一, 生物信息学发展简介生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解.研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在[1],1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色.1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等.与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构.1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA的三维结构(双螺旋).DNA以磷酸糖链形成发双股螺旋,脱氧核糖上的碱基按Chargaff规律构成双股磷酸糖链之间的碱基对.这个模型表明DNA具有自身互补的结构,根据碱基对原则,DNA中贮存的遗传信息可以精确地进行复制.他们的理论奠定了分子生物学的基础.DNA双螺旋模型已经预示出了DNA复制的规则,Kornberg于1956年从大肠杆菌()中分离出DNA聚合酶I(DNA polymerase I),能使4种dNTP连接成的复制需要一个DNA作为模板.Meselson与Stahl(1958)用实验方法证明了DNA复制是一种半保留复制.Crick于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用.经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译.限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础.正是由于分子生物学的研究对生命科学的发展有巨大的推动作用,生物信息学的出现也就成了一种必然.2001年2月,人类基因组工程测序的完成,使生物信息学走向了一个高潮.由于DNA自动测序技术的快速发展,DNA数据库中的核酸序列公共数据量以每天106bp速度增长,生物信息迅速地膨胀成数据的海洋.毫无疑问,我们正从一个积累数据向解释数据的时代转变,数据量的巨大积累往往蕴含着潜在突破性发现的可能,"生物信息学"正是从这一前提产生的交叉学科.粗略地说,该领域的核心内容是研究如何通过对DNA序列的统计计算分析,更加深入地理解DNA序列,结构,演化及其与生物功能之间的关系,其研究课题涉及到分子生物学,分子演化及结构生物学,统计学及计算机科学等许多领域.生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取,处理,存储,分配和解释.基因组信息学的关键是"读懂"基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计[2].了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断,治疗内在规律.它的研究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗传语言.生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿.二, 生物信息学的主要研究方向生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些主要的研究重点.1,序列比对(Sequence Alignment)序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义[3]:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的.2, 蛋白质结构比对和预测基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要.3, 基因识别,非编码区分析研究.基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(HiddenMarkov Model)和GENSCAN,Splice Alignment等等.4, 分子进化和比较基因组学分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因Paralogous: 相同种族,不同功能的基因Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现.5, 序列重叠群(Contigs)装配根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题.6, 遗传密码的起源通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材.7, 基于结构的药物设计人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益.8, 其他如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.三, 生物信息学与机器学习生物信息的大规模给数据挖掘提出了新课题和挑战,需要新的思想的加入.常规的计算机算法仍可以应用于生物数据分析中,但越来越不适用于序列分析问题.究竟原因,是由于生物系统本质上的模型复杂性及缺乏在分子层上建立的完备的生命组织理论.西蒙曾给出学习的定义:学习是系统的变化,这种变化可使系统做相同工作时更有效[4].机器学习的目的是期望能从数据中自动地获得相应的理论,通过采用如推理,模型拟合及从样本中学习,尤其适用于缺乏一般性的理论,"噪声"模式,及大规模数据集.因此,机器学习形成了与常规方法互补的可行的方法.机器学习使得利用计算机从海量的生物信息中提取有用知识,发现知识成为可能[5].机器学习方法在大样本,多向量的数据分析工作中发挥着日益重要的作用,而目前大量的基因数据库处理需要计算机能自动识别,标注,以避免即耗时又花费巨大的人工处理方法.早期的科学方法—观测和假设----面对高数据的体积,快速的数据获取率和客观分析的要求---已经不能仅依赖于人的感知来处理了.因而,生物信息学与机器学习相结合也就成了必然.机器学习中最基本的理论框架是建立在概率基础上的,从某种意义来说,是统计模型拟合的延续,其目的均为提取有用信息.机器学习与模式识别和统计推理密切相关.学习方法包括数据聚类,神经网络分类器和非线性回归等等.隐马尔可夫模型也广泛用于预测DNA的基因结构.目前研究重心包括:1)观测和探索有趣的现象.目前ML研究的焦点是如何可视化和探索高维向量数据.一般的方法是将其约简至低维空间,如常规的主成分分析(PCA),核主成分分析(KPCA),独立成分分析(Independent component analysis),局部线性嵌套(LocallyLinear embedding).2)生成假设和形式化模型来解释现象[6].大多数聚类方法可看成是拟合向量数据至某种简单分布的混合.在生物信息学中聚类方法已经用于microarray数据分析中,癌症类型分类及其他方向中.机器学习也用于从基因数据库中获得相应的现象解释.机器学习加速了生物信息学的进展,也带了相应的问题.机器学习方法大多假定数据符合某种相对固定的模型,而一般数据结构通常是可变的,在生物信息学中尤其如此,因此,有必要建立一套不依赖于假定数据结构的一般性方法来寻找数据集的内在结构.其次,机器学习方法中常采用"黑箱"操作,如神经网络和隐马尔可夫模型,对于获得特定解的内在机理仍不清楚.四, 生物信息学的数学问题生物信息学中数学占了很大的比重.统计学,包括多元统计学,是生物信息学的数学基础之一;概率论与随机过程理论,如近年来兴起的隐马尔科夫链模型(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理论或多或少在生物学研究中起到了相应的作用.但并非所有的数学方法在引入生物信息学中都能普遍成立的,以下以统计学和度量空间为例来说明.1, 统计学的悖论数学的发展是伴随悖论而发展的.对于进化树研究和聚类研究中最显著的悖论莫过于均值了,如图1:图1 两组同心圆的数据集图1是两组同心圆构成的数据集,显然,两组数据集的均值均在圆点,这也就说明了要采用常规的均值方法不能将这两类分开,也表明均值并不能带来更多的数据的几何性质.那么,如果数据呈现类似的特有分布时,常有的进化树算法和聚类算法(如K-均值)往往会得错误的结论.统计上存在的陷阱往往是由于对数据的结构缺乏一般性认识而产生的.2, 度量空间的假设在生物信息学中,进化树的确立,基因的聚类等都需要引入度量的概念.举例来说,距离上相近或具有相似性的基因等具有相同的功能,在进化树中满足分值最小的具有相同的父系,这一度量空间的前提假设是度量在全局意义下成立.那么,是否这种前提假设具有普适性呢我们不妨给出一般的描述:假定两个向量为A,B,其中,,则在假定且满足维数间线性无关的前提下,两个向量的度量可定义为:(1)依据上式可以得到满足正交不变运动群的欧氏度量空间,这也是大多数生物信息学中常采用的一般性描述,即假定了变量间线性无关.然而,这种假设一般不能正确描述度量的性质,尤其在高维数据集时,不考虑数据变量间的非线性相关性显然存在问题,由此,我们可以认为,一个正确的度量公式可由下式给出:(2)上式中采用了爱因斯坦和式约定,描述了变量间的度量关系.后者在满足(3)时等价于(1),因而是更一般的描述,然而问题在于如何准确描述变量间的非线性相关性,我们正在研究这个问题.五, 几种统计学习理论在生物信息学中应用的困难生物信息学中面对的数据量和数据库都是规模很大的,而相对的目标函数却一般难以给出明确的定义.生物信息学面临的这种困难,可以描述成问题规模的巨大以及问题定义的病态性之间的矛盾,一般从数学上来看,引入某个正则项来改善性能是必然的[7].以下对基于这一思想产生的统计学习理论[8],Kolmogorov复杂性[98]和BIC(Bayesian Information Criterion)[109]及其存在的问题给出简要介绍.支持向量机(SVM)是近来较热门的一种方法,其研究背景是Vapnik的统计学习理论,是通过最大化两个数据集的最大间隔来实现分类,对于非线性问题则采用核函数将数据集映射至高维空间而又无需显式描述数据集在高维空间的性质,这一方法较之神经方法的好处在于将神经网络隐层的参数选择简化为对核函数的选择,因此,受到广泛的注意.在生物信息学中也开始受到重视,然而,核函数的选择问题本身是一个相当困难的问题,从这个层次来看,最优核函数的选择可能只是一种理想,SVM也有可能象神经网络一样只是机器学习研究进程中又一个大气泡.Kolmogorov复杂性思想与统计学习理论思想分别从不同的角度描述了学习的性质,前者从编码的角度,后者基于有限样本来获得一致收敛性.Kolmogorov复杂性是不可计算的,因此由此衍生了MDL原则(最小描述长度),其最初只适用于离散数据,最近已经推广至连续数据集中,试图从编码角度获得对模型参数的最小描述.其缺陷在于建模的复杂性过高,导致在大数据集中难以运用.BIC准则从模型复杂性角度来考虑,BIC准则对模型复杂度较高的给予大的惩罚,反之,惩罚则小,隐式地体现了奥卡姆剃刀("Occam Razor")原理,近年也广泛应用于生物信息学中.BIC准则的主要局限是对参数模型的假定和先验的选择的敏感性,在数据量较大时处理较慢.因此,在这一方面仍然有许多探索的空间.六, 讨论与总结人类对基因的认识,从以往的对单个基因的了解,上升到在整个基因组水平上考察基因的组织结构和信息结构,考察基因之间在位置,结构和功能上的相互关系.这就要求生物信息学在一些基本的思路上要做本质的观念转变,本节就这些问题做出探讨和思索.启发式方法:Simond在人类的认知一书中指出,人在解决问题时,一般并不去寻找最优的方法,而只要求找到一个满意的方法.因为即使是解决最简单的问题,要想得到次数最少,效能最高的解决方法也是非常困难的.最优方法和满意方法之间的困难程度相差很大,后者不依赖于问题的空间,不需要进行全部搜索,而只要能达到解决的程度就可以了.正如前所述,面对大规模的序列和蛋白质结构数据集,要获得全局结果,往往是即使算法复杂度为线性时也不能够得到好的结果,因此,要通过变换解空间或不依赖于问题的解空间获得满意解,生物信息学仍需要人工智能和认知科学对人脑的进一步认识,并从中得到更好的启发式方法.问题规模不同的处理:Marvin Minsky在人工智能研究中曾指出:小规模数据量的处理向大规模数据量推广时,往往并非算法上的改进能做到的,更多的是要做本质性的变化.这好比一个人爬树,每天都可以爬高一些,但要想爬到月球,就必须采用其他方法一样.在分子生物学中,传统的实验方法已不适应处理飞速增长的海量数据.同样,在采用计算机处理上,也并非依靠原有的计算机算法就能够解决现有的数据挖掘问题.如在序列对齐(sequence Alignment)问题上,在小规模数据中可以采用动态规划,而在大规模序列对齐时不得不引入启发式方法,如BALST,FASTA.乐观中的隐扰生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因组时代",目前在这一领域的研究人员均呈普遍乐观态度,那么,是否存在潜在的隐扰呢不妨回顾一下早期人工智能的发展史[11],在1960年左右,西蒙曾相信不出十年,人类即可象完成登月一样完成对人的模拟,造出一个与人智能行为完全相同的机器人.而至今为止,这一诺言仍然遥遥无期.尽管人工智能研究得到的成果已经渗入到各个领域,但对人的思维行为的了解远未完全明了.从本质来看,这是由于最初人工智能研究上定位错误以及没有从认识论角度看清人工智能的本质造成的;从研究角度来看,将智能行为还原成一般的形式化语言和规则并不能完整描述人的行为,期望物理科学的成功同样在人工智能研究中适用并不现实.反观生物信息学,其目的是期望从基因序列上解开一切生物的基本奥秘,从结构上获得生命的生理机制,这从哲学上来看是期望从分子层次上解释人类的所有行为和功能和致病原因.这类似于人工智能早期发展中表现的乐观行为,也来自于早期分子生物学,生物物理和生物化学的成就.然而,从本质上来讲,与人工智能研究相似,都是希望将生命的奥秘还原成孤立的基因序列或单个蛋白质的功能,而很少强调基因序列或蛋白质组作为一个整体在生命体中的调控作用.我们因此也不得不思考,这种研究的最终结果是否能够支撑我们对生物信息学的乐观呢 现在说肯定的话也许为时尚早.综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密.在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果.那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力.毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,这个世界上发生的一切事情,都与这一序列息息相关".但要完全破译这一序列以及相关的内容,我们还有相当长的路要走.(来源 ------[ | 生物信息学研讨组])生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。生物信息学是一门利用计算机技术研究生物系统之规律的学科。目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。
这种最基本的东西没必要求论文啊,自己随便写写就好了,用个DNAMAN,随便挑个基因,分分钟搞出来。再者没人会拿这种东西单独去发一篇论文吧?这点东西根本不够资格,只够在某篇论文里的两句话的分量。
谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据等(1944)进行的转化实验,以及和(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。
1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.
谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据等(1944)进行的转化实验,以及和(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。
1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.
这种最基本的东西没必要求论文啊,自己随便写写就好了,用个DNAMAN,随便挑个基因,分分钟搞出来。再者没人会拿这种东西单独去发一篇论文吧?这点东西根本不够资格,只够在某篇论文里的两句话的分量。
给你两个网站吧,里面有些范文
写作思路:先写出互联网发展的现状,然后畅享一下自己对互联网发展趋势的预测。
正文:
当今世界网络信息技术日新月异,互联网正在全面融入经济社会生产和生活各个领域,引领了社会生产新变革,创造了人类生活新空间,带来了国家治理新挑战,并深刻地改变着全球产业、经济、利益、安全等格局。
互联网正在成为21世纪影响和加速人类历史发展进程的重要因素,成为推动全球创新与变革、发展与共享、和平与安全的重要议题。把握互联网发展趋势,深化互联网应用,加强互联网治理,才能让互联网更好地服务人类发展。
互联网将成为全球产业转型升级的重要助推器。互联网正在为全球产业发展构建起全新的发展和运行模式,推动产业组织模式、服务模式和商业模式全面创新,加速产业转型升级。
众包、众创、众筹、网络制造等无边界、人人参与、平台化、社会化的产业组织新模式将让全球各类创新要素资源得到有效适配和聚合优化,移动服务、精准营销、就近提供、个性定制、线上线下融合、跨境电商、智慧物流等服务将让供求信息得到及时有效对接,按需定制、人人参与、体验制造、产销一体、协作分享等新商业模式将全面变革产业运行模式,重塑产业发展方式。
互联网构建的网络空间,将让产业发展更好地聚集创新要素,更好地应对资源和环境等外部挑战,将推动全球产业发展迈入创新、协调、绿色、共享、开放的数字经济新时代。
互联网将成为世界创新发展的重要新引擎。互联网已经成为全球技术创新、服务创新、业态创新和商业模式创新最为活跃的领域,互联网企业正在成为未来全球创新驱动发展中最为广泛、最为耀眼、最为强劲的创新动能源泉,成为全球技术创新、产业创新、业态创新、产品创新、市场创新和管理创新的引领者。
人口、资源、市场等驱动国家发展的传统红利要素,正在全面让位互联网创新发展的红利,互联网创新将成为推动世界持续发展的重要新动能,带着人类全面跨入创新发展的快车道,创新、智能、变革的社会正因为互联网创新加速到来。
初中信息技术论文范文
无论是在学校还是在社会中,说到论文,大家肯定都不陌生吧,通过论文写作可以培养我们独立思考和创新的能力。相信写论文是一个让许多人都头痛的问题,以下是我收集整理的初中信息技术论文范文,欢迎阅读,希望大家能够喜欢。
题目: 初中信息技术教学之我见
【摘要】正随着现代科学技术的发展,特别是以计算机的发明和应用为主要标志的第三次人类科技革命浪潮的推动,人们的生活步入了信息时代。信息时代的到来,给现代教育提出了新的要求,那就是要想真正适应社会的发展和需要,必须要掌握信息技术。
【关键词】信息技术教学;信息技术的课程;课堂教学过程;计算机
信息技术教学总目标是通过各种形式的教育,使学生将信息的获取、分析、加工、利用等能力,内化为自身的思维习惯和行为方式,从而形成影响人的一生的品质。通过几年的教学实践,本人获得几点心得体会,与大家交流。
一、信息技术教学过程中最常用的教学方法有以下几种
(一)直观感知法。虽然在一些小学已开设信息技术课程,但对学生来说,还是一门新兴的、新颖的课程,因而对计算机更是充满着一种神秘感,很想知道计算机是怎么工作的,主机箱内到底有些什么东西,它们各有什么用途?对此,我常通过现场实物展示来让学生看一看、摸一摸、做一做,认识一下什么是硬盘、主板、内存、显卡等,然后再简单地解释其作用。通过直觉的感官认识,学生就会对心中的疑团有所解开,并在脑海里建立起一个对计算机基本结构的模型,这样学生就能对教材中基础知识部分很轻松地掌握了。
(二)对比、类比讲解法。比如在讲Windows基础知识时,经常用到对比教学方法。如讲授资源管理器,可通过观察“我的电脑”窗口来进行对比,比较两者窗口界面的不同,来加强学习的效果。再比如讲“复制”、“移动”文件或文件夹时,运用对比教学法,教学效果不错。
另外,在信息技术知识方面有许多“相似”的知识点,在备课过程中,我注意对教学内容进行分类,善于归纳知识要点。具体说来要注意做到将“相似”的知识点合起来讲,操作方法“相同”的挑一个来讲。例如,在讲解Word中“图文混排”一节时,我将图片、艺术字和文本框的插入方法和格式的设置合在一起来讲,只给同学们讲解并演示了图片的插入和格式的设置方法,而艺术字和文本框的插入与格式设置留给同学们通过自己动手操作和小组内的合作学习自己去完成学习目标。虽然一节课我只讲了7分钟左右的时间,由于同学们有了充足的操作和交流时间,却起到了很好的学习效果。
(三)自由作业法。如在讲Word中“综合应用”这一节时,根据学生对前三节的内容已掌握,所以我在这节课上运用自由作业法,在课上不是纯粹的要求学生按照书本上的详细操作步骤进行,而是让学生在根据自己掌握基本技巧与理论知识前提下,自由发挥。(信息技术教学论文)然后教师选取具有代表性、典型性的学生在多媒体教学平台上演示给大家看,让全班学生一起进行讲评,比一比谁做得更简捷、更方便,从而使学生能触类旁通,共同学习与提高。
(四)讲授与练习相结合。利用现代教学手段,驾驭课堂教学。俗话说“工欲善其事,必先利其器”,相信“多媒体网络教室”系列软件大家都不陌生,它为我们的教学提供了很大的方便。教学过程中,教师一边演示,一边讲解。教师一边教,学生一边学,然后再加上教师有目的、有意义的指导和分组讨论学习,从而达到教学目的,这也是信息技术教学中常用的一种教学方法。
(五)互动式合作学习。针对初中学生的个性和本学科的特点,经过几年来的实践,我在教学中也采用“互动式合作学习”的教学方法,取得了良好的教学效果。它是一种以个人为主体,以小组为单位,以互动、合作为精髓的学习方式,其优势在于:1.能够引导学生主动参与到学习实践过程之中。2.能在充分挖掘学生的个人表现欲望的.同时,培养集体荣誉感。3.小组成员间能相互取长补短,培养合作学习的能力,在增进友谊的同时,也培养了同学们的竞争意识。4.形成了有效的师生之间、生生之间、课上与课下之间的立体互动,有效地落实了课堂教学的三维目标。例如在讲“收发电子邮件”这一课时,我在课下了解到班里有三分之一的学生已有电子邮箱,并经常收、发邮件。在备课时,我把本课的知识点做成专题网站,在课上采用“互动式合作学习”,收到了很好的教学效果。
二、信息技术教学中应注意的问题
(一)在教学中教师做到少讲、精讲;学生做到多练,把更多的时间留给学生通过动手操作、合作学习来达成学习目标。
(二)教师角色的转变。教师要参与到学生的活动中,要由过去的学习控制者、权威者转变为学习活动的参与者、合作者、引导者、咨询者。这点也是新课改对教师的要求。
(三)学生角色的转变。教师要正确引导学生由以往的知识接受者向知识传授者的转变。让学生把在操作过程中得到的启发、体会,或是把“无意间”学到的新知识、新方法谈出来,给大家演示与大家交流。
(四)重交流评赏,轻定位评判。课堂上学生完成的作品或任务,在他们心中往往是“自我感觉良好”的,教师在进行作业的评价过程中,应注意多引导同学们去欣赏、分析作品,让学生谈出自己的创意、体会或演示自己的制作方法,让其他同学得以借鉴,相互取长补短,实现共同进步。
课堂教学不仅是一门科学,而且是一门艺术,科学而又精妙的方法,是教学成功与否的关键。信息技术课程的建设之路还有一段路要走,作为教师,
我们都将和新课程一道成长。在这漫长的征途当中,我们都会继续做出自己的努力,为学生成长和课程建设贡献自己的教育智慧!
写作思路:首先可以开篇点题,直接给出文章的主旨,接着表达自己的想法以及观点,用举例子的方式来进行阐述论证自己的看法,中心要明确等等。
互联网主要目的就是完成各种领域和互联网良好的进行融合,这一定会使得网络流量类型增多并且访问量得到大幅度的提升,让互联网服务、互联网应用还有使用者访问形式的巨大改变。
处于“互联网+”背景中,更加明显地反映出来使用者利用访问网络的最终目的获得想要获得的东西而并非一些杂乱无章的事物,这个方向引领现代网络的变化。ICN能够很好满足“互联网+”背景下大量信息互联还有使用者访问以及信息交互的要求。
ICN将内容当做关键,依据姓名访问替代了之前依据地址访问的方式,依据内容名还有相关描述实施内容的检索,内容名能够直接体现出使用者的需要,能够让资源良好的进行开放和获得,以上的做法不单单能够让资源加快流动,还能够抬升资源的获得效率,处于ICN中,仅仅划分为两种,这两种分别是数据种还有兴趣种。
客户发出兴趣种,通过这个兴趣种来体现自己所需要的东西;供方也就是内容的制造方还有互联网内缓依据内容的名字,通过数据种给客户提供其所需要的东西。
节点按照内容的名字,实施兴趣种还有数据种的转发,所以可以说,ICN属于一个客户驱动类型的副本缓存,其中所记录的多种副本中只要有一个达到客户的需要就可以,不需要去考虑兴趣的出处,站在提供的角度,ICN是属于消费驱动中的一种,提供方仅仅需要了解客户感兴趣的内容名。
客户进行内容的消费,提供方依据名字提供内容,这样消费和资源提供的模式达到“互联网+”发展思想。
“互联网+”到迅速提升给互联网带来越来越多的使用者,经济社会和互联网的亲密度越来越大,另外就是,在互联网性能还有互联网管控上面提出了越来越高的标准。
SDN的关键思想就是让互联网设施的控制平面与数据平面连接,转发作用体现在交换设备上面,控制作用让负责互联网整体信息的控制器实现,控制器利用进行编程完成策略的个性化还有动态部署。
所以在建立之后,SDN凭借着方便的网络架构和极强的网络兼容情况,不单单被研究领域所关注。并且获得互联网设备制造方的鼓励,逐渐的发展成互联网行业研究和开发的核心。因为SND数据分解平面与控制平面,能够迅速解决普通网络路由判断的盲目情况。
让控制的针对情况与控制效率增强,让网络良好的进行管理,让互联网利用的效率提升,SDN所具有的特征十分满足在提升“互联网+”的时候解决互联网管理混乱,还有增强网络效果的要求。
信息技术在加速国际新一轮经济革命的时候,同样加速新一代的工业技术革命。如今的工业制造系统演变得越来越复杂了。
集成情况在增强,网络连接同样越来越强。工业和网络的连接,现在已经变成了人心所向。通过信息技术手段提升系统彼此的互相连接,完成互联网性、系统性还有完整性的提升,将之前传统的制造形式进行改变,提升管理的情况与制造的效率正是“互联网+”的最终目的。
美国“工业互联网”与“中国制造2015”全部是加速工业技术改变、创造出来核心的竞争实力以及让每个国家迅速的进行提升的关键。互联网属于面向互联网由消费者行业逐渐的转向与制造行业的需要而逐渐诞生的。
信息技术的论文
在个人成长的多个环节中,许多人都写过论文吧,论文是一种综合性的文体,通过论文可直接看出一个人的综合能力和专业基础。那么一般论文是怎么写的呢?以下是我收集整理的有关信息技术的论文,仅供参考,希望能够帮助到大家。
摘要: 随着信息技术的发展,人类已经步入了信息社会,信息技术为人们提供了一种全新的生产和生活方式,并深深地影响着人类社会的政治、经济、科技等各个领域。通过信息技术的概念及发展趋势进行简要分析,粗浅地谈了信息技术给人类社会带来的一些影响。
关键词 :信息技术;发展;影响
一、什么是信息技术
信息伴随着人类社会的出现而存在,从广义来看,凡是能扩展人的信息功能的技术,都可以称为信息技术。
信息技术是指利用电子计算机和现代通信手段获取、传递、存储、处理、显示信息和分配信息的技术。(新华词典)
目前,信息技术主要包括计算机技术、微电子技术、通信技术、传感技术等。信息技术的发展趋势:多元化、多媒体化、网络化、智能化及虚拟化。人类社会各个领域的活动都将在网络系统中完成,而信息技术的智能化却成为令人瞩目的发展方向,2010年的上海世博会,日本的机器人用小提琴演奏《茉莉花》就是其中的一个例子。
二、信息技术的影响
信息技术在日常生活、教育、科学研究、通信服务、金融商业、医疗保健、工业生产、军事、航天等方面已经广泛应用,对人类社会各个领域的发展产生了巨大的推动作用,将从根本上改变人们的生活方式、行为方式和价值观。
信息技术对人类社会的影响,其主流是积极的,但是一些负面影响也是客观存在的。在此,笔者粗浅地谈谈信息技术的正面和负面影响。
(一)正面影响
1.促进社会发展
随着信息技术的发展,人类社会进入信息社会。信息技术在人类社会各个方面、各个领域的广泛应用,加快了社会生产力的发展和人们生活质量的提高。
信息技术的发展使得世界变成一个地球村,人们能分享社会进步带来的成果,减少地域差别和经济发展造成的差异,这样不仅促进了不同国家、不同民族之间的文化交流和学习,还使文化更具开放性和更加大众化。
2.信息技术促进了世界经济的发展
信息技术推出了新型的行业——互联网行业,基于互联网的电子商务模式使得企业产品的营销与销售及售后服务等都可以通过网络进行,企业与供货商、零部件生产商以及分销商之间也可以通过电子商务实现各种交互。而传统的行业为了适应互联网发展的要求,纷纷在网上提供各种服务。
3.推动科技进步
信息技术促进新技术的变革,推动了科学技术的进步。计算机技术的应用,使得原本用人工需要花费几十年甚至上百年才能解决的复杂计算,如今可能用几分钟就能完成;应用计算机仿真技术可以模拟现实中可能出现的各种情况,便于验证各种科学的假设。以微电子技术为核心的信息技术,带动了空间开发、新能源开发、生物工程等尖端技术的发展。此外,信息技术在基础学科中的应用以及和其他学科的融合,促进了新兴学科和交叉学科(如人工智能)的产生和发展。
4.改善了人们的生活和学习
信息技术的广泛应用促进了人们的工作效率和生活质量的提高。足不出户可知天下事,人不离家照样能办事。如在家上班、网上信息交流。网上信息交流是现今网络技术最为广泛的应用,人们使用计算机来生产、处理、交换和传播各种形式的信息(如书籍、商业文件、报刊、电影、语音、影像等)。网上学习、网上购物、写博客微博、网上会议、网上娱乐、收发电子邮件等几乎是当下人们每天都会做的事。这些无疑可以扩大人们的交流半径,拓宽人们知识信息的来源和途径。
(二)负面影响
1.危害人们的身心健康
①网恋
由于网络环境的虚拟化,网络中的匿名化活动,导致好多的人去网恋,在现实生活中是一种身份,在网络虚拟世界中扮演另一种身份,这样容易使人产生双重性格。“网恋”会引发人的感情纠葛,导致各种情感问题,造成心理的创伤。网恋的影响并不仅仅限于网民之中,长时间泡网无疑会缩减自己与亲人、朋友、同事交流的时间,自然也会给自己的家庭、生活和工作带来不良影响。因此,我们要杜绝网恋的危害。
②网游、网瘾
网络中精彩的游戏、影视等让很多人沉迷网络,有了网瘾。由于花费过多时间上网,以至于损害了现实的人际关系和学业、事业,尤其青少年的控制力差,很容易沉迷网络。长时间上网不仅会影响青少年的身心健康、导致学习成绩下降,还会弱化青少年的道德意识、影响人际交往能力的正常发展和正确人生观和价值观的形成。近期,我国公众对未成年人“网络成瘾”问题给予很高关注。
③网络吸毒
随着网络的发展普及,从2009年开始,又出现了网络吸毒贩毒的毒品违法犯罪形式,涉毒人员把现实中的吸毒过程搬进了虚拟空间。2011年10月30日的《焦点访谈》播报了公安部门首次破获的网络涉毒大案。这是公安部门在全国范围内组织侦办的首例利用互联网视频交友平台进行涉毒活动的新类型毒品案件。让人震惊的`是,在这些人群中,35岁以下的超过了65%,年龄最小的只有15岁。
这样一个残酷的事实摆在面前,无疑再次敲响了警钟:网络监管任重道远,不容松懈。一个文明健康的网络环境,关系到青少年的健康成长,关系到社会的和谐稳定。因此,净化网络环境刻不容缓。在此我呼吁,一方面社会有关部门应该加强网络管理,尤其网络运营商应该担负起社会责任;另一方面,要注重对社会广大青少年的思想教育。在此我提议未成年人要正确认识网络,要适度、合理地使用网络获取知识、技能,进行娱乐、休闲等。
2.信息污染
各种信息资源中混杂了大量干扰性、欺性、误导性甚至破坏性的虚假伪劣等各种有害及无用信息,造成了人类精神世界的信息污染,使得人们对错难分,真假难辨。所以我建议人们要认真分析、鉴别信息,这样就不容易上当。
3.信息泛滥
由于互联网的自由和开放性,它也成了制造和传播虚假的重要工具。网络传播速度快、范围广、监管难,使虚假信息严重滋生蔓延,导致了信息泛滥,人们消耗了大量的时间却找不到有用的信息。
4.信息犯罪
随着信息技术的应用和普及,人们对网络的依赖性越来越大,
信息安全成为一个很严重的问题。一些不法分子利用信息技术手段及信息系统本身的安全漏洞,进行犯罪活动,主要有信息窃取、信息欺、信息攻击和破坏等,造成了严重的社会危害。因此,我们不仅要加强信息安全防范,还要提高自己的法律意识。
总之,当今信息技术的发展对社会的影响是全方位的。从长远来看,信息技术会越来越深入地影响人们的生活、思想观念。当然我们不能光看其积极的一面,也要清醒认识到其负面影响的客观存在。如今,网络上的不良现象越来越多地滋生、蔓延,并不断挑战道德和法律的底线,尤其网络对青少年的危害,我们更是要严加提防、马虎不得。因此净化网络环境刻不容缓。
参考文献:
[1]徐福荫,李文郁.信息技术基础[M].广东教育出版社,2007-07.
[2]董爱堂,赵冬梅.信息技术基础教程[M].北京理工大学出版社,2004-01.
[3]罗南林.计算机信息技术基础[M].清华大学出版社,2004-09.
[4]杜茂康.计算机信息技术应用基础[M].北京交通大学出版社,2011-07.
林学与业,课程改革生物信息学,是一门综合学科。涉及到数学,生物学和计算机的内容。但在我看来,计算机的基础需要,但要求不是很高,关键是要有很好的生物学知识,包括遗传学的、生物化学的、发育生物学的、分子生物学的、植物生理学的知识等等,也就说需要达到这样的一个要求:在进行数据分析时,能对各种分析结果进行生物学的评价,并给出最优的分析策略。同时也应该有纯熟的数理基础,包括统计学的、拓扑学的,这样才能把待分析的问题转换成可计算的模型,最后能给出实现的程序。从个人来说,因为生物信息学是一个非常大的领域,所以,关键是要确定自己的研究方向。比如,以关联分析为方向的生物信息学,那么就要掌握好各种关联分析的统计分析方法,有很强的数据管理能力,足够好的序列分析能力(这是进行variation查找和分析的基础)
摘 要:随着计算机科学和生物科学的迅猛发展,生物信息学成为一门独立学科,它将会成为21 世纪生命科学中的重要研究领域之一。本文对生物信息学在本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。 关键词:生物信息学 课堂教学 实验教学 现代教育技术 前言 生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。 生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。 1 课堂教学 生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。 2 充分利用现代化教育技术,采用启发式教学 目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。 3 采用讲、练做一体化的教学模式,注重学生实践能力的培养 生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。 通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。 4 优化生物信息学实验教学内容,发挥网络教学优势 生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。 生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和 评语 发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。 5 生物信息学采用无纸化考试,加强实践能力考核 生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。 总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。 参考文献: [1]赵国屏等.生物信息学[M].科学出版社,2002. [2]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001. [3]教育部科技发展中心对大学校园网建设应用状况调查结果显示.千兆已成主流,应用全面透[J].中国教育网络,2005,(5):36-39.
【论著与综述区别】您好!不能以生物信息学题目本身确定是否属于论著或综述应当具体看成果本身的内容、形式和出版方式论著通常是一本书,以出版社图书方式出版且主要成果为原创综述论文以期刊或论文集心思发表的一篇文章而已大部分以编著为主(编辑他人成果为主要部分)的应当是教材,而不算论著或专著
生信分析论文写法如下:
这次我们来讲解的这边文献是 2019-10-12 发表的 OTT 杂志上的一篇生信加少量实验验证的文章。实话实说,目前对于生信最最最基本的,如果没有实验验证还是不好发文章的。所以一般都会加一些实验验证的。
这个文章的主要流程是个这样的:这里我们就基于文童的材料方法来说一下具体的内容:公共数据获取:当中关于公共数据获取部分提到了这些东西。使用了 GEO 数据库来进行候选数据筛选。
这 GEO 里面找到了三个芯片,其中描述了这三个芯片的平台。差异表达分析:作者使用了 GEO2R 来进行数据的筛选。富集分析:接着作者对差异表达的基因进行了富集分析,其中包括 GO 分析和 KEGG 分析。
作者使用的富集分析的软件是 DAVID,这个软件我们也吐槽过说,更新不及时,是很好用,所以推荐是 WebSestalt 富集分析软件,或者 clusterprofiler。蛋白相互作用分析:5TCGA 数据库验证再往下作者做的其实是 TCGA 的数据库验证,但是在材料方法里面没写。我们可以在结果当中具体的过程。
对于肿瘤研究,现在如果只是用 GEO 数据集分析,不用 TCGA 再看一下的话,都觉得不好意思,所以一般的肿瘤研究可能都会用到 TCGA 的验证的。其目的也就类似于多加了一个数据集来增加结果准确性。但是对于 TCGA 有些肿瘤正常样本很少。分析的结果可能偏差更大。文章使用的 GEPIA 的数据库。这个数据库对于查询 TCGA 表达结果还是很好用的,简单上手。
核心基因甲基化相关分析:在核心基因选择之后,利用了 TCGA 的甲基化数据MEXPRESS 来查看基因的田基化水平有没有变化。由于版本的更新。现在的这个数据库的 版本的结果会比之前的更加详细一些。
最好是多收集点生物信息方面的资料,题目可以写生物信息的发展历程,等等
摘 要:随着计算机科学和生物科学的迅猛发展,生物信息学成为一门独立学科,它将会成为21 世纪生命科学中的重要研究领域之一。本文对生物信息学在本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。 关键词:生物信息学 课堂教学 实验教学 现代教育技术 前言 生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。 生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。 1 课堂教学 生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。 2 充分利用现代化教育技术,采用启发式教学 目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。 3 采用讲、练做一体化的教学模式,注重学生实践能力的培养 生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。 通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。 4 优化生物信息学实验教学内容,发挥网络教学优势 生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。 生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和 评语 发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。 5 生物信息学采用无纸化考试,加强实践能力考核 生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。 总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。 参考文献: [1]赵国屏等.生物信息学[M].科学出版社,2002. [2]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001. [3]教育部科技发展中心对大学校园网建设应用状况调查结果显示.千兆已成主流,应用全面透[J].中国教育网络,2005,(5):36-39.
应该可以吧。。。