所有的重要参数都与斐波那契数列有关。由于篇幅原因,这里先埋个伏笔,我会在以后的文章中为股民朋友详细阐述计算方法。

305 评论

酸奶娃儿

说出来可能很多人并不相信,在20世纪的时候,有一个名叫Stefan Mandel(曼德尔)的犹太人他一共中过14次的头等奖。今天,我们就来讨论一下,这位曼德尔是如何利用一个中学数学公式,14次买中彩票头奖的。

在20世纪60年代的时候,曼德尔就出生了。他很聪明,曼德尔幼时就表现出了与同龄人不一样的智慧,4岁时的曼德尔就可以熟练的进行数学计算,数字推理是他经常做的事情。对于曼德尔来说,研究数学从事数学相关的研究是一个非常不错的选择。但是,曼德尔家里非常的贫困,曼德尔一边上学还要一边做兼职。在和他相同年龄的人纷纷大学毕业后,曼德尔好不容易才找到一份会计的工作,靠着微薄的工资养家糊口。但是,他每个月只有90美元的薪资,可以说曼德尔的生活过得非常的频繁。基于对数学的热爱,他再一次投身于数学之中。在一次很巧妙的时间里,曼德尔在电视上看彩票开奖的节目,曼德尔看着屏幕上的彩票号码使得全身都兴奋起来。

从那天以后,曼德尔便换了一个方向,他认为买彩票可以让自己发财。那个时候的彩票一共是7组数字,每一组都有1-2两个数字构成,这其中的6组数字可以变成33个组合数字,彩票的最后一组数字则要从另外16个组合中选择,排列组合下来,一共有1700多万种组合方法。在我们眼里看来,在这1700多万种里挑出一个中奖数字比登天还难。但是这在曼德尔的眼里却是一次机会,他借助自己的数学知识去计算中奖的数字,并且他已经找到了中彩票的规律。曼德尔通过对斐波那契学术论文的长时间研究,他编写了一个他自己叫做“组合冷凝”的公式,这是挑选数字的一个公式,可以让他在开奖的6组数字中,筛选出5个正确的数字,让原本中奖概率只有几百万分之一,变成了现在的几千分之一。大大的提高了他中奖的概率。 这个便是他所研究出来的公式。

136 评论

相关问答

  • 契嵩哲学研究论文集

    有,释加摩尼的徒弟。奉旨来中国传教。大约为南北朝时代。

    七彩娃娃豆 5人参与回答 2023-12-10
  • 关于斐波那契数列的研究小论文

    无理数无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 有理数是所有的分数,整数,它们都可以化成有限小数,或无限循

    小葛装饰 5人参与回答 2023-12-06
  • 学术论文包括那三部分

    学术论文主要由引言、方法、结果、讨论、结论,这五部分组成。 学术论文的写作是非常重要的,它是衡量一个人学术水平和科研能力的重要标志。在学术论文撰写中,选题与选材

    那个啥来着呢 3人参与回答 2023-12-08
  • 多斐波那契论文学术

    现在有很多人都想要不劳而获,轻轻松松过上富有的生活,可是这是不可能的。在这一类的人中,就有不少想利用彩票发家致富的,可是这个想法实现的概率实在是太低。在国外曾经

    miss樱桃小米虫 6人参与回答 2023-12-09
  • 学霸在学术界成就斐然论文

    他曾经是在一分钟之内背过好几篇作文,而且语速是比较快的,能够获得机器人奖项。 她的父亲也是一名优秀的研究员,她甚至受到童年的影响,事实上,许多互联网用户质疑博士

    吃要吃好的 9人参与回答 2023-12-06