本科毕业论文是严格而要求工整的论文写作,下面是我整理的一份完整的毕业论文包括那几个方面,希望能够帮助到大家!
一份完整的毕业论文应包括以下几个方面:
一、标题
标题应该简短、明确、有概括性。
标题字数要适当,严格控制在25字以内。
论文摘要或设计总说明
论文摘要以浓缩的形式概括研究课题的内容,中文摘要在400字左右,外文摘要与中文内容相同,关键词一般以3~5个为妥,词与词之间以“;”为分隔。
设计总说明主要介绍设计任务来源、设计标准、设计原则及主要技术资料,中文字数要在1000~2000字以内,外文字数以500~1000个左右为宜,关键词一般以3~5个为妥,词与词之间以“;”为分隔。
二、目录
目录按三级标题编写(即:第1章……、……、……),要求标题层次清晰。
目录中的标题的内容应与正文中的标题一致,参考文献、致谢及附录也应依次列入目录。
三、正文
毕业设计说明书(论文)正文包括绪论、正文主体与结论,其内容分别如下:
绪论应说明本课题的意义、目的、研究范围及要达到的技术要求;简述本课题在国内外的发展概况及存在的问题;说明本课题的指导思想;阐述本课题应解决的主要问题。
正文主体是对研究工作的详细表述,其内容包括:问题的提出,研究工作的基本前提、假设和条件;模型的建立,实验方案的拟定;基本概念和理论基础;设计计算的主要方法和内容;实验方法、内容及其分析;理论论证,理论在课题中的应用,课题得出的结果,以及对结果的讨论等。
学生根据毕业设计(论文)课题的性质,一般仅涉及上述一部分内容。
结论是对整个研究工作进行归纳和综合而得出的总结,对所得结果与已有结果的比较和课题尚存在的问题,以及进一步开展研究的见解与建议。
结论要写得概括、简短。
四、致谢
致谢应以简短的文字对在课题研究和设计说明书(论文)撰写过程中曾直接给予帮助的人员或单位表示自己的谢意,这不仅是一种礼貌,也是对他人劳动的尊重,是治学者应有的思想作风。
五、参考文献
参考文献是毕业设计(论文)不可缺少的组成部分,凡有引用他人成果之处,均应按论文中所出现的先后次序列于参考文献中。
并且只应列出正文中以标注形式引用或参考的有关著作和论文,引文的标注应在一段引文后的右上角,用小方括号中填写数字表示如:“Buck变换器是单管不隔离型DC-DC变换器中的一种基本结构[8]”,并与参考文献中的序列号相对应。
一篇论著在论文中多处引用时,在参考文献中只应出现一次,序号以第一次出现的位置为准。
毕业设计(论文)的中外文参考文献应在10篇以上。
六、附录(非必须)
附录是对于一些不宜放在正文中,但有参考价值的内容,可编入毕业设计(论文)的附录中,例如公式的推演、编写的程序等;如果文章中引用的符号较多时,便于读者查阅,可以编写一个符号说明,注明符号代表的意义。
一般附录的`篇幅不宜过大,若附录篇幅超过正文,会让人产生头轻脚重的感觉。
字体字号
全文(包括所有的章节题目)的汉字字体为宋体,章节序号、所有字母与数字的字体为Times New Roman(日文字体为MS MINCHO)。
一级标题(指中英/日文摘要标题、各章标题、致谢、参考文献及附录标题)字号为三号加粗;二级标题四号加粗;三级标题小四号加粗。
七、标题层次
毕业设计 (论文)的正文全部标题层次应有条不紊,整齐清晰。
格式如下所示:
第1章 (居中,空一格写标题内容)
(顶格,空一格写标题内容)
(顶格,空一格写标题内容)
页面设置格式
A4幅面,双面印刷;行距:倍;页码:居中;边距:上下左右各空2cm,装订线位于左侧,;页眉:奇数页为毕业(设计)论文的题目,偶数页为“江南大学学士学位论文”,宋体小五号;正文的每一章章节题目为从奇数页面第一行起始。
4. 毕业设计(论文)的写作细则
八、书写
毕业设计(论文)要用学校规定格式的A4纸书写或打印(手写时必须用黑或蓝墨水),手写时文稿纸背面不得书写正文和图表,正文中的任何部分不得写到文稿纸边框以外,文稿纸不得随意接长或截短。
汉字必须使用国家公布的规范字。
九、标点符号
毕业设计(论文)中的标点符号应按新闻出版署公布的“标点符号用法”使用。
特别指出,毕业设计(论文)属科技文献,按国家规定句号采用圆点“ . ”,文科艺术类学位论文可采用“。”,全文必须统一。
十、名词、名称
科学技术名词术语尽量采用全国自然科学名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。
使用外文缩写代替某一名词术语时,首次出现时应在括号内注明其含义。
外国人名一般采用英文原名,按名前姓后的原则书写。
一般很熟知的外国人名(如牛顿、达尔文、马克思等)可按通常标准译法写译名。
十一、量和单位
量和单位必须采用中华人民共和国的国家标准GB3100~GB3102-93,它是以国际单位(SI)和法定计量单位组成。
非物理量的单位,如件、台、人、元等,可用汉字与符号构成组合形式的单位,例如:件/台、元/km、质量浓度g/L。
十二、数字
毕业设计(论文)中的测量统计数据一律用阿拉伯数字。
十三、公式
公式应居中书写,公式较长时最好在“=”处转行,如难实现,则可在+、-、×、÷运算符号处转行,运算符号应写在转行后的行首。
公式的编号用圆括号括起放在公式右边行末,公式编号包括章编号与公式序号,如第3章出现的第一个公式,编号为“(3-1)”。
公式和编号之间不加虚线,编号中的括号、短划线与数字字体须为Times new Roman,字号为五号。
十四、表格
所有表格要求三线表,上下边线粗度为 ,表头与内容之间的分隔线粗度为3/4。
每个表格应有表序和表题,表序和表题应写在表格上方正中,表序后空一格书写表题。
表格允许下页接写,表题可省略,表头应重复写,并在右上方写“续表”。
表序编排与公式编号规则相同,如第3章第1张表格序号为“表3-1”,表题、内容的字号均为五号。
十五、插图
毕业设计的插图必须精心制作,线条粗细要合适,图面要整洁美观。
每幅插图应有图序和图题,图序和图题应放在图位下方居中处。
图应在描图纸或在白纸上用墨线绘成,也可以用计算机绘图。
图序编排与公式编号规则相同,如第3章第1幅图序号为“图3-1”,图题、内容的字号均为五号。
毕业设计,自己做一做呗!能学到很多东西的,快要毕业了,这可是最后一个学习任务了。呵呵。。。
给钱吧,免费的几乎没有答案。呵呵
我有很多新颖的题目 需要的话。Q我
有多急啊?早干什么去了?
简单给你说下吧,具体的方案也不好一次性拿出来变频器的原理是AC-DC-AC 的过程,第一步就是整流的过程其中还有滤波、功率因数校正等环节,第二个环节就是逆变器的原理,通过控制开关管开闭的时间、顺序,达到输出是不同频率交流电的目的,这部分有PWM和SPWM技术,由于你的是单相电机,因此四个管就够用了。输出还有个滤波的过程,可以平滑下波形,具体实现控制开关管,还要有单片机实现控制的哦。
摘 要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。 关键词: 交流调速系统, 异步电动机, PWM技术.....目录摘 要 1前言 设计的目的和意义 变频器调速运行的节能原理 3第二章 变频器 变频器选型: 变频器控制原理图设计: 变频器控制柜设计 变频器接线规范 变频器的运行和相关参数的设置 常见故障分析 8第三章 交流调速系统概述 交流调速系统的特点 10第四章变频电动机的特点 电磁设计 结构设计 14第五章 变频电机主要特点和变频电机的构造原理 变频专用电动机具有如下特点: 变频电机的构造原理 15第六章 交流异步电动机 交流异步电动机变频调速基本原理 变频变压(VVVF)调速时电动机的机械特性 变压变频运行时机械特性分折 19第七章 PWM技术原理 正弦波脉宽调制(SPWM) 25 单极性SPWM法 ..................................................................................................................26结论 31致 谢 32参 考 文 献 33前言 设计的目的和意义 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.变频器调速运行的节能原理 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p第二章 变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。 V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。 II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 变频器接线规范 信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 变频器的运行和相关参数的设置 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 常见故障分析 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。第三章 交流调速系统概述 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。 交流调速常用的调速方案及其性能比较由电机学知,交流异步电动机的转速公式如下:n= 60ƒ1 (1-s) pn (1-1)式中 Pn——电动机定子绕阻的磁极对数; f1——电动机定子电压供电频率; s ——电动机的转差率。从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。(1)改变电动机的磁极对数由异步电动机的同步转速no= 60ƒ1 pn可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。(2)变频调速 从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。(3)变转差率调速改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。 上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。 在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:1)转差功率消耗型 这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。2)转差功率回馈型 这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。3)转差功率不变型 这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。第四章变频电动机的特点电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:
具体一点,你是什么专业呀
简单的毕业设计有:
1、可伸缩带式输送机结构设计。
2、AWC机架现场扩孔机设计 。
3、ZQ-100型钻杆动力钳背钳设计 。
4、带式输送机摩擦轮调偏装置设计。
5、封闭母线自然冷却的温度场分析 。
毕业论文有:
1、撑掩护式液压支架总体方案及底座设计 。
2、支撑掩护式液压支架总体方案及立柱设计 。
3、膜片弹簧的冲压工艺及模具设计 。
4、带式输送机说明书和总装图 。
毕业设计 可伸缩带式输送机结构设计毕业设计 AWC机架现场扩孔机设计 毕业设计 ZQ-100型钻杆动力钳背钳设计 毕业设计 带式输送机摩擦轮调偏装置设计毕业设计 封闭母线自然冷却的温度场分析 毕业论文 轿车变速器设计 毕业论文 复合化肥混合比例装置及PLC控制系统设计毕业论文 起重机总体设计及金属结构设计毕业论文 四杆中频数控淬火机床的设计制造 毕业论文 撑掩护式液压支架总体方案及底座设计 毕业论文 支撑掩护式液压支架总体方案及立柱设计 毕业论文 膜片弹簧的冲压工艺及模具设计 机械设计课程设计 带式输送机说明书和总装图 课程设计 X-Y数控工作台 毕业设计 ZFS1600/12/26型液压支架掩护梁设计 毕业设计 运送铝活塞铸造毛坯机械手设计 毕业设计 上料机液压系统设计 毕业设计 冲压废料自动输送装置 课程设计 设计一卧式单面多轴钻孔组合机床液压系统 毕业论文 WY型滚动轴承压装机设计 毕业设计论文 经济型数控车床纵向进给运动设计及润滑机构设计 毕业设计论文 型双动拉伸压力机的设计气动通用上下料机械手的设计——机械结构设计毕业设计 水电站水轮机进水阀门液压系统的设计毕业设计 63CY14-1B轴向柱塞泵改进设计 课程设计 设计低速级斜齿轮零件的机械加工工艺规程毕业设计 组合机床改造 毕业设计 普通车床经济型数控改造钩尾框夹具设计(镗φ92孔的两道工序的专用夹具)设计“拨叉”零件的机械加工工艺规程及工艺装备)课程设计 带式输送机传动装置 毕业论文 桥式起重机副起升机构设计毕业论文 桥式起重机小车运行机构设计 课程设计 四工位专用机床传动机构设计 毕业论文 无模压力成形机设计 设计说明书 普通车床主传动系统毕业设计 XK100立式数控铣床主轴部件设计 毕业设计 罩壳设计说明书 设计带式传输机传动装置中的双级斜齿圆柱齿轮减速器 毕业论文 两齿辊破碎机设计 设计“推动架”零件的机械加工工艺及工艺设备 普通式双柱汽车举升机设计63CY14-1B轴向柱塞泵改进设计(共32页,19000字)机电一体化课程设计 线切割机床走丝机构及控制系统设计 基于逆向工程的过程控制系统机电一体化设计 毕业设计 带式输送机的传动装置毕业设计 手柄冲孔、落料级进模设计与制造毕业设计 CA6140车床后托架设计EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 毕业设计 液压拉力器毕业设计 全路面起重机毕业论文 二级圆柱直齿齿轮减速器 玉米脱粒机的设计 毕业设计 连杆孔研磨装置设计注射器盖毕业课程设计说明书旁承上平面与下心盘上平面垂直距离检测装置的设计毕业设计 YZY400全液压压桩机设计(共含论文9篇) 毕业设计 花生去壳机毕业设计 青饲料切割机的设计 毕业设计 颗粒状糖果包装机设计机械设计课程设计 带式运输机传动装置设计机电一体化课程设计 印制板翻板机课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备制定电机壳的加工工艺,设计钻Φ孔的钻床夹具壳体零件机械加工工艺规程制订及第工序工艺装备设计 毕业设计 CG2-150型仿型切割机毕业设计 D180柴油机12孔攻丝机床及夹具设计 V带—单级圆柱减速器毕业设计 单拐曲轴零件机械加工规程设计说明书 液压传动课程设计 全自动方便面压制机液压系统设计 机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 课程设计 解放汽车第四速及第五速变速叉加工工艺设计课程设计 轴零件的机械加工工艺规程制定 毕业设计 中直缝焊接机 粉末压力成型机传动系统的设计 毕业设计 C616型普通车床改造为经济型数控车床毕业设计 普通钻床改造为多轴钻床 毕业设计 液压控制阀的理论研究与设计 课程设计 用于带式运输机的一级齿轮减速器 课程设计 带式运输机的传动装置 毕业设计 保持架 毕业设计 钟形壳 机械制造技术基础课程设计说明书 C6410车床拨叉、卡具设计CA6140C车床拨叉工艺,设计铣18mm槽的铣床夹具CA6140C车床杠杆工艺,设计钻直径的孔的钻床夹具 CA6140C车床杠杆的加工工艺,设计钻φ25的钻床夹具CA6140车床拨叉的加工工艺,设计钻φ25孔的钻床夹具 CA6140车床拨叉的加工工艺,设计车圆弧车床夹具 设计“拨叉”零件的机械加工工艺及工艺装备制定后钢板弹簧吊耳的加工工艺,设计铣4mm工艺槽的铣床夹具 制定后钢板弹簧吊耳零件的加工工艺,设计钻?37孔的钻床夹具 制定拨叉零件的加工工艺,设计铣30×80面的铣床夹具 制定CA6140C车床拨叉的加工工艺,铣8mm槽的铣床夹具毕业设计 采煤机的截割部设计 毕业设计 大功率减速器液压加载试验台机械系统设计毕业设计 大流量安全阀课程设计 设计皮带式输送机传动装置的一级圆柱齿轮减速器 毕业设计 刨煤机传动系统及缓冲装置的设计毕业设计 刨煤机的截割部设计及滑靴设计数据库实验指导课件毕业设计 马达盖设计CA6140车床后托架的加工工艺,设计钻孔的钻床夹具 制定机械密封装备传动套加工工艺,铣8mm凸台的铣床夹具 CA6140法兰盘的加工工艺,设计钻φ6mm孔的钻床夹具毕业设计 单拐曲轴工艺流程毕业设计 壳体机械加工工艺规程 毕业设计 连杆机械加工工艺规程 课程设计 二级圆柱齿轮减速器 毕业设计(论文) 座板的机械加工制造 机械设计课程设计 卷筒输送机减速器机械设计课程设计说明书 减速机设计子程序在冲孔模生产中的运用编制数控加工(1#-6#)标模点孔程序 毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 “减速器传动轴”零件的机械加工工艺规程(年产量为5000件)机械制造工艺与机床夹具课程设计 推动架的工装设计 五吨电弧炉下部外壳机械加工制造——编制机械加工工艺圆锥-圆柱齿轮减速器装配图及其零件图 二级直齿圆柱齿轮减速器装配图及其零件图 蜗轮蜗杆减速器装配图及其零件图斜齿圆柱齿轮减速器装配图及其零件图 毕业设计 粗镗活塞销孔专用机床及夹具设计课程设计 带式输送机传动装置设计 毕业论文 塑料箱体锁扣的设计 毕业论文 材料成型综合实验报告书 毕业设计(论文)说明书 中单链型刮板输送机设计 课程设计 杠杆的加工 毕业设计 HFJ6351D型汽车工具箱盖单型腔注塑模设计 数控专业毕业论文 数控铣削编程与操作设计 课程设计 填料箱盖夹具设计毕业设计(论文) 立轴式破碎机设计 毕业设计 GKZ高空作业车液压和电气控制系统设计毕业设计 高空作业车液压系统设计 毕业设计 高空作业车工作臂结构设计及有限元分析毕业设计 工程网架结构参数化建模和动力特性分析 毕业设计 高空作业车的转台结构设计及有限元分析 毕业设计论文(说明书) 无轴承电机的结构设计 机械设计基础课程设计 一级蜗轮蜗杆减速器 钢板弹簧吊耳的加工工艺,设计钻?30工艺槽的铣床夹具设计“CA6140车床”拨叉零件的机械工艺规程及工艺装备机电一体化课程设计 CA6140车床开环纵向系统设计 江阴职业技术学院毕业设计说明书 带传动减速器设计机械设计课程设计 热处理车间零件清洗用传送设备的传动装置课程设计 拨叉零件的工艺规程及夹具设计 机械制造工艺学课程设计 法兰盘机加规程设计(附零件图) 课程设计说明书 车床手柄座加工夹具设计 《机械设计》课程设计设计说明书 单级蜗杆减速器机械设计课程设计计算说明书 圆锥—圆柱齿轮减速器毕业论文 数控铣高级工零件工艺设计及程序编制 毕业论文 数控铣高级工心型零件工艺设计及程序编制 2007届毕业生毕业设计 机用虎钳设计 毕业设计 电织机导板零件数控加工工艺与工装设计毕业设计 连杆的加工工艺及其断面铣夹具设计毕业设计 茶树重修剪机械设备 一级直齿圆柱齿轮减速器的设计课程设计报告毕业论文 QY40型液压起重机液压系统设计计算 毕业设计(论文) C6136型经济型数控改造(横向) Z3050摇臂钻床预选阀体机械加工工艺规程及镗孔工装夹具设计毕业设计 WY型滚动轴承压装机设计毕业设计 普通机床的数控改造 数控专业课课程设计 X-Y数控工作台设计毕业设计 液压台虎钳设计荆门职业技术学院课程设计 设计星轮零件的机械加工工艺规程机械设计基础课程设计 设计带式输送机的传动装置毕业设计说明书 新型手电筒设计ML280螺旋钻采煤机推进机构的设计毕业设计 二级直齿轮减速器设计毕业设计论文 电动车产品造型设计活动钳口零件的机械加工工艺规程及专用夹具设计 毕业设计 心型台灯塑料注塑模具设计 毕业设计 平面关节型机械手设计 毕业设计 三自由度圆柱坐标型工业机器人毕业设计 XKA5032A/C数控立式升降台铣床自动换刀设计 本科生毕业论文(设计)书 经济型数控系统研究与设计机械制造工艺学课程设计说明书 设计“轴”零件的机械加工工艺规程(年产量为4000件设计一用于带式运输机上的传动及减速装置XX轻工职业技术学院毕业设计 管座及其加工模具的设计毕业设计 四通管接头的设计XK 5040数控立式铣床及控制系统设计毕业设计(论文) 行星减速器设计三维造型虚拟设计分析T108吨自卸车拐轴的断裂原因分析及优化设计毕业设计(论文) 柴油机曲轴断裂分析毕业设计(论文) 柴油机曲轴失效分析毕业设计(论文) 超声波发生器与换能器的匹配设计 毕业设计(论文) 齿轮油泵轴的失效分析及优化设计毕业设计(论文) 电机轴的失效分析和优化设计 毕业设计(论文) T68镗床的控制系统的改造 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 毕业设计论文 双活塞液压浆体泵液力缸设计标准减速器总图 毕业设计论文 关节型机器人腕部结构设计 陕西科技大学课程设计说明书:数控车床纵向进给系统设计AutoCAD 2002 三维绘图教程 水泵的各种样式详图齿轮减速器CAD图库标准减速器总图 制定小轴的机械加工工艺规程 q 348414338
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
浮头式换热器浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。新型浮头式换热器浮头端结构,它包括圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成,其特征是:在外头盖侧法兰内侧面设凹型或梯型密封面,并在靠近密封面外侧钻孔并套丝或焊设多个螺杆均布,浮头处取消钩圈及相关零部件,浮头管板密封槽为原凹型槽并另在同一端面开一个以该管板中心为圆心,半径稍大于管束外径的梯型凹槽,且管板分程凹槽只与梯型凹槽相连通,而不与凹型槽相连通;在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型和梯型凹槽及分程凹槽及其垫片,该结构必要时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应变更加大相关零部件的尺寸;另配置一无外力辅助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。浮头换热器的特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。
自动变速器能够根据发动机负荷和车速等情况自动变换传动比,使汽车获得良好的动力性和燃料经济性,并减少发动机排放污染。自动变速器操纵容易,在车辆拥挤时,可大大提高车辆行驶的安全性及可靠性。
[编辑本段]液压传动的概念 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。[编辑本段]液压传动的早期运用 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间才开始进入正规的工业生产阶段。1925 年维克斯()发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。[编辑本段]液压传动的应用范围的基本原理 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。 在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。[编辑本段]液压传动系统的组成 液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。 1、动力元件(油泵) 它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。 2、执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。 3、控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。 4、辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件[各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等]及油箱等,它们同样十分重要。 5、工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。[编辑本段]液压传动的优缺点 1、液压传动的优点 (1)体积小、重量轻,例如同功率液压马达的重量只有电动机的10%~20%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击; (2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达1:2000(一般为1:100)。 (3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换; (4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制; (5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长; (6)操纵控制简便,自动化程度高; (7)容易实现过载保护。 (8)液压元件实现了标准化、系列化、通用化、便于设计、制造和使用。 2、液压传动的缺点 (1)使用液压传动对维护的要求高,工作油要始终保持清洁; (2)对液压元件制造精度要求高,工艺复杂,成本较高; (3)液压元件维修较复杂,且需有较高的技术水平; (4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作, 一般工作温度在-15℃~60℃范围内较合适。 (5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统效率较低。[编辑本段]液压元件分类 动力元件- 齿轮泵、叶片泵、柱塞泵、螺杆泵...... 执行元件-液压缸:活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸 液压马达:齿轮式液压马达、叶片液压马达、柱塞液压马达 控制元件-方向控制阀:单向阀、换向阀 压力控制阀:溢流阀、减压阀、顺序阀、压力继电器等 流量控制阀:节流阀、调速阀、分流阀 辅助元件-蓄能器、过滤器、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等
已发送一篇进气温度传感器障碍- 机电液一体化在汽车中的应用的毕业论文下面还有一篇,希望对你有帮助。汽车检测与维修专业轿车自动变速器故障分析和维修工艺探讨所 在 系:生物与环境工程系学生姓名: 蒲 春 林学 号: 200603063014指导教师: 李 民 和班 级: 06 汽 检轿车自动变速器故障分析和维修工艺探讨黔东南民族职业技术学院,556000,贵州凯里,蒲春林摘要:变速器是汽车传动系中最主要的部件之一,它的好坏关系着汽车能否顺利改变汽车行驶速度,以及能否顺利倒车和实现空挡。本文主要研究自动变速器的构造原理与常见故障,对其进行分析和解决。对使用和维护汽车有着很现实的意义。关键词:自动变速器;雷诺风景自动变速器;故障分析一、 引言随着国民经济的迅猛发展,汽车产量逐年增加,2006年已达720万辆。我国汽车保有量越来越多,车型也越来越复杂。尤其是高科技的飞速发展,一些新技术、新材料在汽车上的广泛应用后,给汽车故障诊断与排除增加了一定难度。本篇论文重点讨论轿车变速器故障分析及维修方法。变速器是汽车必备的一个重要组成。没有变速器汽车将不能正常运行,并且难以实现挡位变换。在汽车使用中,变速器难免出现这样、那样的故障,直接影响着人们的生命安全。现在汽车迅速进入家庭,汽车私有化程度提高,所以汽车故障将会影响到我们每一个人。分析研究变速器故障现象、原因、探索变速器故障的排除方法和变速器的维修工艺,具有重大而现实的意义。二、 汽车自动变速器概述众所周知,由于车用发动机的扭矩和转速变化范围较小,而复杂的使用条件又要求汽车的车轮驱动力和车速能在相当大的范围内变化,所以,需要在汽车的动力传动系统中设置变速器。汽车变速器一般有两种形式,一种是普通的手动变速器,一种是自动变速器。借助于普通的手动变速器,汽车驾驶员虽然也可以根据需要进行换挡操作,即选择最合适的齿轮组合,以适应具体的行驶条件,但每次换挡,都不可避免地要伴之以操纵离合器。统计资料表明,在城市行驶工况下,载货汽车每行驶100km,需起步和停车80~100次,而公共汽车则需400~500次。考虑到换挡时的离合器操纵,那么,在城市工况下每行驶100km,公共汽车的离合器工作次数可达800~1000次。在城市交通日益繁忙,道路阻塞日趋加剧的情况下,频繁的换挡对汽车驾驶员来说,无论在精神上,还是体力上,都是一个很大的负担;同时,对道路交通安全也是一个不利的因素。由于自动变速器能根据车辆的行驶速度和驾驶员踩下加速踏板的程度,自动地实现换挡操纵,从而把汽车驾驶员从选择变速器挡位、操纵离合器,以及实施换挡等一系列繁重的驾驶操作中解放出来,并因此而保证了汽车的动力性,提高了行车的安全性,增加了驾驶和乘车的舒适性三、 自动变速器的结构与优缺点汽车自动变速器常见的有三种型式:分别是液力自动变速器(AT)、机械无级自动变速器(CVT)、电控机械自动变速器(AMT)。目前应用最广泛的是AT,AT几乎成为自动变速器的代名词。AT是由液力变矩和离扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来实现变速变矩。其中液力变扭器是最重要的部件,它由泵轮、涡轮和导轮等构件组成,兼有传递扭合的作用。与AT相比,CVT省去了复杂而又笨重的齿轮组合变速传动,而是两组带轮进行变速传动。通过改变驱动轮与从动轮传动带的接触半径进行变速。由于取消了齿轮传动,因此其传动比可以随意变化,变速更加平顺,没有换挡的突跳感。AMT和液力自动变速器(AT)一样是有级自动变速器。它在普通手动变速器的基础上,通过加装微电脑控制的电动装置,取代原来由人工操作完成的离合器的分离、接合及变速器的选挡、换挡动作,实现自动换挡。(一) 汽车自动变速的优点:1. 能根据行驶速度和加速踏板位置,自动地选择最合适的挡位;2. 消除了离合器操作和频繁的换挡,使驾驶操作变得简单而省力,同时,也提高了行车的安全性;3. 大大降低了汽车传动系统的动载荷,使发动机和传动系相关零部件以及轮胎等的使用寿命大为提高;4. 在外载荷突然增大的情况下,可防止发动机过载或熄火,从而保护发动机,并减少排气污染;5. 有效地、平稳地、持续地传递发动机所产生的扭矩,起步平稳,振动和噪声减少,提高乘坐舒适性。与普通的手动变速器相比,自动变速器存在着结构较为复杂,工艺要求及制造成本较高,以及传动效率略低等缺点,从而使整车的制造成本和车辆在某些下况及场合下的运行油耗略有增高,维修难度加大。但由于其优点远远超过了缺点,所以自动变速器在汽车上得到了越来越广泛的应用。(二) 自动变速的缺点1. 对速度变化反应较慢,没有手动档灵敏;2. 比较费油,传动效率较低,变矩范围有限,近年引入电子控制技术改善了这方面的问题;3. 结构复杂,修理困难。在液力变矩器内高速循环流动的液压油会产生高温,所以要用指定的耐高温液压油。4. 如果汽车因蓄电池缺电不能启动,不能用推车或拖车的方法启动。拖运故障车时还必须使驱动轮脱离地面,否则会损坏。四、 自动变速器常见故障分析(一) 汽车不能行驶故障现象:无论换档操纵手柄位于倒档、前进档或前进低,汽车都不能行驶;汽车启动后能行驶一小段路程,但稍一热车就不能行驶。故障原因:1. 自动变速器油底壳被撞坏,自动变速器油全部漏光;2. 换档操纵手柄及手动阀摇臂之间的连杆或拉锁松脱,手动阀保持在空档或停车挡位置;3. 油泵进油滤网堵塞;4. 主油路严重泄露;5. 油泵损坏。(二) 自动变速器打滑故障排除故障现象:汽车起步时踩下加速踏板,发动机转速很快增高,但车速升高缓慢。汽车行驶中踩下加速踏板加速时,发动机转速升高但车速没有很快升提高;汽车平路行驶基本正常,但上坡无力,且发动机转速异常高。故障原因:1. 自动变速器油面太低;2. 自动变速器油面太高,运转中被行星齿轮机构剧烈搅动后产生大量气泡;3. 离合器或制动器摩擦片、制动带磨损过甚或烧焦;4. 油泵磨损过甚或主油路泄露,造成油路油压过低;5. 单向超越离合器打滑;6. 离合器或制动器活塞密封圈损坏,导致漏油。(三) 自动变速器换档冲击大故障排除故障现象:汽车起步时,由停车档(P位)或空档(N位)挂入倒档(R位)或前进档(D位)时汽车振动较严重;在行驶过程中,在自动变速器升档或瞬间汽车有明显的闯动。故障原因:1. 发动机怠速过高;2. 节气门拉锁或节气门位置传感器调整不当,使主油路油压过高;3. 升挡过迟;4. 主油路调压有故障,使主油路又压过高;5. 单向阀钢球漏装,换挡执行元件(离合器或制动器)结合过快;6. 换挡执行元件打滑;7. 油压电磁阀不工作;8. 电脑有故障。(四) 自动变速器升挡过迟故障排除故障现象:汽车行驶时,升挡车速明显高于标准值,升挡前发动机转速翩高,必须采用加速踏板提前升挡的操作方法(即松开加速踏板几秒后再踩下)才能使自动变速器升入高或超速挡。故障原因:1. 节气门拉索或节气门位置传感器调整不当;2. 节气门位置传感器损坏;3. 主油路油压或节气门阀调节油压太高;4. 强制降挡开关短路;5. 电脑或传感器有故障。(五) 自动变速器不能升档的故障排除故障现象:汽车行驶中自动变速器始终保持在1挡,不能升入2挡或高速挡;行驶中自动变速器可以升入2挡,但不能升入3挡或超速挡。故障原因:1. 节气门拉索或节气门位置传感器调整不当;2. 车速传感器有故障;3. 相应的制动器或离合器有故障;4. 换挡阀卡滞;5. 挡位开关有故障。(六) 频繁跳挡故障的排除故障现象:汽车以前进挡行驶时,即使加速踏板保持不动,自动变速器仍然会经常出现突然降挡现象,降挡后发动机转速异常升高,并产生换挡冲击。故障原因:1. 节气门位置传感器有故障;2. 车速传感器有故障;3. 控制系统电路接地不良;4. 换档电磁阀接触不良;5. 电脑有故障。(七) 自动变速器不能强制降挡故障排除故障现象:当车以3挡或超速挡行驶时,突然将加速踏板踩到底,自动变速器不能立即降低一个挡位,致使汽车加速无力。故障原因:1. 节气门拉索或节气门位置传感器调整不当;2. 强制降挡开关损坏或安装不当;3. 强制降挡电磁阀损坏或线路短路、断路;4. 阀板中的强制降挡控制阀卡滞。(八) 挂挡后发动机怠速易熄火故障排除故障现象:发动机怠速运转时将换挡操纵手柄由P位或N位换入R位、D位、3位、2位、1位时发动机熄火;在前进挡或倒挡行驶中,踩下制动踏板停车时发动机熄火。故障原因:1. 发动机怠速过低;2. 阀板中的锁止控制阀卡滞;3. 挡位开关有故障;4. 输入轴转速传感器有故障。(九) 自动变速器无锁止故障排除故障现象:汽车行驶中车速、挡位已满足锁止离合器起作用的条件,但锁止离合器仍没有产生锁止作用,并且汽车油耗较大。故障原因:1. 自动变速器油温度传感器有故障;2. 节气门位置传感器有故障;3. 锁止电磁阀有故障或线路短路、断路;4. 锁止控制阀有故障;5. 液力变矩器中的锁止离合器损坏。(十) 自动变速器汽车无发动机制动故障排除故障现象:汽车行驶时,当换挡操纵手柄位于前进低(3或2、1)位置时,松开加速踏板,发动机转速降至怠速,但汽车没有明显减速;汽车下坡时,换档操纵手柄位于前进挡,但不能产生发动机制动作用。故障原因:1. 挡位开关调整不当;2. 换档操纵手柄调整不当;3. 2挡强制制动器打滑或低及倒挡制动器打滑;4. 控制发动机制动的电磁阀有故障;5. 阀板有故障;6. 自动变速器打滑;7. 电脑有故障。(十一) 自动变速器异响故障排除故障现象:在汽车运转过程中,自动变速器内始终有异响声;汽车行驶中自动变速器有异响,停车挂空挡后异响消失。故障原因:1. 油泵因磨损过甚或自动变速器油面高度过低、过高而产生异响;2. 液离变矩器因锁止离合器、导轮单向离合器等损坏而产生异响;3. 行星齿轮机构异响;4. 换档执行元件异响;(十二) 自动变速器油易变质故障排除故障现象:更换后的新自动变速器油使用不久变变质;自动变速器温度太高,从加油口处向外冒烟。故障原因:1. 汽车使用不当,经常超负荷行驶,如经常用于拖车或经常急加速、超速挡行驶等;2. 自动变速器油散热器管路堵塞;3. 通往自动变速器油散热器的限压阀卡滞;4. 离合器或制动器自由间隙太大;5. 主油路油压太低,离合器或制动器工作中打滑五、 雷诺风景自动变速器故障维修实例一辆雷诺风景汽车当换挡杆置于1位时,油门超过中负荷后变速器马上进入故障保护模式锁在3挡,如果是小油门持续下去变速器就不会进入安全保护模式;当换挡杆置于2位时,中负荷以上的油门会出现1挡升2挡冲击,继续加油门后不会升入3挡而且马上进入故障保护模式;当换挡杆置于D位时,以中负荷以上的油门试车,故障现象为1挡升2挡冲击、继续加油门后便会进入安全保护模式的3挡.故障检修:利用故障诊断仪对变速器电控系统进行检测,没有发现任何故障码。再继续反复试车,发现当油门很小的时候1挡升2挡还是冲击,2挡升3挡正常,3挡升4挡打滑800r/min后冲击。因没有专用诊断仪,只能根据经验对此故障进行大致分析。大小负荷的变化会直接影响变速器的换挡和液压系统的工作压力。小负荷时由于发动机负荷较小,换挡和工作油压在200kPa左右即可完成换挡过程;大负荷时由于发动机负荷加大,此时换挡和工作油压无法得到满足,变速器控制单元通过油压传感器监测后即会进入安全保护模式。因为此款变速器有一些常见故障,如变速器滤网很容易脏,尤其是质量不太好的滤网更易脏污,2个脉冲控制式油压电磁阀通常容易发生磨损。于是我们决定先从这两点进行维修,遂更换了新滤网和电磁阀并对变速器内部进行了细致的检查,装后故障依旧。因为该车先前在别处维修时已经更换过阀体,所以决定先对输入、输出传感器,流量电磁阀,以及油压传感器进行了电阻检测,检测结果都很正常。接下来替换了一块带电磁阀的阀体,故障现象仍然存在。之后又对节气门进行了调整,但故障症状依然没有改观。虽然变速器控制单元也存在出故障的可能性,但因经诊断仪初步检测没有发现控制单元存在相关故障,同时该车控制单元与控制单元之间均是利用CAN数据总线进行通讯,也未在其他系统发现变速器控制单元的相关故障,所以我们又把注意力集中在变速器外围的部件上。一般情况下,油压传感器工作失常会给控制单元一个错误信号,从而使得变速器进入安全保护模式状态,流量电磁阀调节失常也会造成系统工作油压偏低进入安全保护模式。为此我们先对油压传感器进行了检测,并未发现异常。之后在对阻值为的流量电磁阀进行测试时,偶尔发现通断电过程中电磁阀有卡滞的现象。找来1个的灯泡代替电磁阀阻值,并向电磁阀直接供给蓄电池电压进行试车,试车时发现除了1挡升2挡偶尔出现冲击外,其他换挡状况良好。反复试车,发现变速器偶尔会进入安全保护模式。因为此电磁阀的控制方式是占空比控制,所以用蓄电池电压代替很不合理,于是拆下仔细清洗了流量电磁阀。恢复线路后再次试车,1挡升2挡时还是偶尔冲击,其他一切正常。此时离竣工的距离越来越近了,如果冲击感觉再小一些就可以交车了。维修到此阶段已经没有什么可进行的方案了,于是我们冷静下来总结了一下1挡升2挡偶尔冲击的问题。变速器外部元件出故障的可能性都相继被排除了,而此时变速器机械、液压及电控的可能性极小,因此应该找一个良好路面仔细试车找到1挡升2挡偶尔冲击的根源。当我们在车辆较少且路面状况良好道路上试车时,发现当车辆出现敲缸声后,紧接着才会出现变速器1挡升2挡冲击的现象;当发动机无敲缸声音时,变速器1挡升2挡反应良好。此时问题已经豁然明朗,发动机把错误的工况信息通过CAN总线传递给了变速器控制单元,变速器控制单元为此给出了错误的换挡油压,同时发动机工作的异常也影响了换挡时发动机降低扭矩的功能。经与用户一起进行了路试确认如此没有其他问题后,发动机进行了全面检查。发现冷却液温度比正常温度高少许,考虑到发动机曾经进行过维修且存在敲缸声,怀疑发动机的配气正时存在问题,为此重点检查了配气机构。经仔细观察正时标记,发现配气正时齿带在装配时较正确装配相差1个齿,至此,可以肯定导致该车出现故障的原因正在于此。重新对配气机构进行正确装配后,我们又对水箱进行了拆解清洗,试车发现故障彻底排除。任何车型在维修之前要彻底地把车试好,因为诊断和维修当今新款自动变速器故障时“路试”这个环节是最重要的。对于搭载电控程度高的自动变速器及无级变速器的车型,一定要到良好的路上试车,还要把修理车型的常见故障了解清楚,因为有时用原理去分析很难能找到故障点,但故障排除后用原理去解释就并非难事了。六、 变速器检修注意事项我们在检修任何一台自动变速器时,都应从初步检查开始,这样往往能解决很多潜在的问题。只有初步检查结果表明自动变速器正常工作应具备的所有前提条件都合格了,才能进行手动换挡测试。对于自动变速器而言,进行这一步可以确定故障是在电控系统还是机械机构。只有外部的所有条件都符合了,才能对自动变速器的故障作出正确的判断。这其中发动机的性能对自动变速器的运转有很大影响,所以我们在进行自动变速器的检修之前,应确保发动机的性能良好。最好能用专业诊断仪检测发动机,如发现故障码,应按故障码提示进行诊断,并彻底排除发动机的故障。在对变速器具体的故障进行诊断前应先对变速器进行外观检查,如车辆有无损坏,变速器油底壳是否损坏及有无漏油现象,变速器油冷却器或冷却器油管是否损坏等。若发现上述情况,应先排除。之后,还要对自动变速器油位和油质进行检查。正确的检查步骤是:首先起动发动机并运转15min或变速器油到82~93℃工作温度。然后将车辆停放于水平地面并拉紧驻车制动,在发动机怠速运转状态下踩住制动踏板,将变速器换挡杆在每个挡位挂一遍并停于P挡。之后检查变速器的油面和颜色状况,要注意油液颜色是否为不透明的粉红色。变速器不正常使用时油液会变黑,这种现象通常不是氧化就是污染所造成的。在确认油质时,应放干油液以确定油液是否被污染。发现油底壳中存在很多小的颗粒材料是正常的,若有大片的金属或其他材料在里面就需要解体变速器进行检查了,必要时还应更换变速器油和滤清器。在完成了油位和油质的检查之后,就可以测量变速器的油压了。在测量油压时,应将油压表正确安装到相应的变速器油压测试孔上,并按照正确的测量步骤进行操作,测量的具体数据应参照维修手册七、 结束语本文介绍了轿车自动变速器的功能、作用、结构、常见故障,并通过以典型变速器为例,分析了轿车变速器的原理与故障原因、解决办法,维修方式,以及如何正确使用、维护轿车变速器,尽量避免变速器的故障发生,延长使用寿命。对于未来,无级变速器是汽车变速系统的发展趋势,虽然我国乘用车还以手动变速器居多,但就近年来的发展行情看,在轿车领域自动变速器也占了相当一部分市场,而其他部分发达国家或地区自动变速器早已是其主流产品。但无论怎样发展,变速器作为汽车部件中的一个重要地位是不会改变的。参考文献[1] 薛宏建.《汽车故障与检修500例》.第2版.北京.机械工业出版社.[2] 闵永军.万茂松.周良.《汽车故障诊断与维修技术》.第1版.北京.高等教育出版社.[3] 黄宗益.《现代轿车自动变速器原理和设计》.上海.同济大学出版社.2006[4] 张建俊.《汽车检测技术》.第1版.北京.高等教育出版社.[5] 潘伟荣.谭本忠.《汽车自动变速器维修高级教程》.北京.机械工业出版社.2007[6] 中国机械工业教育协会.《汽车构造》. 第1版.北京.机械工业出版社.[7] 邓书涛.《汽车概论》.第1版.西安.西安电子科技大学出版社.[8] 辛长平.《汽车电气设备与维修》.第1版.北京.电子工业出版社.
工作原理及维修 - 图文更新完毕开始阅读山东交通学院毕业设计(论文)前言自动变速器的运用对于汽车的发展已经成为一种趋势,近几年来装用自动变速器的轿车数量也很快增加。相比于传统的手动变速器,自动变速器虽然结构复杂、种类较多。但是装有自动变速器的汽车操作简便、经济、安全。但是,由于机械技术和液压技术、电子技术的结合,使得在维修方面更具挑战性。由于自动变速器有很好的自动调节和自我适应性,车辆在起步时更加平稳、加速时更加均匀。在减震方面的良好表现降低了传动系的动载荷和扭振,延长了传动系的使用寿命,使乘员在乘坐时也感觉更加舒适,行驶更加安全。在车辆行驶平均速度上也有所提高。虽然在很多方面自动变速器相对于手动变速器有非常优秀的表现,但效率低下也是自动变速器难以忽略的问题。所以,弄清楚自动变速的结构和工作原理,了解自动变速器各个部件的作用和工作原理成为发展自动变速汽车道路上的当务之急。同时对其故障诊断和维修方面,也要同步跟进,以确保自动变速汽车的正常使用和发展。自动变速器在遇到故障发生时,在维修时比较麻烦和耗费时间精力,因为其结构组成相比于传统的手动变速器而言更加紧密,也更加的复杂。一般很少有故障发生,这得益于它的性能更加优越,结构更加合理,设计更加完善。为了在维修时能够顺利的进行,熟悉其个部分结构和工作原理就非常的重要了。只有反复练习,熟练维修流程才能够更好的完成维修工作,才能在变速器发生故障时从容应对。本文将以丰田A341E自动变速器为对象,研究分析其结构和工作原理,并在故障诊断与维修方面做一定论述。A341E自动变速器简单的工作原理是动力由发动机输出,经过变矩器传递给自动变速器,通过自动变速器的行星齿轮机构,通过驾驶员对操纵手柄的操作实现不同的齿轮啮合,达到变速的目。故障诊断是用各种故障诊断方法,有时借用相应的仪器对自动变速器进行测试和分析,按照一定的方法和步骤对自动变速器的机械系统液压控制系统和电子控制系统进行诊断,确定故障发生的具体部位和零部件。1姜葛:丰田A341E自动变速器的结构、工作原理与维修1 自动变速器概述 自动变速器的发展汽车自动变速器的成长过程比较缓慢。液力变矩器的成长阶段是从1939年到1950年。在这一成长阶段中,通过行星齿轮机构完成变速,液力变矩器的液力传动部分没有使用液力耦合器。纵然这种结构形式简单,成本也不高,但是液力传动部分只是作为联轴器使用,达不到变矩的功用。传动转矩的变化都是依赖行星齿轮机构。20世纪50年代,Ford Motor Company顺利的研发制造了使用液力变矩的3档自动变速器,至此液力自动变矩器用于轿车迈进了成熟期。由于汽车的高速比、燃油经济性和噪音控制的要求逐渐严格,液力变速器的行星齿轮机构的档位数和速比范围有增加的趋势。1977年,日本丰田研发了具备4个档位的自动变速器、1977年后,又顺利研发了具有了超速档的自动变速器。这款具有超速档的变速器,不仅在变矩比和传动部分有所提高,同时换档圆滑。因为它采用了三元件液力变矩器和多档行星齿轮机构联合的设计理念。在自动变速器中使用范围最大的行星齿轮变速器是辛普森式(Simpson)行星齿轮变速器,是美国福特公司的一名叫辛普森的工程师发明的。1983年,NISSAN公司成功研发了4档液力自动变速器用的行星齿轮机构,它显著的优点是组织紧密,从而为多档化的液力自动变速器打下了基础。1989年,NISSAN汽车公司研制的具有5档的液力自动变速器成功装车使用,这两款变速器都是在原来的3档和4档液力变速器的条件上,加装一组行星变速齿轮机构而设计的。最近这些年,随着自动变速器各部分结构性能的改进和完善,尤其是电子技术和自动控制技术与传统技术的融合,诞生了电控自动变速器,它包括电控液力机械传动的自动变速器和电控齿轮式机械传动的自动变速器。提高了汽车的燃油经济性、动力性、安全性,同时使汽车变得更加绿色环保。实现了变速器与发动机的最佳组合,促进了汽车产业的健康发展。 自动变速器的种类依据传动比变化方式的不一样,自动变速器能够分为两个大类:有级式的自动变速器和无级式的自动变速器。常用的有级式自动变速器一般可以分为液力自动变速器(AT)、电控机械式自动变速器(AMT)和双离合器式自动变速器(DCT)三大类。丰田A341E自动变速器其实就是一款电控式液力自动变速器。现在轿车使用的液力自动变速器一般是四速、五速或者六速,但是液力变速器的档数可以是三速到八速。变速器的档位越多,结构也就会变得越复杂,对各项技术的要求也会越高。 电控机械式自动变速器同传统的机械变速器一样,传动效率都比较高,一般装配使用在小排量的乘用车和重型商用车上。双离合器式自动变速器的结构组成比较复杂,制造难度相对较大,但是具有机械变速器传动效率高的优点,具有很大的发展空间。而无级2山东交通学院毕业设计(论文)自动变速器,结构简单,体积小,工作速比范围宽,容易与发动机形成理想的匹配,具有相当理想的优势,是未来变速器发展的趋势。 自动变速器与手动变速器的区别(1)变速器操纵杆不同手动变速器的操纵杆如图所示。图 手动变速器操纵杆 manual transmission lever装有这两种变速器的汽车的操纵杆作用不同,手动变速汽车的操纵杆是用来改变档位的,档位的变化通过改变操纵杆的位置来实现的,档位与操纵杆的位置是一一对应的。装有手动变速器的汽车具有的档位为:一档、直接档、倒档、空档等。而装有自动变速器的汽车的操纵杆是用来改变工作模式变化的。装有自动变速器的汽车具有的工作模式为:停车(P)、倒车(R)、空档(N)、自动档(D)、限定范围的自动档等工作模式。正常行驶的自动变速汽车,操纵杆放在自动档(D)上,汽车能够自动完成高档和低档的转变。自动变速器的操纵杆如图所示。图 自动变速器操纵杆 automatic transmission lever3姜葛:丰田A341E自动变速器的结构、工作原理与维修其次,从踏板数量上,装有手动变速器的汽车有三个踏板:油门踏板、制动踏板和离合器踏板。而装有自动变速器的汽车只有两个脚踏板:油门踏板和制动踏板,无离合器踏板。装有手动变数器的汽车,也叫手动档汽车。装有自动变速器的汽车,也叫自动档汽车。手动档汽车,要改变车速,需要通过拨动变速操纵杆改变变速器内的齿轮啮合位置,改变传动比,从而改变车轮转速。而且只有在踩下离合时,才能拨动变速杆。只有当驾驶者技术熟练时,装手动变速器的汽车在加速、超车时才会比自动档汽车速度快,更省油。自动档汽车,能够自动的改变速度,驾驶员只要通过踩压加速踏板即可。自动变速器会根据踏板的变化和车速自动的进行变速。(2)自动变速器与手动变速器相比,自动变速器具有下列优缺点: 优点:①能够主动改变转速,扭矩变化不间断,换档时动力持续; ②通过性能好,起步简单,换档简单平顺圆滑,舒适性好 ; ③承受的冲击和动载荷小,机件寿命长。 缺点:①结构复杂,制造标准高,难度大,成本高; ②传动效率相对较低,价格高,耗油量大; ③对维修人员的技术水平要求更高。