首页 > 论文发表知识库 > 随机变量函数分布毕业论文

随机变量函数分布毕业论文

发布时间:

随机变量函数分布毕业论文

统计学毕业论文选题

毕业论文的题目是开始写作的关键,先选好题,再下笔。下面是我整理的统计学毕业论文选题,希望大家喜欢。

统计学毕业论文选题

1、具有预测能力的呼叫中心系统的设计与实现

2、PVAR模型在研究经济增长与能源消费关系中的应用

3、基于有限元的深基坑组合型围护结构可靠度分析

4、一些带有偏序结构的完全码

5、Stein方法在复合泊松分布近似中的应用

6、各类分布产生的背景

7、保险金融中的计数过程的若干渐近性

8、高中概率教学的现状、问题及对策研究

9、随机变量序列的极限定理

10、Cayley树上非对称马氏链及任意相依随机变量序列强极限定理的若干研究

11、一类混合随机序列的概率极限定理

12、保证齿轮质量的结构和工艺措施研究

13、道路施工机群资源配置和计划调度沥青混凝土路面机械化施工系统状态分析与技术经济评价研究

14、高速公路服务区合理规模与布局研究

15、基于图像区域统计特征的隐写分析技术研究

16、统计收敛的测度理论

17、关于φ-混合随机变量序列的矩完全收敛性的研究

18、混合相依随机变量序列极限理论的若干结果

19、两两NQD列的一些收敛性质

20、电力市场环境下的电能质量评估研究

21、本科概率论试验课程设计初探

22、基于随机模拟试验的稳健优化设计方法研究

23、随机变量序列部分和乘积的几乎处处中心极限定理

24、AQSI序列的强极限定理

25、几类相依混合随机变量列的大数律和L~r收敛性

26、现代经济计量学建立简史

27、任意随机变量序列的相关定理

28、新建电气化铁路电能质量影响预测研究

29、鞅差与相依随机变量序列部分和精确渐近性

30、ND序列若干收敛性质的研究

31、证券组合投资决策的均匀试验设计优化研究

32、相依随机变量序列部分和收敛速度

33、行为两两NQD随机变量阵列加权和的收敛性

34、数值计算的统计确认研究与初步应用

35、基于证据理论的足球比赛结果预测方法

36、城市工业用地集约利用评价与潜力挖掘

37、节理化岩体边坡稳定性研究

38、随机变分不等式及其应用

39、基于模糊综合评价的靶场实时光测数据质量评估

40、基于路径的加权地域通信网可靠性研究

41、LNQD样本近邻估计的大样本性质

42、20CrMoH齿轮弯曲疲劳强度研究

43、我国股票市场与宏观经济之间的协整分析

44、一类Copula函数及其相关问题研究

45、乐透型彩票N选M中奖号码的概率分析

46、协整理论在汽车发动机系统故障诊断中的应用

47、2010年上海世博会会展中断风险分析和保险建议

48、贝儿康有限公司激励设计研究

49、云模型在系统可靠性中的应用研究

50、离散更新模型破产概率及赤字的上下界估计

51、输电线微风振动与疲劳寿命

52、电器产品模糊可靠性分析中模糊可靠度的研究

53、变分不等式及变分包含解的存在性与算法

54、隧道测量误差控制方案的'研究

55、塔式起重机臂架可靠性分析软件开发

56、分布式认证跳表及其在P2P分布式存储系统中的应用

57、房地产行业企业所得税纳税评估实证研究

58、天然气管道断裂事故分析

59、粗集理论及其在数据预处理过程中的应用

60、集装箱码头后方堆场荷载统计分析和概率模型

61、多工序制造过程计算机辅助误差诊断控制系统

62、实(复)值统计型测度的表示理论及其它在统计收敛上的应用

63、应用统计教育部重点实验室程序库建设

64、基于个体的捕食系统模型

65、相依样本下移动平均过程的矩完全收敛

66、基坑变形监测分析及单撑—排桩墙支护结构抗倾覆可靠度研究

67、基于综合的交通冲突技术的城市道路交叉口安全评价方法研究

68、暗挖地铁车站下穿对既有结构安全性影响分析

69、随机变量阵列的强收敛性

70、基于随机有限元的疲劳断裂可靠性研究

71、高中数学教学概率统计部分浅析

72、敏感问题二阶段抽样调查的统计方法及应用

73、三大重要分布及其性质的进一步研究

74、随机变量的统计收敛性及统计收敛在数据处理方面的应用

75、多变量密度函数小波估计的一致中心极限定理

76、混合Copula构造及相关性应用

77、数学职前教师对正态分布的理解水平的研究

78、煤矿事故系统脆性模型的建立与仿真

79、基于贝叶斯网络的客户信用风险评估及系统设计

80、河北北方学院学生成绩关联分析及预测

81、房地产项目现金流管理研究

82、高压电磁感应信号的采集及处理算法的研究

83、基于神经网络的逆变电源可靠性研究

84、跳频序列的局部随机性与线性复杂度分析

85、金川二矿区中段平面运输系统数据分析与模拟模型研究

86、房地产投资风险定量评价与规避策略研究

87、审计统计抽样技术方法研究与设计运行

88、几种概率统计滤波法在重磁数据处理中的研究及应用

89、模糊随机变量序列的极限定理

90、数据挖掘的若干新方法及其在我国证券市场中应用

91、城市道路交通流特征参数研究

92、辽宁红沿河核电厂可能最大风暴潮的估算

93、潜油电泵轴的可靠性分析与设计

94、起重机金属结构极限状态法设计研究

95、相依随机变量极限理论的若干结果

96、局部次高斯随机序列的强极限定理

97、基于自然风险度量的农业保险定价及其财政补贴研究

98、NA和(ρ|~)混合序列的某些收敛性质

99、可交换随机变量序列的极限理论

100、一类相依重尾随机序列的强极限定理及其应用

随机变量独立的充要条件:对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y);对于离散型随机变量有:P(AB)=P(A)P(B)概率为P 设X,Y两随机变量,密度函数分别为q(x),r(y), 分布函数为G(x), H(y),联合密度为p(x,y),联合分布函数F(x,y), A,B为西格玛代数中的任意两个事件。常用的证明方法有三种:1 证明P(X∈A, Y∈B)=P(X∈A)P(Y∈B)2 证明 p(x,y)=q(x)r(y)3 证明 F(x,y)=G(x)H(y)随机变量独立的充要条件:对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y);对于离散型随机变量有:P(AB)=P(A)P(B)设两个变量为X、Y,对应的事件为A、B(1)当X、Y均服从0、1分布,即X={1,A发生;0,A不发生};Y={1,A发生;0,A不发生};写出X、Y、XY的分布列,因为X、Y不相关,则cov(X,Y)=EXY-EXEY=P(AB)-P(A)P(B)=0,推出P(AB)=P(A)P(B),所以X、Y相互独立(2)若为其他分布,则不能推出另外若X、Y为二维正态分布,则不相关等价于独立仅供参考整体独立,部分当然独立。概率论中两个随机变量的函数的分布_ …… 》 你对x求积分了,出来的公式中不会有x了,上下限怎么可能会有x……对x积分,是横坐标上积分,x=z-y,所以下限是0,上线是z-y,可以重新去看一下微积分里二重积分怎么算的概率论,两个随机变量的函数分布_ …… 》 E(X1-2X2) =E(X1)-2E(X2) =0 D(X1-2X2) =D(X1)+4D(X2) =4+16 =20 X1-2X2~N(0,20)概率论两个随机变量的函数分布x服从标准正态分布,y的概率分布为p{y=0}=p{y=1}=记F(z)为随机变量Z=xy的分布函数,则函数F(z)间断求间断点个数_作业帮 …… 》 没有间断点,否则如果有那么在间断点Z0处P(Z=Z0)=P>0,这与X是连续随机变量矛盾.

数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是我为你整理的数学期望应用毕业论文,一起来看看吧。

摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章列举了一些现实生活实例,阐述了数学期望在经济和实际问题中颇有价值的应用。

关键词:随机变量,数学期望,概率,统计

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。

1.决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

投资方案

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

[摘 要] 离散型随机变量数学期望是概率论和数理统计的重要概念之一,是用概率论和数理统计来反映随机变量取值分布的特征数。通过探讨数学期望在经济和实际问题中的一些简单应用,以期让学生了解数学期望的理论知识与人类实践紧密联系,它们是不可分割、紧密联系的。

[关键词] 数学期望;离散型随机变量

一、离散型随机变量数学期望的内涵

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

二、离散型随机变量数学期望的作用

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。是简单算术平均的一种推广,类似加权平均。在解决实际问题时,作为一个重要的参数,对市场预测,经济统计,风险与决策,体育比赛等领域有着重要的指导作用,为今后学习高等数学、数学分析及相关学科产生深远的影响,打下良好的基础。作为数学基础理论中统计学上的数字特征,广泛应用于工程技术、经济社会领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析提供准确的理论依据。

三、离散型随机变量的数学期望的求法

离散型随机变量数学期望的求法常常分四个步骤:

1.确定离散型随机变量可能取值;

2.计算离散型随机变量每一个可能值相应的概率;

3.写出分布列,并检查分布列的正确与否;

4.求出期望。

四、数学期望应用

(一)数学期望在经济方面的应用

例1: 假设小刘用20万元进行投资,有两种投资方案,方案一:是用于购买房子进行投资;方案二:存入银行获取利息。买房子的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为,可得利息11000元,又设经济形势好、中、差的概率分别为40%、40%、20%。试问应选择哪一种方案可使投资的效益较大?

第一种投资方案:

购买房子的获利期望是:E(X)=4××(--2)×(万元)

第二种投资方案:

银行的获利期望是E(X)=(万元),

由于:E(X)>E(X),

从上面两种投资方案可以得出:购买房子的期望收益比存入银行的期望收益大,应采用购买房子的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的依据是数学期望的高低。

(二)数学期望在公司需求方面的应用

例2:某小公司预计市场的需求将会增长。公司的员工目前都满负荷地工作。为满足市场需求提高产量,公司考虑两种方案 :第一种方案:让员工超时工作;第二种方案:添置设备。

假设公司预测市场需求量增加的概率为P,当然可能市场需求会下降的概率是1―P,若将已知的相关数据列于下表:

市场需求减(1-p) 市场需求增加(p)

维持现状(X)

20万 24万

员工加班(X)

19万 32万

耀加设备(X)

15万 34万

由条件可知,在市场需求增加的情况下,使员工超时工作或添加设备都是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的期望大小。用期望值判断:

E(X)=20(1-p)+24p,E(X)=19(1-p)+32p,E(X)=15(1-p)+34p

分两种情况来考察:

(1)当p=,则E(X)=(万),E(X)=(万),E(X)=(万),于是公司可以决定更新设备,扩大生产;

(2)当p=,则E(X)=22(万),E(X)=(万),E(X)=(万),此时公司可决定采取员工超时工作的应急措施扩大生产。

由此可见,从上面两种情况可以得出:如果p=时,公司可以决定更新设备,扩大生产。如果p=时,公司可决定采取员工超时工作的应急措施。因此,只要市场需求增长可能性在50%以上,公司就应采取一定的措施,以期利润的增长。

(三)数学期望在体育比赛的应用

乒乓球是我们得国球,全国人民特别爱好,我们在这项运动中具有绝对的优势。现就乒乓球比赛的赛制安排提出两种方案:

第一种方案是双方各出3人,三局两胜制,第二种方案是双方各出5人,五局三胜制。对于这两种方案, 哪一种方案对中国队更有利?不妨我们来看一个实例:

假设中国队每一位队员对美国队的每一位队员的胜率都为55%。根据前面的分析,下面我们只需比较两队的数学期望值的大小即可。

在五局三胜制中,中国队若要取得胜利,获胜的场数有3、4、5三种结果。我们应用二项式定律、概率方面的知识,计算出三种结果所对应的概率,恰好获得三场对应的概率:;恰好获得四场对应的概率:;五场全胜得概率:.

设随机变量X为该赛制下中国队在比赛中获胜的场数,则可建立X的分布律: X 3 4 5

P

计算随机变量X的数学期望:

E(X)=3×××

在三局两胜制中,中国队取得胜利,获胜的场数有2、3两种结果。对应的概率为=;三场全胜的概率为=。

设随机变量Y为该赛制下中国队在比赛中获胜的场数,则可建立Y的分布律:

X 2 3

Y

计算随机变量Y的数学期望:

E(Y)=2××

比较两个期望值的大小,即有E(X)>E(Y),因此我们可以得出结论,五局三胜制中国队更有利。

因此,我们在这样的比赛中,五局三胜制对中国队更有利。在体育比赛中,要看具体的细节,具体情形,把握好比赛赛制,用我们所学习的知识来实现期望值的最大化,做到知己知彼,百战百胜。

(四)数学期望对企业利润的评估

在市场经济活动中,厂家的生产或是商家的销售.总是追求最大的利润。在生产过程中供大于求或供不应求都不利于获得最大利润来扩大再生产。但在市场经济中,总是瞬息万变,往往供应量和需求量无法确定。而厂家或商家在一般情况下根据过去的数据,再结合现在的具体情况,具体对象,常常用数学期望的方法结合微积分的有关知识,制定最佳的生产活动或销售策略。

假定某公司计划开发一种新产品市场,并试图确定其产量。估计出售一件产品,公司可获利A元,而积压一件产品,可导致损失B元。另外,该公司预测产品的销售量x为一个随机变量,其分布为P(x),那么,产品的产量该如何制定,才能获得最大利润。

假设该公司每年生产该产品x件,尽管x是确定的.但由于需求量(销售量)是一个随机变量,所以收益Y是一个随机变量,它是x的函数:

当xy时,y=Ax;

当xy时,y=Ay--B(x-y)。

于是期望收益为问题转化为:

当x为何值时,期望收益可以达到最大值。运用微积分的知识,不难求得。

这个问题的解决,就是求目标函数期望的最大最小值。

(五)数学期望在保险中问题

一个家庭在一年中五万元或五万元以上的贵重物品被盗的概率是,保险公司开办一年期五万元或五万元以上家庭财产保险,参加者需缴保险费200元,若在一年之内, 五万元或五万元以上财产被盗,保险公司赔偿a元(a>200),试问a如何确定,才能使保险公司期望获利?

设X表示保险公司对任一参保家庭的收益,则X的取值为 200或 200�a,其分布列为:

X 200 200-a

p

E(x)=200×(200-a)×>0,解得a<40000,又a>100,所以a∈(200,40000)时,保险公司才能期望获得利润。

从上面的日常生活中,我们不难发现:利用所学的离散型随机变量数学期望方面的知识解决了生活中的一些具有的,实实在在的问题有大大的帮助。

因此我们在实际生活中,利用所学的离散型随机变量数学期望方面的知识,面对当今信息时代的要求,我们应当思维活跃,敢于创新,既要学习数学理认方面知识,更应该重视对所学知识的实践应用,做到理认联系实际,学以致用。当然只是实际生活中遇到的数学期望应用中的一部分而已,还有更多的应用等待我们去思考,去发现,去探索,为我们伟大的时代创造出更多的有价值的东西和财富。

实变函数与泛函分析毕业论文

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

教育专业毕业论文题目只是需要题目吗?论文呢?

要写心理学哪方面比:社会心理学青少年心理学广告心理学先确定方向选择其知识点再找资料《心理学报》上有多还有得确定做实证研究还理论研究理论研究比较容易价值大

实变函数以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论.它是微积分学的进一步发展,它的基础是点集论.什么是点集论呢?点集论是专门研究点所成的集合的性质的理论.也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的.比如,点集函数、序列、极限、连续性、可微性、积分等.实变函数论还要研究实变函数的分类问题、结构问题.实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等.这里我们只对它的一些重要的基本概念作简要的介绍.实变函数论的积分理论研究各种积分的推广方法和它们的运算规则.由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度.什么实测度呢?简单地说,一条线段的长度就是它的测度.测度的概念对于实变函数论十分重要.集合的测度这个概念实由法国数学家勒贝格提出来的.为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分.1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度.波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念.勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题.勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的.从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了.也可以看出,实变函数论所研究的是更为广泛的函数类.自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近.这样,在实变函数论的领域里又出现了逼近论的理论.什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近.如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质.逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况.和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数.和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论.总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征.实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响.泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段.这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论.这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件.本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽.随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究.到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念.由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方.比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似.这种相似在积分方程论中表现得就更为突出了.泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方.因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西.非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响.这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性.这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间.这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系.现代数学的发展却是要求建立两个任意集合之间的某种对应关系.这里我们先介绍一下算子的概念.算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子.研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析.在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了.泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了.比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念.它既包含了以前讨论过的几何对象,也包括了不同的函数空间.泛函分析对于研究现代物理学是一个有力的工具.n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统.比如梁的震动问题就是无穷多自由度力学系统的例子.一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统.现代物理学中的量子场理论就属于无穷自由度系统.正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容.因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学.古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中.泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论.他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了.半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展.它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一.今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一.泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用.近十几年来,泛函分析在工程技术方面有获得更为有效的应用.它还渗透到数学内部的各个分支中去,起着重要的作用.1年前4发大财了 幼苗共回答了20个问题 举报实变函数:测度空间,积分.泛函分析:抽象空间.

随机变量的应用论文文献参考

统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!

浅谈统计分析与决策

[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。

[关键词] 统计分析 分析方法 决策

统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?

狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。

广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。

搞好统计分析,需要解决选题、分析、撰写报告三个问题。

一、统计分析选题

所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。

怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。

统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。

统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。

二、统计分析方法

统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。

统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。

统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。

形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。

对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。

所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,

没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。

从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。

三、统计分析报告的撰写

统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。

准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。

快:就是在决策层决策之前,不失时机地及时提供分析报告。

新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。

深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。

活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。

统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。

1.准确地表述事实

每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。

2.透彻地阐明本质

现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。

阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。

3.深刻地揭示规律

规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。

4.恰当地提出建议

认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。

以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。

统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。

试谈统计分析方法应用

【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。

【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言

随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。

二、多元统计分析方法的主要应用

统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。

聚类分析

它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。

判别分析

判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。

主成分分析

主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。

因子分析

因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。

三、构建多元统计分析方法检验体系的必要性

(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量

多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。

(二)多元统计分析统计检验体系的基础理论

多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。

(三)关于统计检验体系

将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:

a.主成分分析统计检验体系

b.因子分析统计检验体裂引

c.系统聚类分析统计检验体系

d.判别分析统计检验体裂

e.对应分析统计检验体系

f.典型相关分析统计检验体系

四、多元统计分析方法应用中需要注意的几个共性问题

1.关于原始数据变量的总体分布问题。

对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。

样本容量问题。

进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。

原始变量之间的相关性以及非线性关系问题。

多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。

数据处理问题。

多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。

五、结束语

在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。

【参考文献】

[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.

[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.

[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.

[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。下面是我精心整理的,欢迎大家分享。

摘 要:

二项分布是一种常见的离散型随机变量的概率模型,在概率教学中占有重要地位。本文从二项分布的定义入手,重点分析和阐述了二项分布和“0-1”分布、超几何分布、泊松分布、正态分布的近似关系及基于这些关系所带来的计算上的便利。以期在教学中能使学生更全面深入的理解和认识二项分布。

关键词:

二项分布 “0-1”分布 超几何分布 泊松分布 正态分布 近似

1.二项分布的定义

设随机变量X示n重伯努利试验中事件A发生的次数,其概率函数为:

p(x)=P(X=x)=Cxnpxqn-x x=0,1,…,n

则称设随机变量X服从参数为n和p的二项分布,记为X~B(n,p),也称广义贝努里试验。

2.二项分布与其它分布的关系

二项分布与“0-1”分布间的关系

进行一次试验,其结果要么“成功”,要么“失败”,记X=1成功0失败,即随机变量X表示一次试验中成功的次数,且p(x)=P(X=x)=pxq1-x(x=0,1)则称随机变量X~“0-1”分布,p为试验结果“成功”发生的概率。该试验也称为贝努里试验。

X~“0-1”分布,其期望、平方的期望、方差及特征函数容易得到:

E(X)=0×(1-p)+1×p=p

E(X2)=02×(1-p)+12×p=p

D(X)=E(X2)-E2(X)=p-p2=p(1-p)

φ(t)=E(eitX)=eit?o×(1-p)+eit?1×p=1-p+peit

将贝努里试验在相同条件下独立进行n次,并以随机变量Y表示n次试验中“成功”的次数,则Y~B(n,p)。若以Xi表示第i次试验中成功的次数,则X1,X2…Xn,独立同“0-1”分布(i=1,2…n)且Y=∑ni=1Xi。则二项分布的期望、方差及特征函数可由二项分布和“0-1”分布间的函数关系得到:

E(Y)=E(∑ni=1Xi)=∑ni=1E(Xi)=np

D(Y)=D(∑ni=1Xi)=∑ni=1D(Xi)=np(1-p)

φY(t)=E(eitY)=E(eit∑ni=1Xi)=∏ni=1E(eitXk)=∏ni=1(1-p+peit)=(1-p+peit)n

易见,在教学中利用二项分布和“0-1”分布的关系,使二项分布的上述特征数更容易计算和理解。

二项分布与超几何分布的关系

从含有M件次品的N件产品中任取n件(每次任意取出一个,取后不放回,连续取n次),设随机变量X表示n件产品中出现的次品数,则X~H(n,M,N),概率函数为:

p(x)=P(X=x)=CxMCn-xN-MCnN=p(x,n,M,N)x=0,1,…,n

若将上述取件方式变为每次任意取出一个,取后放回,连续取n次,则易知其中所含的次品数X~B(n,p),其中p=MN。这里有放回的抽样使得每次抽取时的次品率保持不变,

且各次抽取结果相互独立。

而当产品总数N很大时,抽取样品的个数n相对于N较小时(一般来说nN≤),不放回抽样可近似看成每次抽样结果是相互独立的有放回抽样。据此现实意义,可帮助我们理解二项分布与超几何分布的近似关系:

limN→∞CxMCn-xN-MCMN=Cxnpxqn-x x=0,1,…,n

其中,p=MN,q=1-MN=MN-M,一般要求nN≤。证明见文献[1]。

超几何分布是一种重要的、应用广泛的概率模型。据此关系在合适的条件下可将服从超几何分布的随机变量的概率值的计算近似为服从二项分布的随机变量的概率值进行计算。

二项分布和泊松分布间的关系

若随机变量X表示某个交通路口单位时间内发生交通事故的次数,设所观察的这段时间为[0,1],取一个很大的自然数n,把这段时间分为等长的n段

l1=0,1n,l2=1n,2n,…li=in,i+1n,…ln=n-1n,1

假定:(1)在每段li内,恰好发生一次交通事故的概率与时段长度成正比,可取为λn;

(2)由于n很大,故每段时间间隔很小,认为在这么小的时段内发生两次或更多次的交通事故是不可能的。故在每个时段内不发生交通事故的.概率为1-λn;

(3)li各时间段内是否发生交通事故是独立的。

因此,在[0,1]时段内要么发生一次交通事故,其概率为λn,要么不发生交通事故,其概率为1-λn,而各时间段内是否发生交通事故是独立的。故[0,1]时段内发生交通事故的次数X服从二项分布B(n,λn),其概率函数为:

P(X=x)=Cxn(λn)x(1-λn)n-x x=0,1,…,n

严格的说,上式只是近似成立,当n→∞时,limn→∞Cxnpxqn-x=λxx!e-λ其中λ=np。一般要求p≤。证明见文献[1]。在教学中可利用此关系使学生自然的理解泊松分布的特性,它常用来描述大量随机试验中稀有事件出现的次数。

二项分布和正态分布的关系

据棣莫弗――拉普拉斯定理[2]:设Yn~B(n,p)n=1,2,…则对z有:

limn→∞P(Yn-npnpq≤z)=12π∫z-∞e-t22dt

由此可知,当n充分大时,服从二项分布的随机变量Yn近似的服从正态分布N(np,npq).这里是用一个连续型的正态分布来近似离散型的二项分布,应用时p应满足在教学中可利用此关系说明二项分布以正态分布为极限分布,并且,当n充分大时

P(m1≤Yn≤m2)≈Φ(m2-npnpq)-Φ(m1-npnpq)

也就是说可利用标准正态分布表来解决较难计算的二项分布的概率计算问题。

3.结束语

综上所述,二项分布B(n,p)可看成n个独立同“0-1”分布的随机变量的和,从而利用和函数的关系易于计算二项分布的某些特征值;在产品抽样中,若产品总数N很大,抽取的样品个数n相对于N较小时(nN≤),所抽取的次品数所服从的超几何分布可用二项分布近似;当n很大,p较小,一般要求p≤,λ=np适中时可用泊松分布近似二项分布;当n充分大。

参考文献:

[1]沈恒范.概率论与数理统计教程第5版[M].北京:高等教育出版社,:55-63.

[2]李裕奇.概率论与数理统计[M].北京:国防工业出版社,:193-195.

[3]魏振军.概率论与数理统计三十三讲[M].北京:中国统计出版社,2005.

多维随机变量的独立性研究论文

序列相关性指对于不同的样本值,随机扰动项之间不再是完全相互独立,而是存在某种相关性. 2. 一阶自相关只的是误差项的当前值只与其自身前一期值之间的相关性. 3. .检验:全称杜宾—瓦森检验,适用于一阶自相关的检验..DW判断的是一阶自相关,一般用差分法(一阶)就可以解决。自相关的解决方法,基本方法是通过差分变换,对原始数据进行变换的方法,使自相关消除.一,差分法,一阶。设Y对x的回归模型为Yt=β1+β1xt+μt(1)μt=ρμt-1+vt式中, vt满足最小平方法关于误差项的全部假设条件。将式(1)滞后一个时期,则有Yt-1=β0+β1xt-1+μt-1(2)μt-1=ρμt-2+vt-1于是, (1)-ρ×(2),得Yt-ρYt-1=β0(1-ρ)+β1(xt-ρxt-1)+νt(3)Yt-ρYt-1=β1(xt-xt-1)+μt-μt-1=β1(xt-xt-1)+vt(4)ρ为自相关系数也就是说,一阶差分法是广义差分法的特殊形式。高阶自相关是用BG检验法,LM=T*R^2服从X^2(p)(kafang)分布,T为样本容量,p为你想检验的自相关阶数,查kafang分布表,置信度为95%也就是阿尔法=,如果T*R^2>查出来的结果即存在你想验证的自相关阶数。修正用广义差分法(AR(p))广义差分方法 对模型: Yt= 0+ 1X t+ut ------(1) ,如果ut具有一阶自回归形式的自相关,既 ut= u t-1 +vt 式中 vt满足通常假定.假定, 已知,则: Y t-1= 0+ 1X t-1+u t-1 两端同乘 得:Y t-1= 0 + 1 X t-1+ u t-1-------(2)

你还是进谷歌论文搜索吧

序列相关性指对于不同的样本值,随机扰动项之间不再是完全相互独立,而是存在某种相关性. 2. 一阶自相关只的是误差项的当前值只与其自身前一期值之间的相关性. 3. .检验:全称杜宾—瓦森检验,适用于一阶自相关的检验..DW判断的是一阶自相关,一般用差分法(一阶)就可以解决。自相关的解决方法,基本方法是通过差分变换,对原始数据进行变换的方法,使自相关消除.一,差分法,一阶。

A、B、C互相独立,说明ABC 间无关联,是互相独立的,但两两独立指A和B间独立,B和C之间独立,A和C间独立,但三者放在一起,并不能判断他们是无关的. 所以,两两独立不一定相互独立 例如:有三个随机变量A,B,C如果他们两两独立, 那么:P(AB)=P(A)(B)

实变函数类毕业论文

1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。

联系:都是基于微积分的进一步发展产生,都是为了研究集论。

区别如下:

一、指代不同

1、实变函数:以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支。

2、复变函数:是指以复数作为自变量和因变量的函数   ,而与之相关的理论就是复变函数论

二、内容不同

1、实变函数:是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。

2、复变函数:主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。

三、发展不同

1、实变函数:是微积分学的进一步发展,它的基础是点集论。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集一个数量上的概念。

2、复变函数:研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。

参考资料来源:百度百科-实变函数

参考资料来源:百度百科-复变函数

《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质。 《实变函数》主要引进了一种新的积分-Lebesgue积分,用来研究不连续函数的积分问题。 《复变函数》主要研究定义域为复数的函数的微积分以及幂级数展开等性质。可以理解为复数函数的《数学分析》。但内容上有所增加。 在我国的数学系课程中,二者的联系并不大,研究的方法也不同。可以说《实变函数》要更深一些。如果要深入了解它们之间的联系,可以看一下这本书Walter Rudin的《Real and Complex Analysis》(有中译本),它是美国大学数学系研究生用书,其中包括了《实变函数》和《复以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。[编辑本段]实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。 也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。 十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。 由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?…… 上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。[编辑本段]实变函数的内容 以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。 什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。

教育专业毕业论文题目只是需要题目吗?论文呢?

  • 索引序列
  • 随机变量函数分布毕业论文
  • 实变函数与泛函分析毕业论文
  • 随机变量的应用论文文献参考
  • 多维随机变量的独立性研究论文
  • 实变函数类毕业论文
  • 返回顶部