论文文献研究方法部分怎么写
论文文献研究方法部分怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的研究方法是很重要的,下面我和大家分享论文文献研究方法部分怎么写,一起来了解一下吧。
1、调查法
调查法是最为常用的方法之一,是指有目的、计划的搜集与论文主题有关的现实状况以及历史状况的资料,并对搜集过来的资料进行分析、比较与归纳。调查法会用到问卷调查法,分发给有关人员,然后加以回收整理出对论文有用的信息。
2、观察法
观察法是指研究者用自己的感官或者其他的辅助工具,直接观察被研究的对象,可以让人们的观察的过程中,可以拥有新的发现,还可以更好的启发人们的思维。
3、文献研究法
以一定的目标,来调查文献,从而获得关于论文的更加全面、正确地了解。文献研究法有助于形成对研究对象的一般印象,可以对相关资料进行分析与比较,从而获得事物的全貌。
论文研究方法最为典型的有调查法、观察法以及文献研究法,都是值得大家采用的方法。
论文写作中的研究方法与研究步骤
一、研究的循环思维方式
二、研究的路径
三、研究的分析方法
四、研究过程的设计与步骤
五、对传统研究思维模式的再思考
在我们指导研究生写论文的过程中,甚至于我们自己从事课题研究时,不禁让我们思考一系列有关研究的基本问题。例如,我们为什么要写论文?我们为什么要做研究?在我们探讨论文写作的过程中,我们是为了完成论文本身的写作,还是完成一个研究过程?写论文与做研究之间有什么联系与区别?如果论文写作应该反映一个研究过程,那么研究过程应该是什么样的?我们用什么样的方法进行研究?我们发现这些问题的解决,对指导研究生的论文写作有非常大的帮助。因此,本文就以我个人在从事教学课题研究和指导研究生完成论文中总结的一些有关研究方法与研究步骤的问题与大家交流共享。欢迎大家参与讨论。
世界上无论哪个领域都存在许多未知的事物,也存在着许多未知的规律。我们研究者的主要任务就是要不断地从大量的事实中总结规律,将之上升到可以指导实践的理论。然而理论也并不是绝对的真理,它也要在实践中不断地被修正,因此,就会有人对理论的前提和内容进行质疑,并提出新的猜想和新的思维。新的猜想和新的思维又要在实践中进行验证,从而发展和完善理论体系。我们探求未知事物及其规律就需要有研究的过程。这个过程,我们称之为研究的循环思维方式(Research Cycle)。用概念模型来表述就是[1]:
Facts —Theory—Speculation
事实——理论——猜想
上述从“事实”到“理论”,再进行“猜想”就构成了一般研究的思路。从事科学研究的人员既要侧重从事实到理论的研究过程,也同时在研究中要有质疑和猜想的勇气。而这一思路并不是一个终极过程,而是循环往复的过程。当猜想和质疑得到了事实的证明后,理论就会得到进一步的修正。
上述研究的循环思维方式就是我们通常说的理论与实践关系中理论来源于实践的过程。这个过程需要严密的逻辑思维过程(Thought Process)。通常被认为符合科学规律,而且是合理有效的逻辑思维方法为演绎法(Deduction)和归纳法(Induction)。这两种逻辑思维方式应该贯穿研究过程的始终。
另外,从知识管理角度看研究的过程,在某种意义上,研究的过程也可以被理解为,将实践中的带有经验性的隐性知识转化为可以让更多的人共享的系统规律性的显性知识。而显性知识的共享才能对具体的实践产生普遍的影响。研究者除了承担研究的过程和得出研究的结论之外,还要将这一研究的过程和结论用恰当的方式表述出来,让大家去分享。不能进行传播和与人分享的任何研究成果,对社会进步都是没有意义的。
我们认为,研究人员(包括研究生)撰写论文就是要反映上述研究过程,不断探索和总结未知事物及其规律,对实践产生影响。我们强调,论文的写作不是想法(idea)的说明,也不仅是过程的表述。论文的写作要遵循一定的研究方法和步骤,在一定的假设和前提下,去推理和/或验证某事物的一般规律。因此,对研究方法的掌握是写好论文的前提条件。
研究的路径(Approaches)是我们对某事物的规律进行研究的出发点或者角度。研究通常有两个路径(Approaches):实证研究和规范研究。
实证研究(Empirical Study)一般使用标准的度量方法,或者通过观察对现象进行描述,主要用来总结是什么情况(what is the case)。通常研究者用这种研究路径去提出理论假设,并验证理论。规范研究(Normative Study):是解决应该是什么(what should be)的问题。研究者通常是建立概念模型(Conceptual Model)和/或定量模型(Quantitative Model)来推论事物的发展规律。研究者也会用这种路径去建立理论规范。
我们认为,上述两种研究的路径不是彼此可以替代的关系。二者之间存在着彼此依存和相辅相成的关系。对于反映事物发展规律的理论而言,实证研究与规范研究二者缺一不可,前者为理论的创建提供支持和依据;后者为理论的创建提供了可以遵循的研究框架和研究思路。
针对上述两个路径,研究过程中都存在着分析(Analytical)过程,也就是解释为什么是这样的情况(Explaining why the case is as it is),而分析过程就需要具体的研究分析方法来支持。
[2]。然而,更多的学者倾向认为,定量与定性的方法问题更多的是从分析技术上来区别的[3]。因为,任何的研究过程都要涉及数据的收集,而数据有可能是定性的,也有可能是定量的。我们不能将定量分析与定性分析对立起来。在社会科学和商务的研究过程中既需要定量的研究分析方法,也需要定性的研究分析方法。针对不同的研究问题,以及研究过程的不同阶段,不同的分析方法各有优势。两者之间不存在孰优孰劣的问题。对于如何发挥各自优势,国外的一些学者也在探索将两者之间的有机结合[4]。
因此,定性分析方法是对用文字所表述的内容,或者其他非数量形式的数据进行分析和处理的方法。而定量分析方法则是对用数量所描述的内容,或者其他可以转化为数量形式的数据进行分析和处理的方法。一项研究中,往往要同时涉及到这两种分析方法[5]。定性分析是用来定义表述事物的基本特征或本质特点(the what),而定量分析是用来衡量程度或多少(the how much)。定性分析往往从定义、类推、模型或者比喻等角度来概括事物的特点;定量分析则假定概念的成立,并对其进行数值上衡量[6]。
定量分析的主要工具是统计方法,用以揭示所研究的问题的数量关系。基本描述性的统计方法包括:频数分布、百分比、方差分析、离散情况等。探索变量之间关系的方法包括交叉分析、相关度分析、多变量之间的多因素分析,以及统计检验等。定量研究之所以被研究者所强调,是因为定量分析的过程和定量结果具有某种程度的系统性(Systematic)和可控性(Controlled),不受研究者主观因素所影响。定量分析被认为是实证研究的主要方法。其优势是对理论进行验证(Theory Testing),而不是创建理论(Theory Generation)。当然,相对自然科学的研究,社会科学和商务研究由于人的因素存在,其各种变量的可控性被遭到质疑,因此,定量分析被认为是准试验法(Quasi-experimental approach)
定性研究有其吸引人的一面。因为文字作为最常见的定性研究数据是人类特有的,文字的.描述被认为具有“丰富”、“全面”和“真实”的特点。定性数据的收集也最直接的。因此,定性分析与人有最大的亲和力。恰恰也就是这一点,定性分析也具有了很大的主观性。如果用系统性和可控性来衡量研究过程的科学性。定性分析方法比定量分析方法更被遭到质疑[7]。然而,定性数据被认为在辅助和说明定量数据方面具有重要价值[8]。实际上,定性分析方法往往贯穿在研究过程的始终,包括在数据的收集之前,有关研究问题的形成、理论的假设形成,以及描述性分析框架的建立等都需要定性的分析过程,即对数据进行解释和描述等。如果遵循系统性和可控性的原则,那么定性分析方法在数据的收集过程中也有一些可利用的辅助工具,例如,摘要法、卡片法、聚类编码法等。在研究结论的做出和结论的描述方面,像矩阵图、概念模型图表、流程图、组织结构图、网络关系图等都是非常流行的定性分析工具。另外,从定性的数据中也可以通过简单的计算、规类等统计手段将定性分析与定量分析方法结合起来。
这里要指出的是,科学研究不能用想法(idea)本身来代替。科学研究需要有一个过程,而这个过程是用一定的方法来证明有价值的想法,并使之上升为理论;或者通过一定的方法来证明、创建或改进理论,从而对实践和决策产生影响。研究过程的科学性决定了研究成果是否会对实践和决策产生积极的影响效果[9]。
第五步、进行数据的处理和分析
数据的处理主要是保证数据的准确性,并将原始的数据进行分类,以便转化成可以进行进一步分析的形式。数据处理主要包括数据编辑、数据编码和数据录入三个步骤。数据编辑(Data Editing)就是要识别出数据的错误和遗漏,尽可能改正过来,以保证数据的准确性、一致性、完整性,便于进一步的编码和录入。数据编码(Data Coding)就是对所收集的第一手数据(例如对问卷开放式问题的回答)进行有限的分类,并赋予一个数字或其他符号。数据编码的主要目的是将许多的不同回答减少到对以后分析有意义的有限的分类。数据录入(Data Entry)是将所收集的第一手或者第二手数据录入到可以对数据进行观察和处理的计算机中,录入的设备包括计算机键盘、光电扫描仪、条形码识别器等。研究者可以用统计分析软件,例如SPSS等对所形成的数据库进行数据分析。对于少量的数据,也可以使用工作表(Spreadsheet)来录入和处理。
数据的分析就是运用上述所提到的定性或定量的分析方法来对数据进行分析。研究者要根据回答不同性质的问题,采取不同的统计方法和验证方法。对于有些研究,仅需要描述性的统计方法,对于另一些研究可能就需要对假设进行验证。在统计学中,假设的验证需要推论的统计方法(Inferential Statistics)。对于社会科学和商务的研究,一些研究是针对所获取的样本进行统计差异(Statistical Significance)的验证,最终得出结论是拒绝(Reject)还是不拒绝(Fail to Reject)所设定的假设条件。另一些研究则是进行关联度分析(Measures of Association),通常涉及相关分析(Correlation)和回归分析(Regression)。相关分析是通过计算来测度变量之间的关系程度;而回归分析则是为预测某一因变量的数值而创建一个数学公式。
值得注意的是,随着我们研究和分析的`问题越来越复杂,计算机和统计软件的发展使得多变量统计工具应用越来越广泛。如果多变量之间是从属关系,我们就需要从属关系的分析技巧(Dependency Techniques),如多元回归分析(Multiple Regression)、判别分析(Discriminant Analysis)、方差的多元分析(MANOVA,Multivariate Analysis of Variance)、典型相关分析(Canonical Analysis)、线性结构关系分析(LISREL,Linear Structural Relationships)、结合分析(Conjoint Analysis)等。如果多变量之间是相互依赖关系,我们就需要相互依赖关系的分析技巧(Interdependency Techniques),如因子分析(Factor Analysis)、聚类分析(Cluster Analysis)、多维尺度分析(Multidimensional Scaling)等。如果收集的数据有明显的时间顺序,我们不考虑变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,我们就需要时间序列分析(Time Series Analysis)。目前流行的统计软件,如SPSS对上述各种分析方法都提供非常好的支持。
第六步、得出结论,并完成论文
论文的撰写要结构合理、文字表达清楚确定,容易让人理解。形式上要尽量采取可视化的效果,例如多用图表来表现研究过程和研究结果。具体论文的撰写要考虑包含如下内容:摘要、研究介绍(包括背景、研究的问题、研究的目的)、研究的方法和步骤(样本选择、研究设计、数据收集、数据分析、研究的局限性)、研究的发现、结论(简要结论、建议、启示意义)、附录、参考文献。
针对社会科学和商务领域的问题研究,我们传统上所遵循的研究思维模式是:“提出问题、分析问题和解决问题”。我们承认这是一种创造性的思维过程。遵循这种思维方式可以帮助决策者快速找到问题,并解决问题。然而,用这一思维模式来指导研究的过程,容易使我们混淆研究者与决策者的地位,找不准研究者的定位。首先,这一研究思路和模式将问题的解决和问题的研究混在一起了。其次,没有突出,或者说掩盖了对研究方法的探讨和遵循。这种传统的思维方式是结果导向的思维方式。它忽略了问题的识别过程和研究方法的遵循过程。而从科学研究的角度看,问题的识别过程和研究方法的遵循过程是一项研究中非常重要的两个前提。问题的识别过程可以保证所研究的问题有很强的针对性,与理论和实践紧密联系,防止出现只做表面文章的情况,解决不了根本问题。研究方法的遵循过程可以保证研究结果的可靠性,使研究结果有说服力。当然,在此,我们并不是说明“提出问题、分析问题和解决问题”这一传统模式是错误的,也不否认研究的目的是指导实践。然而,我们觉得,这一传统研究思维模式太笼统,太注重结果导向,不足以说明科学的研究的一般方法和研究步骤。
在社会科学和商务研究中,运用这一传统的研究思路和模式来指导学生撰写论文,容易出现两个不良的倾向。一是使我们过于重视论文本身的写作过程,而忽略了论文写作背后的研究过程和研究方法。也就是只强调结果,不重视过程。在此情况下,论文的写作多半是进行资料的拼凑和整合。当然我们并不能低估资料的拼凑和整合的价值。可是,如果一味将论文的写作定位在这样的过程,显然有就事论事的嫌疑,无助于问题的澄清和问题的解决,也有悖于知识创造的初衷。特别是,既没有识别问题的过程,也没有形成研究问题和研究假设,甚至没有用任何可以遵循的研究分析方法,就泛泛对一个问题进行一般描述,进而提出感觉上的解决方案。这种研究结果是很难被接受的。第二个不良的倾向是上述传统的研究思路和模式使我们辨别不清我们是在做研究,还是在做决策。研究通常是在限定的一个范围内,在一定的假设前提下进行证明或推理,从而得出一定的结论。我们希望这个结论对决策者能产生影响。然而,决策者毕竟与研究者所处的地位是不一样的,考虑的问题与研究者或许一致,或许会很不一致。有价值的研究是要给处在不同地位的决策者(或者实践者)给予启示,并促其做出多赢的选择。因此,传统的研究思维模式缺乏研究的质量判定标准,缺乏系统性和可控性,也不具备可操作性,容易让研究者急功近利,盲目追求片面的终极的解决方案。
在指导对外经济贸易大学研究生的实践中,我们曾试图改变以往的传统思维模式,尝试让我们的研究生将论文的写作与研究过程结合起来,特别注重研究的过程和研究方法,并且要求在论文的写作中反映这些研究的方法与步骤。例如,2002届研究生万莲莲所写的《电子采购系统实施中的管理因素-摩托罗拉公司电子采购系统实施案例研究》硕士论文就是在这方面所做的最初探索。此论文的结构就分为综述、指导理论、方法论、数据分析,以及研究结论和启示等五个主要部分,运用了问卷调查和深度访谈等定性和定量的各种具体方法。其研究结论具有非常强的说服力,因为研究者并不限于第二手资料的收集、整理和加工,而是借鉴前人的理论研究框架,运用问卷定量调查等手段,遵循案例研究的方法,对第一手资料进行收集、处理和分析之后得出的结论,对实践具有较强的指导意义。相同的研究方法,我们又应用在其他研究生的论文写作过程中,例如2002届龚托所写的《对影响保险企业信息技术实施的主要因素的研究》、2003届王惟所写的《对中国铜套期保值现状的研究》,以及2003届马鸣锦所写的《中国银行业知识管理程度与网络银行发展程度的关系研究》等。通过论文写作,这些研究生的确掌握了一般研究的方法和研究的步骤。以上的研究结论对教学和实践直接有借鉴的意义。在教学和咨询过程中,其方法和结论都得到了肯定。据多方反馈,效果还是非常好的。
【注释】:
[1]这是笔者在美国芝加哥自然博物馆看恐龙展览时了解的美国科学家的基本研究思路而得到的启示。
[2] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P303。
[3] Bryman, A. (1988), Quality and Quantity in Social Research. London: Unwin Hyman.我们发现许多文献资料将定量与定性分析方法称为定量与定性技术(techniques)
[4] Cook, . and Reichardt, . (1979) Qualitative and Quantitative Methods in Evaluation Research. Newbury Park and London: Sage. Ragin, C. C. (1987) The Comparative Method: moving beyond qualitative and quantitative strategies. Berkeley, Cal.: University of California Press.
[5]Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P307。
[6] John Van Maanen, James M. Dabbs, Jr., and Robert R. Faulkner, Varieties of Qualitative Research (Beverly Hills: Calif.: Sage Publications, 1982), P32
[7] 这是因为社会科学和商务研究中包括了人的因素,而人本身作为分析者具有自身的缺陷。例如:数据的有限性、先入为主的印象、信息的可获得性、推论的倾向性、思维的连续性、数据来源可靠性、信息的不完善性、对信息价值判断误差、对比的倾向性、过度自信、并发事件与相关度的判断,以及统计数据的不一致性等。上述缺陷的总结与分析来源于Sadler, D. R. (1981) Intuitive Data Processing as a Potential Source of Bias in Educational Evaluation. Educational Evaluation and Policy Analysis, 3, P25-31。
[8] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P371。
[9] Ronald R. Cooper, C. William Emory (1995, 5th ed) Business Research Methods, IRWIN, P352
统计学本科生,毕业论文题目是研究定性多元回归分析你这个就是这么简单的要求吗还是有更详细的说明具体谈清晰的的
这些数据是保密的......
论文的数据分析怎么写如下:
首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。
另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。
接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。
那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。
在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。
给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。
在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。
《统计学与应用》这本期刊上的文献,你可以去看看学习学习的
问题一:描述性统计分析 所谓描述唬统计分析,就是在表示数量的中心位置的同时,还能表示数量的变异程度(即离散程度)。描述性统计分析一般有二种方法可以进行:1、频数分布分析,2、列联表分析。 ------------------------转自热心网友 问题二:什么是描述性统计分析 所谓描述性统计分析,就是在表示数量的中心位置的同时,还能表示数量的变异程度(即离散程度)。描述性统计分析一般有二种方法可以进行:1、频数分布分析,2、列联表分析。 问题三:怎么进行多年的数据的描述性统计分析 说具体点 问题四:如何用excel做描述性统计分析 描述性统计分析? 是做各种图标进行描述吗? 问题五:如何用做描述性统计分析 1分析--描述统计--描述,(频率、探索也可以)2、要用独立样本T检验,分析--比较均值--独立样本T检验。3、主要是直方图、条图、饼图等,在频率和探索里都可以找到。 问题六:如何用spss做描述性统计分析 统计分析是指运用统计方法及与分析对象有关的知识,从定量与定性的结合上进行的研究活动。它是继统计设计、统计调查、统计整理之后的一项十分重要的工作,是在前几个阶段工作的基础上通过分析从而达到对研究对象更为深刻的认识。它又是在一定的选题下,集分析方案的设计、资料的搜集和整理而展开的研究活动。系统、完善的资料是统计分析的必要条件。 问题七:怎么把描述性统计与相关系数分析放在一张表 可以的,只需要增加一列专门的描述性统计放入均值加减标准差,然后右侧放相关分析结果就行。(南心网 SPSS数据分析) 问题八:用描述性统计分析方法写一篇统计学论文 在毕业论文的写作过程中,指导教师一般都要求学生编写提纲。从写作程序上讲,它是作者动笔行文前的必要准备;从提纲本身来讲,它是作者构思谋篇的具体体现。所谓构思谋篇,就是组织设计毕业论文的篇章结构。因为毕业论文的写作不像写一首短诗、一篇散文、一段札记那样随感而发,信手拈来,用一则材料、几段短语就表达一种思想、一种感情;而是要用大量的资料,较多的层次,严密的推理来展开论述,从各个方面来阐述理由、论证自己的观点。因此,构思谋篇就显得非常重要,于是必须编制写作提纲,以便有条理地安排材料、展开论证。有了一个好的提纲,就能纲举目张,提纲挚领,掌握全篇论文的基本骨架,使论文的结构完整统一;就能分清层次,明确重点,周密地谋篇布局,使总论点和分论点有机地统一起来;也就能够按照各部分的要求安排、组织、利用资料,决定取舍,最大限度地发挥资料的作用。 问题九:急急!!!excel2007 如何进行描述性统计分析,具体怎么操作 EXCEL里有个数据分析库,里面就有个“描述统计”选项。 这个数据分析工具库要在“加载宏”里加载上才能用,若你EXCEL不是完整安装,可能还会要求你用EXCEL的安装盘进行一下安装…… 做这穿事,最好尽量利用已有的工具
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
你要分析什么数据都没说,让人怎么回答问题呢?如果是从来没用过Excel,那还是找个入门的课程先学习一下。如果是简单的Excel操作会用,在数据分析过程中遇到了困难,那就要把excel表格截图发出来,然后描述清楚具体遇到什么难题,这样其他人才有可能帮助你的。
用EXCEL对论文数据进行分析,不是不可以做。但是一定要把握几个原则,首先你得要走专业数据的标准,换句话说,假设你的某项指标的系数标准是之间,你得要有标准,这样的话就可以进行分析!当然你得需要提供表格模板!让答辩者按照你的格式填写,你就可以用excel分析了!
数据分析软件的确有很多种,适合不同类型的人员。Excel:还是很普遍的,大部分使用,只是数据一大就比较慢,而且写函数比较麻烦,学好很重要;BDP个人版:偏向可视化分析,图表类型不少,适合数据小白使用;SAS、SPSS:会涉及到一些数据建模的东西,相对比较难。
《统计学与应用》这本期刊上的文献,你可以去看看学习学习的
基本信息描述
统计学作为数据处理的基础学科,被广泛应用到很多领域,金融、医学、管理学等各个方面。该学科主要的研究对象是数据,其研究的主要内容是通过对数据的整理分析,得出其内在规律。下文是学习啦小编为大家搜集整理的关于统计学硕士毕业论文的内容,欢迎大家阅读参考!统计学硕士毕业论文篇1试论企业统计在企业管理中存在的问题及对策在现代的企业里面,企业在经营和管理方面会涉及到很多的服务工作,企业统计工作给予了企业很大的支持,使统计工作成了具有信息、咨询和监督三大职能的统计信息管理机构。一、企业统计在企业管理中所存在的缺陷1.统计工作得到到企业领导重视部分领导认为统计只不过是数据的加加减减或汇总,填几张报表完事,把统计工作简单化,统计工作主要是为上级统计部门所用。因此,统计员兼职多,专职的少,且变动频繁,在企业改革、重组、调整中,统计机构和统计岗位也被首当其冲地撤销或合并,统计人员粗简、下岗的较多。2.企业统计强账和原始记录越来越不健全,填报统计指标的随意性加大,统计数据质量下降有相当一部分企业没有建立规范的企业统计制度,甚至没有明确设立统计职能部门和统计工作岗位。3.统计人员的素质普遍不高多数企业统计人员为兼职,以会计或其它工作为主,统计工作为辅。这些人员或学历较低,素质较差,或因事业心不足责任感不强,因此对统计工作的积极性、主动性就远不及专业人员,也没有多少自觉性挤出时间去学习统计理论,提高自身的业务水平。二、企业统计在企业管理中的对策1.建立健全企业统计的管理体制与运行方式(1)设立综合综合统计部门并明确其职责综合统计机构或综合统计岗位应具有以下职能:第一,设计并制定本企业的统计指标体系及统计信息的报送要求;第二,收集、审核、汇总、提供各种统计信息;第三,利用各种统计信息进行综合分析研究。(2)明确各个职能部门的统计职能及责任为确保企业统计资料的系统性完整性,应该在各部门的工作职责中明确相应的统计责任,要求其按统一确定的口径、范围及时间提供相应的统计资料及分析报告,要特别重视一些被忽视的部门的信息。(3)将统计信息自下而上的单向运行变为上下左右之间的多向运行这种信息运行方式应该包括三个层次:一是各种基础信息由各基层单位向各职能部门运行,满足各职能部门的汇总需要;二是各职能部门的专项信息向综合统计部门横向运行,满足其综合对比及分析研究的需要;三是经过加工、分析的各种综合信息由综合统计部门向企业领导、各职能部门及基层单位多向运行,分别满足其管理决策,分别满足其管理决策、研究问题和了解情况的需要。2.科学设置和完善指标体系,规范企业统计工作,使统计资料实现为企业经营管理所用与为统计部门所用的有机结合。在具体设置和完善指标体系时,应当遵循以下原则:一是全面性原则:指标体系的内容应包括企业业务发展状况,企业运营收入、效益和投资情况,企业人力资源以及当地社会经济等方面的信息,并且尽量使指标按市场要求细化;二是规范性原则:指标体系应从指标名称、指标概念、统计口径、审核关系、取数来源等方面进行统一规范和要求,力求指标设置更加科学化;三是及时性原则:随着企业生产规模的不断扩大,新型业务的不断出现,市场竞争格局不断变化,要对指标体系及时进行调整。3.以科技为手段,加快统计信息网络建设,强化企业统计信息决策功能。企业统计应充分利用信息技术的优势,建立健全统计信息网络,实现主要统计数据的及时更新,加快企业统计信息网络与部门统计网络的连接,实行企业联网直报,使统计信息既可以及时地为政府和行业统计部门提供必要的统计资料,满足国家和行业的统计需要,又可立足本企业,建立适合本企业特点和市场需要的数据库与内部报表,及时反映本企业的业务发展和经济效益情况。4.加强统计队伍建设,提高统计人员素质。在市场经济时期,全面系统的统计工作需要具有一定的统计业务基础、专业技术和相对固定的统计人员来完成。相对稳定的统计队伍,可以积累经验,为企业管理做出更大、更快捷的贡献。如果责任心不强、上进心不足、业务素质低下,势必贻误正常工作。统计人员要善于学习,不断提高自己的业务素质,才能胜任本职工作。同时,企业单位,行业系统,尤其系统,尤其是企业集团需要具有责任心、富有时代感,并有开拓创新精神与较高业务素质,能带领同事一起学习与工作的统计负责人。
你去中国论文中心看看 是专业的论文网站 内容很多且是免费下载
数据可从网上搜索,统计年鉴及各大数据库都有,再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型。
推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。这个推论可能以对/错问题的答案所呈现(假设检定)。
对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。其他的模型化技术包括变异数分析(ANOVA),时间序列,以及数据挖掘。
为了实际的理由,我们选择研究母体的子集代替研究母体的每一笔资料,这个子集称做样本。以某种经验设计实验所搜集的样本叫做资料。
资料是统计分析的对象,并且被用做两种相关的用途:描述和推论。描述统计学处理有关叙述的问题:资料是否可以被有效的摘要,不论是以数学或是图片表现,以用来代表母体的性质?基础的数学描述包括了平均数和标准差。图像的摘要则包含了许多种的表和图。
《统计学与应用》这本期刊上的文献,你可以去看看学习学习的
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:(1)样本量估算及随访/数据收集情况;(2)数据录入和管理的软件和方法;(3)本研究所使用的统计分析软件和分析方案;(4)统计描述的方法,分计量和计数资料两种;(5)统计推断的方法,分单因素和多因素两种;(6)检验水准的选取。由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<为差异有统计学意义。有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.(2)统计软件:All statistical analyses were performed using SAS version (SAS Institute Inc, Cary, North Carolina).(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….(6)检验水准:A p value of less than (2-sided significance testing) was considered statistically significant in all analyses.
是的!毕业论文没有数据分析,怎么论证你观点!又怎么让别人“信服”你的论点!