首页 > 论文发表知识库 > 玉米秸秆的气化工艺模拟研究论文

玉米秸秆的气化工艺模拟研究论文

发布时间:

玉米秸秆的气化工艺模拟研究论文

秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。

生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体。农作物秸秆是生物质的一个重要组成部分,是当今世界上仅次于煤炭、石油和天然气的第四大能源,在世界能源总消费量中占14%,预计到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能源的40%以上,如何让秸秆生物质能源发挥最大的效益,是科学家们重点关注和研究的课题。1秸秆生物质利用的现状秸秆生物质具有多功能性,可作为燃料、饲料、肥料、生物基料和工业原料等。秸秆生物质利用主要有三个方面:一是种植(养殖)业综合利用秸秆:秸秆快速腐熟还田、过腹还田和机械化直接还田、生产优质饲料和食用菌。二是秸秆能源化利用:秸秆生物气化(沼气)、热解气化、固化成型、炭化、纤维素制燃料乙醇。三是以秸秆为原料的加工业:生产非木纸浆、人造板材、包装材料、餐具等产品,以及秸秆饲料加工业和秸秆编织业。国内现状我国农民对作物秸秆的利用有悠久的历史,秸秆除少量用于垫圈、喂养牲畜,部分用于堆沤肥外,大部分都作燃料烧掉。但随着省柴节煤技术的推广,燃煤和液化气的普及,秸秆大量富余。我国是世界上最大的农业生产国,纤维素生物质资源丰富,总量在12亿t以上。目前,农村秸秆综合利用率仅达到,与国家秸秆焚烧和综合利用管理办法中的年利用率达到60%,力争到2015年秸秆综合利用率超过80%的目标要求有很大差距。自20世纪80年代以来,我国生物质能发展迅速,具体表现在:生物质发电从无到有;沼气建设一路高歌;燃料乙醇产量跃居世界第三;生物柴油困境中寻求突破,得以快速发展。国外现状国外生物质能技术开发是从20世纪70年代末期开始的,现在已有了很大进展[7]。秸秆直燃发电的先进设备已投放市场,热解气化技术也飞速猛进,燃料乙醇等多项技术装备已进入规模化和商品化阶段。丹麦是世界上最早使用秸秆发电的国家。丹麦首都哥本哈根以南的阿维多发电厂建于20世纪90年代,是全球效率最高、最环保的热电联供电厂之一,每年燃烧15万t秸秆,可满足几十万用户的供热和用电需求。在加拿大首都渥太华以北的农业区,每年在收割季节,玉米收割机一边收割一边把玉米秆切碎,切碎的玉米秆作为肥料返到田里。在日本,主要有两种秸秆处理方式:混入土中作为肥料,或作粗饲料喂养家畜。近年日本地球环境产业技术研究机构与本田技术研究所共同研制出从秸秆纤维素中提取酒精燃料的技术,向实用化发展。秸秆在美国的用途很广,可作饲料、手工制品,还用来盖房。有关秸秆与纤维素乙醇的提炼问题,则是秸秆综合回收利用在美国的最新进展。2秸秆生物质的能源化应用国内外生物质能利用技术经过20多年的研究和发展,其能源化应用主要有:已经普及的节能灶、小沼气;处于示范、推广阶段的厌氧处理粪便和秸秆气化集中供气技术;处于中试阶段的生物质能压制成型及其配套技术;正在研究中的纤维素原料制取酒精、热化学液化技术、供热发电和燃气催化制取氢气等。可提供的能量主要有电能、热能和交通能源。电能生物质能发电主要有两条工艺技术路线,即气化发电和直接燃烧发电。世界各国高度重视秸秆发电项目的开发,将其作为21世纪发展可再生能源的战略重点和具备发展潜力的产业。丹麦已建有130多座秸秆发电站,秸秆发电等可再生能源已占该国能源消耗总量的24%,丹麦BWE发电技术也在西班牙、英国、瑞典、芬兰、法国等国投产运行多年,其中英国坎贝斯的生物质能发电厂是目前世界上最大的秸秆发电厂,装机容量万kW;其它如日本的“阳光计划”、美国的“能源农场”,美国有350座生物质发电站,总装机容量达7000MW,提供了大约万个工作岗位,2010年美国生物质能发电达到13000MW装机容量;印度有“绿色能源工厂”等,秸秆发电技术已被联合国列为重点项目予以推广。我国的秸秆发电技术虽然起步较晚,但发展较快,国内在建农作物秸秆发电项目136个,分布在河南、黑龙江、辽宁、新疆、江苏、广东、浙江、甘肃等多个省市。根据我国新能源和可再生能源发展纲要提出的目标和国家发改委的要求,至2020年,五大电力公司清洁燃料发电要占到总发电的5%以上,生物质能发电装机容量要超过3000万kW。热能秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。沼气发酵生物法(生物气化)秸秆生物气化是秸秆在厌氧条件下经微生物发酵而产生沼气和有机肥料的技术工程,可利用稻草、麦秸、玉米秸等多种秸秆,并可与农村生活垃圾、果蔬废物、粪便等混合发酵,原料组合非常灵活,来源充足,有着广阔的发展空间和发展潜力。秸秆沼气技术分为户用秸秆沼气和秸秆沼气集中供气两种形式。秸秆入池产气后产生的沼渣作肥料还田,提高了秸秆资源的利用效率,气化效率通常可达70%~80%。秸秆沼气技术的工艺流程为:秸秆预处理#堆沤#投料#加水封池#点火试气。由于秸秆中含有大量的纤维素、木质素,导致分解速度较慢,产气周期较长。若将秸秆直接入沼气池进行发酵产气慢、气量少、不经济、难以大面积推广应用。为了提高产气量,主要应解决预处理技术和发酵菌种及适合秸秆物料特性的高效厌氧发酵反应器研制等问题。沼气发酵的优点:(1)菌种在适合的情况下,发酵及供能速度快;(2)原料简单易得,利用率较高;(3)前期投入少,不需要大型机械和复杂环境。沼气发酵的缺点:(1)建厂条件高,需要配套的小项目多,投资成本高,短期内效益低;(2)小型沼气工程存在产气不稳定及发酵速度慢、相对效率低的问题;(3)大型沼气工程技术要求高,推广难度大。秸秆气化炉气化法(热解气化)秸秆热解气化是以农作物秸秆、稻壳、木屑、树枝以及农村有机废弃物等为原料,在气化炉中缺氧的情况下进行燃烧,使秸秆在700~850∃的气化温度下发生热解气化反应,产生一氧化碳、氢气、甲烷等可燃气体用于工业发电、热电联产、液体燃料合成、居民集中供气、工业燃气锅炉、工业干燥和采暖供热等方面。秸秆热解气化的优点:(1)秸秆燃烧充分,基本没有烟熏,残余灰烬少;(2)热值高,2t秸秆的热值相当于1t煤,燃烧温度高,火力强,节省时间;(3)燃烧的火焰温度、热能强度可控制调节,并实现开、关两位操作,使用方便;(4)不受季节约束,可实现不间断供气;(5)不需要辅助能源或化学添加剂。秸秆热解气化的缺点:(1)热解气化过程中挥发出多种有机化合物和焦油,若不加以回收利用,易造成环境污染和二次污染;(2)只利用了单一的可燃气,资源利用率低,且存在一定的安全隐患。经过近20年的努力,我国生物质热解气化技术日趋完善。我国自行研制的集中供气和户用气化炉产品已进入实用化试验及示范阶段,形成了多个系列的炉型,可满足多种物料的气化要求,在生产、生活用能、发电、干燥、供暖等领域得到利用。现已研发出突破性的生物质能源联产综合利用技术,即在气化炉内将生物质材料在限制供氧的条件下燃烧,发生一系列燃烧反应,同时回收产生的气、液、炭和热水。热解产生的气体主要含有甲烷、乙烯、一氧化碳、氢气等可燃性气体,可将其输入燃气轮机发电或直接向用户供气;产生的液体中含有酸类、醇类、酯类、醛类、酮类、酚类等多种化学成分,可用作家畜、家禽饲养中的消毒杀菌液、除臭剂,或用作促进作物生长的叶面肥,在有机农作物种植中施用;产生的固体生物质炭经过处理可作为工业用炭、生活用炭、有机复合肥、肥料缓释剂等;冷却炉体产生的热水可用于工业或民用,这项技术具有良好的推广和应用前景。直接燃烧法直接燃烧法是直接将收集的秸秆生物质原料集中、粉碎、干燥后投入锅炉中燃烧发电,可以采用锅炉-蒸汽-蒸汽轮机-发电机的工艺方式,也可以采用热电联供的方式以提高系统效率。该技术基本成熟,已经进入商业化应用阶段。对于秸秆发电厂来说,给料方式主要有两种:一种是切碎给料,一种是整包给料。以6MW秸秆直燃发电系统为例,该系统采用汽轮机组进行发电,发电效率20%,自用电率10%,碳转化率90%,系统总供电效率18%。直接燃烧法是目前在秸秆生物质能源化利用中最简单方便也是唯一实现规模化应用的方法。但缺点明显:其热效率仅为气化的三分之一,且投资大;由于秸秆燃料中碱金属以及氯元素的含量相对较高,燃烧后将产生较强的高温腐蚀,并引发床料聚团、结渣等问题;燃烧面积大,不能充分利用资源;生物质燃烧过程产生的细粒子影响城市和区域空气质量,降低大气能见度,损害人体健康,甚至影响区域和全球气候。根据国外生物质发电厂运行实绩统计以及我国权威部门测算,生物质燃烧发电成本远高于常规燃煤发电成本,约为煤电的倍。尽管如此,大力发展秸秆发电,不仅可以减少由于在田间地头大量焚烧、废弃秸秆所造成的污染,变废为宝,化害为利,而且对解决“三农”问题、促进经济发展具有重要作用。截至2008年8月底,我国共上马了生物质能发电项目136个,总装机规模220万kW。液化乙醇法乙醇作为替代能源,已在巴西、美国、瑞典、中国等得到应用。传统的由玉米秸秆制备乙醇的工艺包括预处理、水解、发酵3个步骤。通过预处理分离木质素等不利于发酵的成分、破坏纤维素的束状结构、提高纤维素水解效率、降低纤维素酶的成本、开发木糖发酵用的微生物菌种和优化生产过程等,均是生产乙醇的关键。而最近研究出的木材液化过程中,木质素首先被液化,其次是半纤维素,最后才是纤维素,这就有可能将秸秆中木质素等不利于发酵制备乙醇的成分与纤维素分离,达到秸秆预处理的目的。分离的程度是制备乙醇的关键。利用农作物秸秆为原料生产生物乙醇,同时联产重要的碳四平台化合物丁二酸。丁二酸可生产新型可降解塑料PBS等新材料,有着极其广阔的投资与应用前景。据了解,我国每年约产生亿t玉米秸秆,利用纤维素转化利用技术,可生产1500万t生物燃料及1800万t加工产品,相当于4500万t石油产生的价值。秸秆乙醇项目还可实现真正意义上的纯生物流程生产。其生产过程基本不消耗化学能源,每6t秸秆纤维大约产生1t乙醇、1t二氧化碳,除去损耗的余渣约,可代替煤用于锅炉。整个流程将是真正意义上的取之自然、用于自然、回归自然的纯天然过程。随着技术的不断进步,麦秸、玉米秆、稻草经过生产加工,最终都可以变成能够替代石油的燃料乙醇,可逐步替换目前的石油制品燃料,降低中国过高的原油依赖度,对缓解我国能源短缺、提高农民收入、保护大气环境等均有重要的战略意义。国家发改委宣布:中国将在未来使用更多的非粮乙醇燃料来替代原油,具体包括2010年开始每年使用超过200万t非粮农作物提炼出来的乙醇燃料以及20万t生物柴油,而到2020年分别增加至1000万t和200万t。压块固化燃烧法植物细胞中除含有纤维素、半纤维素外还含有木质素,木质素是具有芳香族特性的结构单体为苯丙烷型的立体结构高分子化合物,其常温下不溶于任何有机溶剂,但在200~300∃时会软化液化,此时如施加一定的压力可使其与纤维素紧密粘接,并与相邻秸秆颗粒互相胶接,冷却后即可固化成型。秸秆制煤、制炭技术是以玉米、大豆、棉花、水稻等农作物秸秆,以及废弃的花生壳、锯末、杂草、稻壳、树枝等为燃料,在隔绝空气的条件下,快速处理成秸秆炭,经粉碎后,再与粘土和其它粘合剂混合,压制成蜂窝煤型或炭棒型。压块固化燃烧的优点:(1)通过生物质压块机等进行短时间内的转化,非常方便省时;(2)密度大,燃烧时间长,体积缩小6~8倍,密度为;(3)热值高,方便运输和贮藏。压块固化燃烧的缺点:成本较高,尚未能推广用于电厂,多为小范围的供热等。压块固化是极具投资价值的高回报技术。秸秆煤炭应用范围广,可以代替木柴、液化气,能广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。根据农业部的目标,2010年,结合解决农村基本能源需要和改变农村用能方式,全国将建成400个左右秸秆固化成型燃料应用示范点,秸秆固化成型燃料年利用量达到100万t左右;到2015年,秸秆固化成型燃料年利用量达到2000万t左右。其它方法目前,还有将秸秆通过固态微贮水解预处理和催化产氢即利用氢能并通过氢能发电的研究。4展望据专家预测,如果将秸秆利用技术产业化,以50km为半径建设小型秸秆加工厂,那么按秸秆到厂价40元%t-1,农民每亩就可增收200元以上;如果我国每年能利用全国50%的作物秸秆、40%的畜禽粪便、30%的林业废弃物,以及开发5%的边际土地种植能源作物,并建设约1000个生物质转化工厂,那么其产出的能源就相当于年产5000万t石油,约为一个大庆油田的年产量,可创造经济效益400亿元并提供1000多万个就业岗位。今后我国秸秆生物质能利用技术将在以下方面发展:高效直接燃烧技术与设备、集约化综合开发利用、新技术开发。希望国家各级政府和部门加快推进秸秆生物质能源综合利用,促进资源节约型、环境友好型社会建设。 详情请咨询 河北浩瀚农牧机械制造有限公司 官网

一、秸秆气化原理与燃气指标 秸秆是作物通过光合作用而生成的生物质,其元素组成主要为碳、氢、氧、氮、硫、磷等。秸秆气化的原理是:生物质秸秆作为燃料,在缺氧的状态下,不完全燃烧,使其转化为一氧化碳、氢、甲烷等可燃气体。气化过程包括三个阶段,即干燥与干馏、氧化、还原。 直接燃烧主要化学反应式如下: 生物质+氧气+二氧化碳+水(氧化反应) 碳+二氧化碳+一氧化碳(还原反应) 水+碳+一氧化碳+氢气(还原反应) 秸秆气化技术指标: 1.原料 玉米秸秆、玉心芯、薪柴、木材加工废弃物等。原料含水量要求小于20%。 2.产气率 每千克秸秆可产2立方米燃气。 3.燃气成分 一氧化碳11%--20%,氢气10%--16%,甲烷0.5%--5%,二氧化碳10%--14%,氧气小于1%,硫化氢小于20毫克/立方米,焦油及灰尘小于10毫克/立方米,燃气热值4000千焦/立方米--5000千焦/立方米。 二、工艺流程简述 燃料在气化炉内经缺氧燃烧,生成含有一定量的一氧化碳、氢气及甲烷等的可燃气体,靠小型风机产生的压力将可燃气体由气化炉上方压出,所产燃气经集水过滤、除尘、除焦油装置并通过输气管道与灶具相连。 三、小型气化炉的制作方法 1.所需材料及尺寸 旧铁桶1个,40瓦--60瓦风机1台,开关2个,三通接头2个,管件直径均为1寸,长短按图纸要求准备,1台简易气化炉的制作成本不超过100元钱。最好选用大号铁桶,按图纸要求将铁桶相关部位进行焊割。 2.炉篦子的安装 沿铁桶内壁底部摆放一圈立砖(高为24厘米),然后将长短合适的钢筋炉条按间隔1厘米放在砖上,并用泥或水泥固定。在炉篦子上方沿铁桶周围摆放两层立砖,然后再用泥在砖面抹炉膛,炉膛最好抹成略微锅底形,以便于燃料向喷咀中间集中,炉膛内径为35厘米左右。(一定要等炉膛干透后才可点火使用) 3.喷咀的安装 喷咀是气化炉的关键部位,因炉内燃烧时的温度较高,喷咀容易受到损伤,所以要求采用专用喷咀。喷咀可以用法兰盘固定(方便更换),也可以直接焊在铁桶上(如需要更换可重新进行焊割)。 4.集水瓶的安装 集水瓶的作用是收集管道内积水、除焦油,同时具有安全限压作用。 5.室内灶具安装 气化炉灶具在正常点燃后,火焰应为蓝、红色,室内无烟、无尘、无味。灶具应靠窗户安放,并在灶具上方的窗户上加一排风扇,炒菜时排放厨房内的油烟。 四、使用说明 气化炉制作完成后,即可进行点火使用。使用方法如下: 1.准备燃料 气化炉对燃料含水量的要求非常严格,含水量不能超过20%,如果燃料过湿,可事先将燃料晒干。选用不同的燃料,气化效果也有所不同,选用锯末、稻壳、花生壳、麦糠效果最好,燃料不需要粉碎,可直接使用。选用玉米芯、玉米秸、麦秸,则需要事先粉碎或切短成3厘米--5厘米。经测算,每千克燃料可产气2立方米,一般家庭每天用气量约为5立方米--6立方米,每天约需燃料3千克左右。该气化炉配一功率为40瓦左右的小型风机,用电量少,在正常使用的情况下,每月电费不到2元钱。 2.点火 关闭灶具开关,打开排烟开关,从填料口向炉内填入少量的干柴或茅草等易燃物并点燃,为使底火充分燃烧,可打开风机助燃,为了保证气化效果。炉内底火一定要充分,底火点燃后先关闭风机,这时可将事先准备好的燃料填入气化炉内,填料高度要求燃料高出喷咀20厘米以上。燃料填好后,盖严填料口盖板。打开风机,这时你会看到排烟口有大量的烟气排出,过2分钟--3分钟后,可打开灶前开关点火,点燃后应将气化炉的排烟开关关闭。如果灶具点不燃,说明燃料气化还不完全,应立即关闭灶前开关,再经过适当排烟后即可点燃,火焰大小由灶前开关控制。 3.封火 做完饭后,关闭风机,关闭灶前开关,打开排烟开关及清灰口插板。该气化炉只需一次点火,封火后炉内留有底火,下次做饭时,只需打开填料口,补充少量燃料即可。 五、注意事项 1.首先应注意安全,要严格按照使用说明进行操作,一定要确认使用者能独立操作后才可交付使用。按资料要求,厨房内应加一排风扇,以便排除室内有害气体。 2.尽量选择高热值燃料,如木屑、锯末等,并要求燃料越干燥、越细碎越好,不同的燃料使用效果也不尽相同。如发现灶头有烟气,说明燃料太大或太湿。 3.做饭时,如气化炉连续使用时间过长,会发现灶具进气口有白色烟气,说明炉内喷咀周围缺少燃料,可将炉内燃料向中间搅拌一下或者再加入适当燃料即可。 4.经常用炉钩子清理喷咀周围及内部的灰尘,防止喷咀阻塞。 希望能帮到你

秸秆,玉米杆,玉米芯,薪柴,木柴等的元素主要为碳、氢、氧、氮、硫、磷等。 秸秆气化的原理是:秸秆作为燃料,在缺氧的状态下,不完全燃烧,经过干燥,干馏、氧化、还原等阶段,生成含有一定量的一氧化碳、氢气及甲烷等的可燃气体,靠小型风机产生的压力将可燃气体由气化炉上方压出,所产燃气经集水过滤、除尘、除焦油装置并通过输气管道与灶具相连。打着火以后即可燃烧。郑州建成能源科技有限公司生产的有这一方面的产品,你想要的话可以查一下并与我们联系!

玉米秸秆餐具的可靠性研究论文

其实这样的餐具还是比较环保的,而且是没有甲醛的,可以往往放心的使用,因为相关的一些报道已经做了一些实验,是没有危害的。

1、小麦秸秆餐具安全的。2、小麦秸秆餐具主要原材料是食品级pp+小麦秸秆。可以生物降解,环保可以达到欧美标准,所以安全方面比纯粹塑料要好。3、小麦秸秆餐具,闻起来一股淡淡的麦香味,仿佛置身于麦田之中,呼吸着大自然的气息,回归自然、源于本真。4、天然有机小麦秸秆材质,热压成型,环保健康,并且经久耐用,从高处往下摔也不易破裂。5、小麦秸秆的造型时尚大方,简约中又不失设计感,呈现天然原色,为生活增添色彩。6、耐高温、成本低,可降解,韧性好,不含重金属,是不错的环保产品。

网红麦秸秆餐具确实挺环保的,没有甲醛,不过需要注意的是,要到正规的店里买,不然买到假的那就不安全了。

一次性小麦秸秆餐具基本都是安全的现在市面上的一次像小麦秸秆餐具,大多都是用小麦纤维和玉米淀粉制做而成的,在生产的过程中不添加任何化学物质,通过高温热压物理定型,但是这些餐具有一个特点就是不能重复使用,一般只用于一次性餐具,像我们平时用的快餐盒等。采用这种方法制成的餐具,不经用硬度不够,不能反复多次的利用,但是一次性小麦秸秆餐具的材质是纯天然的,没有化学添加,也不含有重金属,基本都是安全无害的。普通的小麦秸秆餐具安全与否要看融合剂普通的小麦秸秆与一次性餐具的不同之处,就是可以重复使用,而且还要能够清洗、经得起磕碰和磨损等。所以在制作普通小麦秸秆餐具的时候,除了要要用到小麦秸秆和植物粘合剂以外,还要用到可以用来定型和增强餐具性能的融合剂,其中的融合剂就是我们平时所说的塑料成分,这也是很多人觉得小麦秸秆菜板像塑料的原因。因此小麦秸秆餐具安全不安全,就要看融合剂是不是食品级的材质。 如果小麦秸秆的融合剂采用的是食品级的PP材质,那么材质就是安全的,也是可以放心使用的。如果融合剂不是食品级的PP材质,甚至有的不良商家用的是回收塑料,那么制成的小麦秸秆餐具就是不安全,存在安全隐患。更有不良商家,在制作小麦秸秆菜板的时候,根本就没有添加小麦秸秆成分。所以我们在选择小麦秸秆餐具的时候,一定要仔细谨慎,要选择正规生产的具有生产许可证的合格产品才是安全的。

木材秸秆水解研究论文

90年代,开展了秸秆及木材细胞壁中化学成分的分离和结构鉴定及过氧化氢制浆机理方面的研究。主要学术成就和创新性工作有以下几点:① 首次系统地提出了一整套秸秆中化学成份的分离、提纯和鉴定方法。该方法已作为标准方法被载入英国《分离科学百科全书- Encyclopaedia of Separation Science》;②提出了两步分离秸秆中木质素的新方法,使得分离的木质素含多糖杂质降至为以下;③首次提出了英国小麦秸秆中木质素-半纤维素的化学结构模型;④首次上提出了均相催化化学改性小麦秸秆半纤维素反应工艺,比传统的异相催化反应速度提高了5-10倍,并为工业化生产改性半纤维素产品提供了理论依据;⑤首次在国际上提出两步中度碱水解和两步酸水解测定秸秆细胞壁中酯化或醚化阿魏酸和香豆酸的新工艺方法。⑥发明了低温无溶剂化学改性秸秆和蔗渣木质纤维以制备新型高效吸油剂的新工艺。他与合作者已在Journal of Agricultural and Food Chemistry, Polymer, Carbohydrate Polymers, Holzforschung 等国际本专业核心刊物上发表论文110篇,并全部被SCI收录并被多次引用;同时他还被邀请参与编写Pectins and Pectoase, Chemistry and Technology of Hemicelluloses 等专著8部(英文)和英国科学分离百科全书1部。申请发明专利4项。1998年曾获留英华人化学学会和英国科学协会(CSCST1994-1998)联合举办的化学学术成就奖。2000年10月获国家杰出青年自然科学基金资助(项目名称:木材废物及农作物秸秆在工业中的应用研究)。 小麦秸秆细胞壁中羟基肉桂酸化合物分离和结构鉴定项目(国家自然科学基金项目)获教育部提名国家自然科学一等奖(2002),并推荐为2003 年国家自然科学二等奖。

秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。

植物原料所含聚糖在催化剂与水的作用下水解成单糖的解聚过程。用于水解生产的主要植物纤维原料为森林采伐剩余物、木材加工废料和农业废料。20世纪60年代以前,水解科研及生产系以木质原料为主,当时常用“木材水解”一词。水解工业是以植物纤维为原料通过水解获得单糖等中间产物,再经生物化学或化学加工转换成一系列有机化工产品及蛋白饲料等产品的化工生产部门。

简史

1819年法国科学家布拉孔诺()首先发现纤维素可经浓硫酸水解成葡萄糖,为植物原料水解利用奠定了基础。1854年法国公布了阿雷纳(Aréna)和佩卢兹(Peluse)用浓硫酸木材水解法制酒精的研究成果。于次年在巴黎建成了世界上第一座木材水解酒精厂。早期的浓硫酸水解法虽已显示了工艺设备简单易行及糖得率高(近理论值)等方面的优越性,但由于硫酸耗量高达原料重的~倍,且不能有效回收,使这一方法的推广和应用受到限制。1856年法国学者贝尚普(échamps)首次以发烟盐酸为催化剂进行了木材水解研究。其后经过许多研究者的持续工作,两种浓盐酸水解方法——普罗多尔(Prodor)法即气体盐酸水解法,及贝尔吉乌斯—莱茵奥(Bergius-Rheinau)法即液体盐酸水解法,在20世纪20年代初达到中间试验水平。1933~1942年期间德国及意大利分别建成浓盐酸法及浓硫酸法木材水解厂,并先后投产。稀硫酸水解的研究最早可追溯至1844年。在此之后,瑞典的西蒙森()、德国的克拉森()和朔莱尔()等作了大量研究,为以后稀硫酸水解法的工业化生产打下基础。朔莱尔所提出的水解法的特点是在水解器中形成的糖可及时连续地渗滤排出。糖的分解大为下降,得率提高。这一渗滤式水解法经继续改进后,被称为朔莱尔(Scholler)法。第二次世界大战期间,德国、苏联、美国等国先后对稀硫酸渗滤水解法进行了深入的研究开发,并相继建厂生产,主产品为酒精,部分厂尚生产饲料酵母。第二次世界大战后,日本为了达到甜味资源自给及发展新木材化学工业的目的,全面开展了浓硫酸及浓盐酸水解技术方面的研究,并于50年代末60年代初采用浓硫酸法先后建厂试生产,在回收硫酸上采用了新的途径,主产品为结晶葡萄糖。此方面研究开发工作终因60年代木材价格上涨而中断。苏联拥有丰富的森林资源,始终重视发展其水解工业。从60年代开始,由于大力发展牲畜饲养事业,产品结构发生改变。饲料酵母上升为主产品,同时也巩固酒精生产,发展糠醛生产。此外,木糖醇及木质素深加工产品也得到了相应发展。水解原料构成也逐渐变化,农业废料比重日益上升。中国的水解研究,始于20世纪40年代。从60年代起,科研及生产发展较快。糠醛生产厂已遍布全国,并建立了木材水解酒精厂、木糖醇及木糖生产车间。从70年代中期起,国际上对植物纤维水解利用的研究更趋重视,主要集中于水解方法新领域的开拓研究,在纤维素酶水解法的研究方面取得了不少进展。

原料

木质原料有等外材、梢头木、木片、刨花、板皮、板条及木屑等。林产品工业领域中的废渣废液,如栲胶渣、纤维板生产废水,也不同程度地用于水解生产,硫酸盐法预水解液也有用于水解生产的。制浆生产中的亚硫酸盐法纸浆废液,作为含糖水解液早已在全球范围内大量用作发酵原料。农业废料有玉米芯、甘蔗渣、燕麦壳、棉籽壳、稻壳以及玉米秆、麦秆等。据估计80年代全世界每年用于水解生产的原料约700万吨,林业原料及农业原料各占一半。

在评价植物水解原料时,通常将其所含聚糖分为易水解聚糖及难水解聚糖两类。前者主要指半纤维素(包括果胶质、树胶类聚糖),易为酸及酶等催化水解;后者主要指纤维素及部分伴生其间的聚甘露糖和聚木糖,难被稀酸及酶催化水解。两类聚糖的含量多寡,对确立水解工艺参数有密切关系。植物因种属不同,以及生长地区、气候条件的差异等因素的影响,其化学成分,以至易水解及难水解聚糖比例等都有明显的变化。大量测定表明,林、农废料中三大组成含量的平均范围是:纤维素30~45%,半纤维素15~40%,木质素12~30%。某些富含聚糖的植物原料所含聚糖与普通谷物所含聚糖(淀粉)相近。

产品

水解生产的产品主要有酵母、糠醛、酒精(乙醇)、木糖醇、木糖、饲料糖浆、木质素植物刺激素、木质素植物生长刺激肥料、木质素活性炭等。由水解产品经再加工可形成大量二次产品及系列产品。例如糠醛除了本身可作为产品直接应用外,还是呋喃化工系列产品(包括呋喃类药物)的基本原料。按80年代末期统计数字,全球由植物纤维原料直接生产的饲料酵母每年在45万吨以上(未包括由制浆废液等工业废水生产的产品),糠醛及酒精的年产量分别为25万吨及12万吨左右。

水解厂副产品的种类与所选择的主产品种类及水解工艺有关。如采用稀酸渗滤水解法生产酒精时,可得副产品糠醛、酵母、石膏、液体二氧化碳、干冰等。生产结晶木糖醇或结晶木糖时,可同时得到饲料酵母或饲料糖浆。醋酸及醋酸盐是糠醛生产的副产品。

水解原理与方法植物纤维所含聚糖——纤维素及半纤维素加水分解的总过程可分别表示如下:

水解所得单糖中,属于己糖的除葡萄糖外,尚有甘露糖及半乳糖,戊糖为木糖及阿拉伯糖。在高温酸水解条件下,单糖将进一步发生分解。已得到生产应用和正处于研究开发中的水解方法主要有以下几个:

稀硫酸高温渗滤水解法

简称渗滤水解法。是国际上目前大规模工业生产酵母和酒精唯一应用的一种水解方法。水解时由水解器顶部向器内连续泵入高温稀酸溶液,使其透过(渗滤)水解物料层及时地将已水解出的单糖液(水解液)排出反应空间,以减少糖的分解,获得高的得糖率。半纤维素、纤维素的水解速度及其水解出的单糖的分解速度均相差甚远,植物纤维原料的形态在水解过程中变化很大,这些因素要求水解温度要由低(175℃)向高(190℃)逐渐升温,且要严格控制渗透速度。水解时,硫酸浓度为~,水解液比(水解液采出量与干基原料重量比)为14左右。渗滤法水解生产工艺包括原料制备(粗大原料削片、粉碎)、水解、水解液中和、澄清等基本工序。水解流程如图1。

图1水解器是水解生产的关键设备,在苏联该项设备在向系列化、大型化方向发展。常见的计有容积为18、20、30、37、40、50、70、80及160立方米9种。70立方米容积水解器结构见图2。

图2国际上采用渗滤法水解生产的企业为了全面利用原料中的聚己糖及聚戊糖,依所选定产品方案的不同主要有4种类型的水解厂:①酵母水解厂;②酒精酵母水解厂(酒精为主产品);③糠醛酵母水解厂(糠醛为主产品);④木糖醇酵母水解厂(木糖醇为主产品)。酒精酵母水解厂基本生产流程见图3。

通过渗滤法水解,每吨绝干原料(按针叶树材计)可获得450~500千克左右的还原糖。今以酒精酵母水解厂及酵母水解厂为例,其产品(包括副产品)及数量见下表。

现阶段,采取稀硫酸高温渗滤法进行水解生产的国家主要是苏联。此外,保加利亚、中国及巴西亦属生产国。

图3浓盐酸水解法

植物纤维素在盐酸浓度高于39%的情况下即可在常温下水解。水解前先经过吸附、润胀、溶解等过程。但在浓酸介质中,纤维素水解成葡萄糖后又立即回聚成结构不同于纤维素低聚糖的新低聚糖。这种新低聚糖在稀酸中极易水解成葡萄糖。浓盐酸水解法有液相(大酸比)及气相两类。以生产结晶葡萄糖为主产品的大酸比浓盐酸水解法,其工艺主要包括原料制备、预水解、纤维木质素干燥、水解、盐酸回收及葡萄糖复盐结晶及复盐分解等基本工序。与稀硫酸水解法相比,浓盐酸水解有得糖率高、糖浓度高、糖质纯以及节约能源等许多优点。但是,液相浓盐酸水解法在其工业生产中有不少技术难关,有待继续解决。

酶水解法

以纤维素酶及相应的半纤维素酶为催化剂,对纤维素及半纤维素聚糖进行水解的方法。酶法水解在常温常压下进行,不需要耐压耐腐蚀设备。由于酶促反应的特异性,产物单一,可免除产物的二次降解,故糖质纯净。但也存在不少技术难关,如原料预处理及酶制剂生产费用昂贵,酶水解反应慢、周期长,酶的有效回收难等,有待进一步解决。

高温快速水解法

从70年代以来,各国普遍研究这一方法。此法一般以~的稀硫酸为催化剂,在220~240℃高温下于管式水解器中连续进行,水解时间仅为数秒到数分钟。葡萄糖得率可达理论得率的50%以上。该法目前尚处于试验阶段。

趋势

现有稀硫酸高温渗滤水解法的继续完善与提高,仍将是各生产国今后的一项重点任务。以生物技术的新研究成果改进酵母生产技术将受到重视。酶水解技术在商业化的道路上可望取得更多突破,原料的经济预处理方法和酶制取成本的下降及回收利用技术的研究仍将会成为研究的中心目标。占首位的水解产品将继续是饲料酵母,其次为糠醛、酒精及水解糖质饲料等。由于饲养业迅速发展的需要,饲料酵母产量可能增长较快。为了水解生产的进一步发展与扩大,新水解原料资源的开发利用已引起普遍重视。预计城市纤维质垃圾、高位低分解度泥炭及富含聚糖的海洋植物等将会得到更多研究与应用。营造水解原料基地林亦可能受到重视。

玉米多孔淀粉制备工艺研究论文

清理玉米中含有各种尘芥、有机和无机杂质。为了保证安全生产和产品质量,对玉米中存在的杂质必须进行清理。清理玉米的方法,主要采用筛选、风选等。清理设备有振动筛、比重去石机、永磁滚筒和洗麦机等。振动筛是用来清除玉米中的大、中、小杂物。筛孔配备,第一层筛面用直径17~20毫米圆孔,第二层筛面直径12~15毫米圆孔,除去大、中杂,第三层筛面选用直径2毫米圆孔除去小杂。比重去石机是用来除去玉米中的并肩石。由于玉米粒度较大,粒型扁平,比重也较大等特点,在操作时应将风量适当增大,风速适当提高,穿过鱼鳞孔的风速为14米/秒左右。鱼鳞孔的凸起高度也应适当增至2毫米,操作时应注意鱼鳞筛面上物料的运动状态,调节风量,并定时检查排石口的排石情况。永磁滚筒是用来清除玉米中的磁性金属杂质,应安置在玉米地入破碎机前面,防止金属杂质进入破碎机内。洗麦机可以清理玉米中的泥土、灰尘。经过清理后玉米的灰分可降低~。[编辑本段]2.浸泡玉米浸泡方法目前普遍采用金属罐几只或几十只用管道连接组合起来,用水泵使浸泡水在各罐之间循环流动,逆流浸泡。在浸泡水中溶加浸泡剂经试用的结果表明,石灰水、氢氧化钠和亚硫酸氢钠都不及二氧化硫效果好,二氧化硫的含量不宜太高。因为含二氧化硫的浸泡水对蛋白质网的分散作用是随着二氧化硫含量增加而增强。当二氧化硫浓度为时,蛋白质网分散作用适当,淀粉较易分离;而浓度在时,不能发生足够的分散作用,淀粉分离困难。一般最高不超过,因为二氧化硫的浓度过高,酸性过大,对玉米浸泡并没有多大好处,相反地会抑制乳酸发酵和降低淀粉粘度。浸泡温度对二氧化硫的浸泡作用具有重要的影响,提高浸泡水温度,能够促进二氧化硫的浸泡作用。但温度过高,会使淀粉糊化,造成不良后果。一般以50~55℃为宜,不致于使淀粉颗粒产生糊化现象。浸泡时间对浸泡作用亦有密切的关系。在浸泡过程中,浸泡水不是从玉米颗粒的表皮各部分渗透到内部组织,而是从颗粒底部根幅处的疏松组织进入颗粒,通过麸皮底层的多孔性组织渗透到颗粒内部,所以必须保证足够的浸泡时间。玉米在50℃浸泡4小时后,胚芽部分吸收水分达到最高值,8小时后,胚体部分也吸收水分达最高值。这个时候玉米颗粒变软,经过粗碎,胚芽和麸皮可以分离开。但蛋白质网尚未被分散和破坏,淀粉颗粒还不能游离出来。若继续浸泡,能使蛋白质网分散。浸泡约24小时后,软胚体的蛋白质网基本上分散,约36小时后,硬胚体的蛋白质网也分散。因为蛋白质网的分散过程是先膨胀,后转变成细小的球形蛋白质颗粒,最后网状组织破坏。所以要使蛋白质网完全分散,需要48小时以上的浸泡时间。各地工厂的玉米浸泡条件不完全相同。一般操作条件如下:浸泡水的二氧化硫浓度为~,pH值为。在浸泡过程中,二氧化硫被玉米吸收,浓度逐渐降低,最的放出的浸泡水内含二氧化硫的浓度约为~,pH值为~;浸泡水温度为50~55℃;浸泡时间为40~60小时。浸泡条件应根据玉米的品质决定。通常是贮存较久的老玉米含水分低和硬质玉米都需要较强的浸泡条件,即要求较高的二氧化硫浓度、温度和较长的浸泡时间。玉米经过浸泡以后,含水分应达40%以上。[编辑本段]3.玉米粗碎粗碎的目的主要是将浸泡后的玉米破成10块以上的小块,以便分离胚芽。玉米粗碎大都采用盘式破碎机。粗碎可分两次进行。第一次把玉米破碎到4~6块,进行胚芽分离;第二次再破碎到10块以上,使胚芽全部脱落,进行第二次胚芽分离。[编辑本段]4.胚芽分离目前国内胚芽分离主要是使用胚芽分离槽。优点是操作比较稳定,缺点是占地面积大,耗用钢材多,分离效率低,一般不超过85%。国内外还有采用旋液分离器的玉米淀粉厂。这种分离器由尼龙制成,用12只分离器集中放在一个架子上,总长度不超过1米,占地面积小,生产能力大,分离效率高,可达95%以上。[编辑本段]5.玉米磨碎经过分离胚芽后的玉米碎块和部分淀粉的混合物,为了提取淀粉,必须进行磨碎,破坏玉米细胞细胞,游离淀粉颗粒,使纤维和麸皮分开。磨碎作业的好坏,对淀粉的提取影响很大。磨得太粗,淀粉不能充分游离出来,因被粗细渣带走,影响淀粉出度。太细,纤维分离不好,影响淀粉质量。为了有效地进行玉米磨碎,通常采用二次磨碎。第一次用锤碎机进行磨碎,经筛分淀粉乳后;第二次用砂盘淀粉磨进行磨碎。有的用万能磨碎机作第一次磨碎,经筛分淀粉乳后,再用石磨进行第二次磨碎。根据各地生产实践证明:金刚砂磨较石磨好,硬度高,磨纹不易磨损,磨面不需经常维修,磨碎效率也高。现已逐步以金刚砂磨代替石磨。

1、清理

清理玉米中含有各种尘芥、有机和无机杂质。为了保证安全生产和产品质量,对玉米中存在的杂质必须进行清理。清理玉米的方法,主要采用筛选、风选等。清理设备有振动筛、比重去石机、永磁滚筒和洗麦机等。

2、浸泡

玉米浸泡方法目前普遍采用金属罐几只或几十只用管道连接组合起来,用水泵使浸泡水在各罐之间循环流动,逆流浸泡。

3、玉米粗碎

粗碎的目的主要是将浸泡后的玉米破成10块以上的小块,以便分离胚芽。

玉米粗碎大都采用盘式破碎机。粗碎可分两次进行。第一次把玉米破碎到4~6块,进行胚芽分离;第二次再破碎到10块以上,使胚芽全部脱落,进行第二次胚芽分离。

4、胚芽分离

目前国内胚芽分离主要是使用胚芽分离槽。优点是操作比较稳定,缺点是占地面积大,耗用钢材多,分离效率低,一般不超过85%。

国内外还有采用旋液分离器的玉米淀粉厂。这种分离器由尼龙制成,用12只分离器集中放在一个架子上,总长度不超过1米,占地面积小,生产能力大,分离效率高,可达95%以上。

5、玉米磨碎

经过分离胚芽后的玉米碎块和部分淀粉的混合物,为了提取淀粉,必须进行磨碎,破坏玉米细胞细胞,游离淀粉颗粒,使纤维和麸皮分开。

磨碎作业的好坏,对淀粉的提取影响很大。磨得太粗,淀粉不能充分游离出来,因被粗细渣带走,影响淀粉出度。太细,纤维分离不好,影响淀粉质量。

6、纤维的分离

玉米碎块磨碎后得到玉米糊。玉米糊中除含有大量淀粉以外,还含有纤维和蛋白质等。如果不去除这些物质,会影响淀粉的质量。通常是先分离纤维,然后再分离蛋白质。分离纤维大都采用筛选方法,常用设备有六角筛、平遥筛、曲筛和离心筛等。

7、蛋白质的分离

玉米经破碎并分离纤维后所得到的淀粉乳,除含有大量淀粉以外,还含有蛋白质、脂肪等,是几种物质的混合悬浮液。这些物质的颗粒虽然很小,但比重不同,因此,可用比重分选的方法将蛋白质分离出去。分离蛋白质的简单设备为流槽。

8、清洗

淀粉乳经分离蛋白质后,通常还含有一些水溶性杂质。为了提高淀粉的纯度,必须进行清洗。最简单的清洗方法是将淀粉乳放入淀粉池中,加水搅拌后,静置几小时,待淀粉沉淀后,放去上面的清液。再加水搅拌,沉淀,放去上清液。如此反复2—3次,便可得到较为纯净的淀粉。

9、脱水

清洗后的淀粉水分相当高,不能直接进行干燥,必须首先经过脱水处理。一般可采用离心机进行脱水。

10、干燥

脱水后得到的湿淀粉,水分仍然较高,这种湿淀粉可以作为成品出厂。为了便于运输和储存,最好进行干燥处理,将水分降至12%以下。

11、成品整理

干燥后的淀粉,往往粒度很不整齐,必须进行成品整理,才能成为成品淀粉。

扩展资料:

玉米淀粉有以下用途:

1、玉米淀粉与水或牛奶混合后有独特的外观和质感,常用来掺在白糖粉作为抗粘结剂。

2、玉米淀粉常用作布丁等食品的凝固剂。利用双层蒸锅,以牛奶、砂糖、玉米粉和增香剂等配料就可轻易制作出简单的玉米粉布丁。

玉米淀粉制的玉米面的营养价值:

1、玉米面中含有亚油酸和维生素E,能使人体内胆固醇水平降低,从而减少动脉硬化的发生。

2、玉米面中含钙、铁质较多,可防治高血压、冠心病。

3、粗磨的玉米面中含有大量的赖氨酸,可抑制肿瘤生长。

参考资料来源:百度百科-玉米淀粉

玉米淀粉的制作方法一:

1、清理

清理玉米中含有各种尘芥、有机和无机杂质。为了保证安全生产和产品质量,对玉米中存在的杂质必须进行清理。清理玉米的方法,主要采用筛选、风选等。清理设备有振动筛、比重去石机、永磁滚筒和洗麦机等。

2、浸泡

玉米浸泡方法普遍采用金属罐几只或几十只用管道连接组合起来,用水泵使浸泡水在各罐之间循环流动,逆流浸泡。

3、玉米粗碎

粗碎的目的主要是将浸泡后的玉米破成10块以上的小块,以便分离胚芽。

玉米粗碎大都采用盘式破碎机。粗碎可分两次进行。第一次把玉米破碎到4~6块,进行胚芽分离;第二次再破碎到10块以上,使胚芽全部脱落,进行第二次胚芽分离。

4、胚芽分离

目前国内胚芽分离主要是使用胚芽分离槽。优点是操作比较稳定,缺点是占地面积大,耗用钢材多,分离效率低,一般不超过85%。

5、玉米磨碎

经过分离胚芽后的玉米碎块和部分淀粉的混合物,为了提取淀粉,必须进行磨碎,破坏玉米细胞细胞,游离淀粉颗粒,使纤维和麸皮分开。

6、淀粉筛分

玉米碎块经过磨碎后,得到玉米糊,可以采用筛分的方法将淀粉和粗细渣分开。常用的筛分设备有六角筛、平摇筛、曲筛和离心筛等。

玉米淀粉的制作方法二:

以糯玉米为原料,采用湿法提取淀粉工艺,制得淀粉得率高、质量优质的纯净糯玉米淀粉。

通过正交实验设计筛选出最佳的提取方案:浸泡温度、浸泡溶液亚硫酸浓度、浸泡时间分别为5O℃、0.3%、60h。

影响淀粉得率的主要因素是:时间、浓度、温度。糯玉米淀粉较普通玉米淀粉相比具有糊化温度低、黏度高、透明度高等特点。下面妈网百科总结了一些玉米淀粉的制作要点。

1、选料去杂:

选用干净.无霉烂,含水量小于14%的玉米作原料,用三层振荡筛振荡筛选,去掉尘土和杂质,使玉米粒的净度达到98.5%以上。

2、水冼浸泡:

先用清水将玉米籽粒冲洗干净,再送入池中浸泡72小时,浸泡水中加入适量的亚硫酸钠(约O.2%),促其软化。

3、分离取胚:

将泡软的玉米粒送入立磨中进行粉碎,使玉米胚和胚乳分离,再将胚乳送入卧磨粉碎成浆。

4、沉流淀粉:

将玉米胚浆及时送入流板沉淀4小时,得到湿玉米淀粉。剩下的黄浆可作提取蛋白用。

5、烘干包装:

将湿淀粉送入刮刀式烘于机上,烘烤4小时左右即得干淀粉,按不同重量单位装袋封口即可运销或贮存。

秸秆综合利用研究进展论文

秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。

秸秆可收集量增加的原因有很多,以下是其中一些可能的因素:1. 政策鼓励:政府出台了一系列环保政策,鼓励农民收集和利用秸秆,促进资源的循环利用。2. 经济利益:随着秸秆综合利用技术的发展,收集、打包和运输秸秆已成为一项有利可图的生意,这也促使了更多的人参与到秸秆收集中来。3. 环保意识提高:随着环保意识的普及,越来越多的人认识到秸秆是宝贵的资源,而不是垃圾。因此,他们开始更认真地对待秸秆,并积极参与到秸秆收集中来。总之,秸秆可收集量增加的原因是多方面的,包括政策鼓励、经济利益和环保意识提高等。这种现象在未来还会继续发展,为社会和环境带来更好的效益

2010 年,秸秆综合利用率达到,利用量约5 亿吨。其中,作为饲料使用量约 亿吨,占;作为肥料使用量约 亿吨(不含根茬还田,根茬还田量约 亿吨),占;作为种植食用菌基料量约 亿吨,占;作为人造板、造纸等工业原料量约 亿吨,占;作为燃料使用量(含农户传统炊事取暖、秸秆新型能源化利用)约 亿吨,占,秸秆综合利用取得明显成效。1.多元化利用格局形成。秸秆由过去仅用作农村生活能源和牲畜饲料,拓展到肥料、饲料、食用菌基料、工业原料和燃料等用途;由过去传统农业领域发展到现代工业、能源领域。秸秆能源化利用发生了质的变化,从农民低效燃烧发展到秸秆直燃发电、秸秆沼气、秸秆固化、秸秆干馏等高效利用。秸秆工业化利用发展迅速,秸秆人造板、秸秆木塑等高附加值产品实现了产业化生产,产品已经应用于北京奥林匹克公园、上海世博会等多项重大工程。2.技术水平明显提高。通过自主创新、引进消化吸收,多项技术取得一定突破。秸秆沼气、秸秆固化、秸秆人造板、秸秆木塑等综合利用工艺技术以及秸秆联合收获、粉碎、拾捡打包等机械装备得到成功应用;秸秆直燃发电技术装备基本实现国产化;秸秆清洁制浆等多项技术的应用部分实现了造纸工业污水循环利用和达标排放;自主研发的秸秆人造板粘合剂已经实现甲醛零排放。3.综合效益快速提升。通过大力推进秸秆综合利用,带动相关产业加快发展,重点地区的秸秆焚烧问题基本得到解决,大气环境污染问题得到有效缓解,带动了农村剩余劳动力就业、促进了农业增效和农民增收。2010 年养畜消耗的秸秆相当于节约粮食5000 万吨;作为燃料使用相当于节约标煤约6000 万吨,实现了环境效益、经济效益和社会效益的多赢。

  • 索引序列
  • 玉米秸秆的气化工艺模拟研究论文
  • 玉米秸秆餐具的可靠性研究论文
  • 木材秸秆水解研究论文
  • 玉米多孔淀粉制备工艺研究论文
  • 秸秆综合利用研究进展论文
  • 返回顶部