首页 > 论文发表知识库 > 次声波武器研究论文

次声波武器研究论文

发布时间:

次声波武器研究论文

分类: 教育/科学 >> 科学技术 解析: 次声波又称亚声波,它是一种频率低于人的可听声波频率范围的声波。 次声波的频率范围大致为10-4~20赫。次声波频率很低,波长却很长,通过空气可以传播到很远的地方。 ... 不仅自然界中的刮风、打雷和地震等能发出次声波,次声波也可能是人为制造出来的。 由于次声的频率很低,所以大气对次声波的吸收系数很小,因而其穿透力极强,可传播至极远处而能量衰减很小,而7Hz的次声波用一堵厚墙也挡不住,次声波可以穿透十几米厚的钢板和混凝土。 ...湍流的作用会引起次声波的衰减,但是它们的影响都很小,通常可略去不计。 研究显示,次声波会使人变得焦虑、极度悲伤和感到寒冷,这一研究成果验证了长久以来次声波与古怪感觉之间存在关联的普遍看法。老虎在捕食前的怒吼可产生18赫兹的次声波,使猎物惊惶失措甚至昏迷。 ... 百慕大三角事故不断的谜底可能就是波浪振荡产生的次声波作用到机组人员,使他们精神错乱,甚至死亡,从而失去对飞机或舰船 ... 海洋次声波一般在风暴和强风下出现,其频率低于2O赫兹。 以波浪表面波峰部 ... 当海船遇到这种强能量的次声波时,次声波会对生物体造成辐射,可引起人的疲劳,痛苦,甚至导致失明等。 次声波武器,是一种能发射20赫以下低频声波即次声波的大功率武器装置。 ... 目前研制的次声波武器分神经型和内脏器官型两种,前者能使人神经错乱,癫狂不止;后者能使人周身剧烈不适,进而失去 ... 次声武器的优点在于: 突袭性。 次声波在空气中的传播速度为每秒三百多米,在水中传播更快 ... 可达 1500m左右。

频率小于20Hz(赫兹)的声波叫做次声波。次声波不容易衰减,不易被水和空气吸收。而次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射。某些次声波能绕地球2至3周。

某些频率的次声波由于和人体器官的振动频率相近,容易和人体器官产生共振,对人体有很强的伤害性,危险时可致人死亡。一定强度的次声波,能使人头晕、恶心、呕吐、丧失平衡感甚至精神沮丧。

扩展资料:

次声波武器的特点

1、突袭性

次声波在空气中的传播速度为每秒340米(时速1200km),在水中传播更快,每秒可达1500m左右(时速6000km)。次声波是常人听不到、看不见的,故除了传播迅速之外,次声波又具有良好的隐蔽性。

2、作用距离远

根据物理学原理,声波的频率越低,传播时介质对它的吸收就越小,波的传播距离也越远。比如,炮弹产生的可闻声波,由于衰减快,在几千米外就听不到了,但它产生的次声波,可传到80km以外;而氢弹产生的次声波可绕地球传播好几圈,行程十几万千米。

3、无污染

次声波在杀伤敌人的同时,不会造成环境污染,不破坏对方的武器装备,可作为战利品,取而用之。从冷兵器,到热兵器 ,再到软武器{次声波,激光,中子等} 战争越来越残酷无情,软武器离我们很近。

参考资料来源:百度百科-次声波武器

用一定的频率的次声波引起身体器官的共振,使得器官破裂,血液沸腾.

次声波杀人之谜:次声波为什么有这么大的杀伤力?

次声波为什么有这么大的杀伤力呢?

一般地说,咱们人耳所能看见的声波频率大约在20-20000郝之内,这样的声波叫可听声波;超过20000赫的声波,叫超声波;而低于20赫的声波,就叫次声波。所以,次声波是一种人耳听不见,而又确实存在的声波。对这种声波,我们人体的各个器官可以有明显的感觉,医学研究证明,由于人体的脉冲作用,人体内的各个器官本身都有自己较低的固有频率。比如人躯体的固有频率为7-12赫,头部的固有频率为8-12赫,腹部内脏固有频率大约为4-6赫。这些人体本身所固有的频率,正好在次声波的频带范围内,一旦大功率的次声波作用于人体,这些器官固有频率就会和外界次声波产生共振,从而使人感到头昏、恶心、肌肉痉挛、呼吸困难、惊恐不安、神经错乱、失去知觉,甚至血管破裂,最后导致死亡。

科学研究表明:人体的内脏,有其固有的振动频率,而这种频率也在—20赫兹之间,也就是说,它和次声波的频率相似。这样一来,当外来的次声波不管是自然形成的,还是人为制造的,一旦它的振动频率与人体内脏的振动频率相同或接近时,就会引起各种脏器的共振,这一共振便会使人烦躁、耳鸣、头痛、失眠、恶心、视觉模糊、吞咽困难、肝胃功能失调紊乱;严重时,还会使人四肢麻木、胸部有压迫感。特别是与人的腹腔、胸腔和颅腔的固有振动频率一致时,就会与内脏、大脑等产生共振,甚至危及性命。

次声波这些神奇的功能:无声无息地传播,波长不易衰减,且易与自然界的次声波混在一起,难以被人察觉等特点,早就引起军事专家的高度注意。一些国家正在是利用次声波的性质进行次声波武器的研制。初步选定利用次声波进行作战的方向是次声波发生器和次声波炸弹。

次声波具有极强的穿透力,不仅可以穿透大气、海水、土壤,而且还能穿透坚固的钢筋水泥构成的建筑物,甚至连坦克、军舰、潜艇和飞机都不在话下。次声穿透人体时,不仅能使人产生头晕、烦燥、耳鸣、恶心、心悸、视物模糊,吞咽困难、胃痛、肝功能失调、四肢麻木,而且还可能破坏大脑神经系统,造成大脑组织的重大损伤。次声波对心脏影响最为严重,最终可导致死亡。

次声波虽然无形,但它却时刻在产生并威胁着人类的安全。在自然界,例如太阳磁暴、海峡咆哮、雷鸣电闪、气压突变;在工厂,机械的撞击、摩擦;军事上的原子弹、氢弹爆炸试验等等,都可以产生次声波。

综上所述:次声波作为杀人武器,在目前仍然是不可抵御,无可防范的。它来无影,去无踪,而在极短的时间里,便可结束人的生命!

超声波传感器论文

您打算用在什么方面?广泛的说:1、现在的超声波传感器频率都相对固定,例如40KHz的传感器,只能用在38-42KHz上,其它频率的也类似,目前几乎见不到频域范围广的传感器,例如40KHz~500KHz这样的产品;2、驱动电压较高,一般100Vp-p到1500Vp-p之间,在很多低压设备上需要脉冲变压器升压,但也会随之带来一些复杂问题。如果有3~5V低压驱动(较大功率)的传感器就更好了;3、灵敏度,最好能再高一些;总的来说,这些问题主要是由于超声波传感器多采用压电陶瓷材料的原因,其它材料或结构的超声波传感器,目前在国内几乎见不到。再说适用性方面,超声波用来检测,一般适合12m以内的测距(极限25米),或者测厚度、探伤、B超等,都是很适合的,精度也很高。但是超过12米,例如1公里测距超声波就很难做到了。

一、优点:超声波具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。基于超声波特性研制的传感器称为“超声波传感器”,广泛应用在工业、国防、生物医学等方面。

二、 缺点:由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用超声波传感器功率较小,工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。灵敏度主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

1、现在的超声波传感器频率都相对固定,例如40KHz的传感器,只能用在38-42KHz上,其它频率的也类似,目前几乎见不到频域范围广的传感器,例如40KHz~500KHz这样的产品;

2、驱动电压较高,一般100Vp-p到1500Vp-p之间,在很多低压设备上需要脉冲变压器升压,但也会随之带来一些复杂问题。如果有3~5V低压驱动(较大功率)的传感器就更好了;

3、灵敏度,最好能再高一些;

呵呵,到我公司网站上看看,有些相关资料,

摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 [关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。 2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。 4.超声波传感器在测距系统中的应用 超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。 三、小结 文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。 参考文献: [1]单片机原理及其接口技术.清华大学出版社. [2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04). [3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社. [4]王松,郑正奇,邹晨祎.超声定位车辆路径监测系统的设计.2006,(10). [5]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社. 转贴于 中国论文下载中心

微波滤波器研究论文怎么写

摘 要 FIR数字滤波器是数字信号处理的经典方法,其设计方法有多种,用DSP芯片对FIR滤波器进行设计时可以先在MATLAB上对FIR数字滤波器进行仿真,所产生的滤波器系数可以直接倒入到DSP中进行编程,在编程时可以采用DSP独特的循环缓冲算法对FIR数字滤波器进行设计,这样可以大大减少设计的复杂度,使滤波器的设计快捷、简单。关键词 FIR;DSP;循环缓冲算法1 引言在信号处理中,滤波占有十分重要的地位。数字滤波是数字信号处理的基本方法。数字滤波与模拟滤波相比有很多优点,它除了可避免模拟滤波器固有的电压漂移、温度漂移和噪声等问题外,还能满足滤波器对幅度和相位的严格要求。低通有限冲激响应滤波器(低通FIR滤波器)有其独特的优点,因为FIR系统只有零点,因此,系统总是稳定的,而且容易实现线性相位和允许实现多通道滤波器。2 FIR滤波器的基本结构及设计方法 FIR滤波器的基本结构设a i(i=0,1,2,…,N一1)为滤波器的冲激响应,输入信号为 x(n),则FIR滤波器的输入输出关系为: FIR滤波器的结构如图1所示:图 FIR滤波器的设计方法 (1) 窗函数设计法 从时域出发,把理想的无限长的hd(n)用一定形状的窗函数截取成有限长的h(n),以此h(n)来逼近hd(n),从而使所得到的频率响应H(ejω)与所要求的理想频率响应Hd(ejω) 相接近。优点是简单、实用,缺点是截止频率不易控制。 (2) 频率抽样设计法从频域出发, 把给定的理想频率响应Hd(ejω)以等间隔抽样,所得到的H(k)作逆离散傅氏变换,从而求得h(k),并用与之相对应的频率响应H(ejω)去逼近理想频率响应Hd(ejω)。优点是直接在频域进行设计,便于优化,缺点是截止频率不能自由取值。(3) 等波纹逼近计算机辅助设计法前面两种方法虽然在频率取样点上的误差非常小,但在非取样点处的误差沿频率轴不是均匀分布的,而且截止频率的选择还受到了不必要的限制。因此又由切比雪夫理论提出了等波纹逼近计算机辅助设计法。它不但能准确地指定通带和阻带的边缘,而且还在一定意义上实现对所期望的频率响应实行最佳逼近。3 循环缓冲算法对于N级的FIR滤波器,在数据存储器中开辟一个称之为滑窗的N个单元的缓冲区,滑窗中存放最新的N个输入样本。每次输入新的样本时,一新样本改写滑窗中的最老的数据,而滑窗中的其他数据不需要移动。利用片内BK(循环缓冲区长度)寄存器对滑窗进行间接寻址,环缓冲区地址首位相邻。下面,以N=5的FIR滤波器循环缓冲区为例,说明循环缓冲区中数据是如何寻址的。5级循环缓冲区的结构如图所示,顶部为低地址。……由上可见,虽然循环缓冲区中新老数据不很直接明了,但是利用循环缓冲区实现Z-1的优点还是很明显的:它不需要数据移动,不存在一个极其周期中要求能进行一次读和一次写的数据存储器,因而可以将循环缓冲区定位在数据存储器的任何位置(线性缓冲区要求定位在DARAM中)。实现循环缓冲区间接寻址的关键问题是:如何使N个循环缓冲区单元首位相邻?要做到这一点,必须利用BK(循环缓冲器长度)器存器实现按模间接寻址。可用的指令有:… *ARx+% ;增量、按模修正ARx:addr=ARx,ARx=circ(ARx+1)… *ARx-% ;减量、按模修正ARx:addr=ARx,ARx=circ(ARx-1)… *ARx+0% ;增AR0、按模修正ARx:addr=ARx,ARx=circ(ARx+AR0)… *ARx-0% ;减AR0、按模修正ARx:addr=ARx,ARx=circ(ARx-AR0)… *+ARx(lk)% ;加(lk)、按模修正ARx:addr=circ(ARx+lk),ARx=circ(ARx+AR0)其中符号“circ”就是按照BK(循环缓冲器长度)器存器中的值(如FIR滤波其中的N值),对(ARx+1)、(ARx-1)、(ARx+AR0)、(ARx-AR0)或(ARx+lk)值取模。这样就能保证循环缓冲区的指针ARx始终指向循环缓冲区,实现循环缓冲区顶部和底部单元相邻。循环寻址的算法可归纳为:if 0 index + step < BK: index = index + stepelse if index + step BK: index = index + step – BKelse if index + step < BK: index = index + step + BK上述算法中,index是存放在辅助寄存器中的地址指针,step为步长(亦即变址值。步长可正可负,其绝对值晓予或等于循环缓冲区长度BK)。依据以上循环寻址算法,就可以实现循环缓冲区首位单元相邻了。 为了使循环缓冲区正常进行,除了用循环缓冲区长度寄存器(BK)来规定循环缓冲区的大小外,循环缓冲区的起始地址的k个最低有效位必须为0。K值满足2k>N,N微循环缓冲区的长度。4 FIR滤波器在DSP上的实现对于系数对称的FIR滤波器,由于其具有线性相位特征,因此应用很广,特别实在对相位失真要求很高的场合,如调制解调器(MODEM)。例如:一个N=8的FIR滤波器,若a(n)=a(N-1-n),就是对称FIR滤波器,其输出方程为:y(n)= a0x(n)+ a1x(n-1)+ a 2x(n-2)+ a 3x(n-3)+ a 3x(n-4)+ a 2x(n-5)+ a1x(n-6)+ a0x(n-7)总共有8次乘法和7次加法,如果改写成: y(n)= a0 [x(n)+ x(n-7)]+ a1 [ x(n-1)+ x(n-6)]+ a 2 [ x(n-2)+ x(n-5)]+ a 3 [ x(n-3)+ x(n-4)]则变成4次乘法和7次加法。可见,乘法运算的次数减少了一半。这是对称FIR的又一个优点。对称FIR滤波器C54X实现的要点如下:(1)数据存储器中开辟两个循环缓冲算区:新循环缓冲区中存放新数据,旧循环缓冲区中存放老数据。循环缓冲区的长度为N/2。 (2)设置循环缓冲区指针:AR2指向新循环缓冲区中最新的数据,AR3指向旧循环缓冲区中最老的数据。 (3)在程序存储器中设置系数表。 (4)AR2+ AR3 AH(累加器A的高位),AR2-1AR2,AR3-1 AR3 (5)将累加器B清零,重复执行4次(i=0,1,2,3):AH*系数ai+B B,系数指针(PAR)加1。AR2+ AR3AH,AR2和AR3减1。 (6)保存和输出结果。 (7)修正数据指针,让AR2和AR3分别指向新循环缓冲区中最老的数据和旧循环缓冲区中最老的数据。 (8)用新循环缓冲区中最老的数据替代旧循环缓冲区中最老的数据,旧循环缓冲区指针减1。 (9)输入一个新的数据替代新循环缓冲区中最老的数据。 重复执行第(4)至(9)步。 在编程中要用到FIRS(系数对称有限冲击响应滤波器)指令,其操作步骤如下: FIR Xmem,Ymem,Pmem 执行 Pmad PAR 当(RC)≠0 (B)+(A(32-16))×(由PAR寻址Pmem)B ((Xmem)+(Ymem))<<16A (PAR)+1PAR (RC)-1RC FIRS指令在同一个及其周期内,通过C和D总线读2次数据存储器,同时通过P总线读一个系数 本文对FIR滤波器在DSP上的实现借助了MATLAB,其设计思路为:(1)MATLAB环境下产生滤波器系数和输入的数据,并仿真滤波器的滤波过程,可视化得到滤波器对动态输入数据的实时滤波效果;(2)将所得滤波器系数直接导入CCStudio中,再把滤波器的输入数据作为CCStudio设计的滤波起的输入测试数据存储在C54x数据空间中; (3)在CCStudio环境下结合FIR滤波的公式适用汇编语言设计FIR滤波程序,使用MATLAB产生的滤波器系数和输入测试数据进行计算,把输入数据和滤波结果借助CCStudio菜单中的View/Graph/Time/Frequency子菜单用图形方式显示出来(结果如图2);图2 (a)输入数据(Input)图2(b)滤波后的数据(Output) 将FIR滤波的入口数据地址改为外部I/O空间或McBSP口的读写数据地址,或数据空间内建缓冲地址;将FIR滤波的结果数据地址改为外部I/O空间或McBSP口的输出数据地址,或数据空间内建缓冲地址,则完成了基于C54xDSP的实时数据FIR滤波程序。参考文献:[1] 程佩青.数字信号处理教程[M].北京:清华大学出版社 1999年[2] 孙宗瀛,谢鸿林.TMS320C5xDSP原理设计与应用[M].北京:清华大学出版社.2002年[3] 陈亚勇等 编著.MATLAB信号处理详解[M].北京:人民邮电出版社.2001年[4] Texas Assembly Language Tools User’s Guide[5] Texas DSP Programmer’s Guide

微波光子滤波器是一种基于光学技术来实现微波信号处理的器件,主要是利用光学器件对光波进行调制、延迟等操作,来实现对微波信号的调制、滤波等处理。目前微波光子滤波器的研究主要涉及以下几个方面:1. 器件设计和制备:微波光子滤波器通常由光纤、光栅、耦合器等光学器件组成,因此关键是要优化器件的设计和制备技术,以实现更高的性能和功能。2. 滤波器性能研究:包括滤波器的带宽、频率响应、动态范围等性能,以及与微波信号处理相关的参数,如相位响应、群延迟等。这些性能研究旨在提高微波光子滤波器的性能和功能。3. 应用研究:微波光子滤波器的应用涉及到雷达、通信、军事等领域,因此需要对其应用进行研究。例如,对于雷达应用,需要研究微波光子滤波器在多普勒雷达等方面的应用;对于通信应用,则需要研究微波光子滤波器在光纤通信等方面的应用。总体来说,微波光子滤波器是一个快速发展的领域,其研究旨在提高微波信号处理的速度和效率,以及进一步扩大微波光子学的应用范围。

相关微波光子滤波器研究现状一直以来受到国内外研究者的重视,各领域的研究人员们投入了大量的精力研究和实现微波光子滤波器的设计和制作。其中,研究者们根据不同的应用场景,开发了以几何形状和电磁设计为基础的微波光子滤波器,并利用实验数据证实了滤波器的性能优异。此外,根据应用需求,研究者们还深入研究了微波光子滤波器的传输性能,建立了完善的理论模型,为滤波器的实际应用提供了有力支撑。

这方面的书还是很多的.专业的论文可以上中国期刊网,不知道你们学校有没有帐号.以下有这关RF的书有:射频与微波功率放大器设计 微波功率放大器所需的理论、方法、设计技巧,以及将分析计算与计算机辅助设计相结合的优化设计方法。这些方法提高了设计效率,缩短了设计周期。本书内容覆盖非线性电路设计方法、非线性主动设备建模、阻抗匹配、功率合成器、阻抗变换器、定向耦合器、高效率的功率放大器设计、宽带功率放大器及通信系统中的功率放大器设 ... 射频与微波通信电路――分析与设计(第二版) 微波地面通信的基础上,对所采用的射频和微波电路的设计进行了分析与讨论。 本书有两个特点:一是注重实用,书中涉及的内容很广,包括一些难懂的理论和复杂的数学推导,作者深入浅出地以少量的数学分析给出了一些重要的物理概念和数学公式,并且着重于分析如何把它们应用于电路设计;另一个特点是便于自学。书中包 ... 微波技术 微波技术的基本概念、基本理论和基本分析方法,并结合当今微波技术发展的需要,对微波电路的相关基础知识作了较全面的介绍。全书除绪论外共分8章,依次介绍了柱状导波系统中的电磁波及传输线理论、规则波导理论、微带及表面波波导、微波谐振器、微波网络理论基储微波滤波器及匹配电路、微波有源电路、微波铁氧体器件。? ... 微波技术与微波电路 微波技术的基本理论、基本概念及微波元器件、微波电路的工作原理及运用。上述专业的本科生或大专生在学院无本教材后,能对微波技术有比较系统的了解及具有一定的解决工程技术问题的能力。全书共分为10章,覆盖了微波技术主要方面的基本内容,它们是传输丝理论与技术、微波网络理论基储微波无源元器件、微波有源电路。在 ... 微波技术基础与应用 微波网络基础,以此作为全书的理论基矗其次讲解基本无源部件,如微波谐振器、功分器、耦合器、滤波器和微波铁氧体器件上等的原理和工程设计。对于微波有源电路的设计,以及主要微波系统和应用,书中也作了简明介绍。近年来微波技术中的一些新进展,如介质谐振器和开腔、YIG宽带电调谐、微波电路机辅设计,以及微波技术? ... 射频和微波混合电路――基础、材料和工艺 微波集成电路(MMIC)的持续发展相呼应,混合微波集成电路(HMIC)的新材料和新工艺也有了很大发展。本书首先对射频微波的基本概念作了简要介绍,比较了单片微波集成电路和混合微波集成电路的特点,讲述了作为射频微波基础元件的传输线和混合电路工艺的“波导”结构;然后从射频微波应用的角度对基础材料(导体、介质和 ... 微波与卫星通信 微波和卫星通信两方面的内容,共分七章。内容包括微波与卫星通信概述、信号的调制与解调、卫星通信中的多址技术、电波传播、编码与信号处理、微波与卫星线路噪声分析及线路参数计算。除此之外,还根据国际上以及我国在微波和卫星通信方面的现状与最新技术发展,介绍了SDH微波通信系统、卫星移动通信网和宽带IP卫星通信? ... 微波技术与天线(第2版) 微波技术与天线的基本理论与基础知识。在编写时力求去繁就简,深入浅出,这样既保持了知识结构的完整性,也为非电磁场专业的学生或其他人员学习微波技术与天线知识提供一条简捷的通道。全书共4章,第1章至第3章为微波技术部分,第4章为天线部分。主要内容有:长线理论、理想导波系统的一般理论分析、规则波导传输线、常 ... 微波工程(第三版) 微波电路和器件,第13章描述了几种微波系统,以便于读者了解前面讲述的各种微波电路和器件的应用及其对系统特性的影响。在基本理论方面,既介绍了经典的电磁场理论,又叙述了现代微波工程中常用的分布电路和网络分析方法。在微波电路和器件方面,除了介绍传统的线性微波电路及波导型器件外,为适应当前微波工程的需要, ... 微波工程(第三版)(英文版) 微波系统的第13章,因为这两章的内容介绍较为简单,且市面上有专箸论述。第1章至第4章介绍了电磁场的基本理论和电路理论,第5章至第11章利用相关的概念阐明了各种微波电路和器件。在基本理论方面,本书介绍了经典的电磁场理论,叙述了现代微波工程中常用的分布电路和网络分析方法。在微波电路和器件方面,增加了平面结? ... 射频与微波电子学 微波电子工程专业高年级和研究生的教材,授课两学期。 本书主要内容分五部分共21章。第一部分基础知识,包括科学和工程学的基本概念,电学和电子工程学中的基本概念,电路学数学基础,直流和低频电路的概念;第二部分波在网络中的传输,包括射频和微波的基本概念与应用,射频电子学的概念,波传播中的基本概念,二 ...

超声波测距论文研究现状

对于第一个问题:超声波测距,通常在10米以内,但也有个别厂家做到几十米甚至百米的。超声波测距有以下几个特点:1、频率越高,精度也越高,但检测距离越近(空气衰减增大);2、输出功率越高、灵敏度越高,检测距离也越远(虽然是废话,但我必须写上);3、通常检测角度小的,测距范围略远;4、以上因素所造成的影响加起来,可能没有被测物体带来的影响更大:例如一个刚性表面(例如钢板)和一根铁丝、或者在钢板表面铺满吸音绵、或者把钢板与探头法线夹角从垂直改为倾斜45度等等,这些因素所带来的影响最大的。这也许不太容易理解,如果把超声波比作可见光,那么刚性表面可以理解成镜子,要想让你发现距离很远的人,对方用镜子‘晃’你是最好不过的了。但如果把镜子罩上黑纸,或者把镜子倾斜45度所带来的影响,你我可想而知,超声波也一样。第二个问题:一个单片机上同时使用几个不同频率的超声波模块,这就是软件程序的问题,没有什么难度,大学生就可以做,我想你一定也没问题。关于测距模块,从20khz~400khz,测距范围从这些都不难购到,技术也不是很难。问题是,你能找到这么多频率的探头么?虽然超声波探头的各种频率都有,但它是针对量程来划分的,同一个量程里,频率都很接近(例如3-10米测距基本都是40khz)。你要在同一个量程里找出4种不同频率来,恐怕是有难度的。当然你也可以用4种不同的频率来驱动同一种探头。可是,若4个频率中的某个频率与探头的中心频率差别大了(例如超过5%),会导致效率大幅减低,如果频率差别小了,识别、区分他们又有困难,例如对于一个40khz的探头,一般厂家规定的下限和上限也就是38khz~42khz,我们就算冒险用到37khz~43khz(从可靠性和稳定性考虑,我不赞成这么用),你需要区分37khz、39khz、41khz、43khz四种频率的反馈信号,如此以来,常规的测距电路是不能用了,你需要研究一种全新的测距方案来识别他们,而且不能影响正常的计时精度,我建议你参考一些微波雷达的技术。

国内从五十年代起对超声波测距进行了较多的研究,并取得了可喜的成果。近年来由于电子技术的飞速发展,特别是单片机技术的应用,使得原来非常复杂的超声物位测量仪的设计有了大幅简化的可能,如采用zilog公司的z86E08单片机控制的超声波测距数显装置,以8098单片机为核心的智能物位测量仪等,从而使得超声物位测量仪的应用得到更多的普及。

随着机器人技术在其诞生后短短几十年中的迅猛发展,它的应用范围也逐步由工业生产走向人们的生活。如此广泛的应用使得提高人们对机器人的了解显得尤为重要。机器人通过其感知系统察觉前方障碍物距离和周围环境来实现绕障、自动寻线、测距等功能。超声波测距相对其他测距技术而言成本低廉,测量精度较高,不受环境的限制,应用方便,将它与红外、灰度传感器等结合共同实现机器人寻线和绕障功能。超声波由于指向性强、能量消耗缓慢且在介质中传播的距离较远,因而经常用于距离的测量。它主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。利用超声波检测往往比较迅速、方便,且计算简单、易于做到实时控制,在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。本课题的研究是非常有实用和有商业价值的。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

超声波传感器入侵检测系统论文

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

超声应用主要有以下几方面:1.超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。2.超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。3.基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——

摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 [关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。 2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。 4.超声波传感器在测距系统中的应用 超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。 三、小结 文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。 参考文献: [1]单片机原理及其接口技术.清华大学出版社. [2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04). [3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社. [4]王松,郑正奇,邹晨祎.超声定位车辆路径监测系统的设计.2006,(10). [5]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社. 转贴于 中国论文下载中心

呵呵,到我公司网站上看看,有些相关资料,

  • 索引序列
  • 次声波武器研究论文
  • 超声波传感器论文
  • 微波滤波器研究论文怎么写
  • 超声波测距论文研究现状
  • 超声波传感器入侵检测系统论文
  • 返回顶部