首页 > 论文发表知识库 > 基因技术论文参考文献

基因技术论文参考文献

发布时间:

基因技术论文参考文献

基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达亿美元,2002年达亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文

我想请大家讨论一下“转基因技术的利与弊”这一话题: 我先说说其弊端(也是目前转基因领域最应该重视的):现代生物技术的研究、开发、应用以及转基因生物的跨国越境转移可能会对生物产生潜在的不利影响,特别是各类转基因活生物体释放到环境中可能对生物构成潜在风险与威胁。 比如转基因植物会增加目标害虫的抗性:由于目前转基因植物中大量使用的抗虫基因只有少数几种,抗源狭窄,加之外源的抗虫基因在植物体内的持续表达,使害虫在整个生长周期中都受到少数几种抗虫基因表达产物的选择,容易使害虫产生相应的抗性,影响自然生态平衡。研究表明,第三、四代害虫已对转基因抗虫作物产生抗性。因此,转基因抗虫作物的大规模种植,有可能需要喷洒更多的农药,将会对农田和自然生态环境造成更大的药害。 再比如某些转基因植物及其产品作为食品进入市场,这可能对人体产生某些毒理作用和过敏反应。例如,转基因作物实验中常需使用标记基因,而多数实验使用的标记物为卡那霉素类的抗生素物质,这些抗生素物质若转移到人体,也可能使人体对抗生素产生抗性。由于转基因食品上市不足10年,而且人体内生物化学变化的复杂性,有些影响需要经过长时间才能表现和监测出来,但其潜在的危险仍然使人们感到担心。当然与安全性相比,植物转基因技术给人类带来的好处却是显而易见的,它不仅能够生产出口味更佳的食品,而且能够抗病虫害、抵御旱涝灾害,便于贮运,降低成本,提高食品的质量和产量。 所以我想请大家针对这一话题发表以下自己的观点。

生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望大家喜欢![1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357. [2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254. [3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615. [4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012. [5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683 [6] 杜伟,崔海信,王 琰 ,等.精子载体法制备转基因动物的'研究进展.生物技术通报,2012(12):13-18. [7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409. [8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235. [9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77. [10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190. [11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322. [12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872. [13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060. [14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409 [15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776. [16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226. [17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290. [18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40. [19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375. [20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5. [21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559. [22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11. [23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433. [24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575. [25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834. [26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105. [27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49. [28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558. [29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973. ;

基因编辑技术参考文献

“上帝的手术刀”对海洋生物做了啥? 今年的诺贝尔化学奖颁发给了两位女科学家——埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗·杜德纳(Jennifer A. Doudna),以表彰她们开发了被誉为“上帝的手术刀”“基因魔剪”的CRISPR/Cas9基因编辑技术。今年的诺贝尔化学奖得主 CRISPR即成簇的规律性间隔排列的短回文重复序列(clustered regularly interspaced short palindromic repeat )。Cas是CRISPR关联基因(CRISPR associated gene)的缩写。 CRISPR最初由日本科学家在大肠杆菌中发现,后来被证明广泛存在于约45%的细菌和约90%的古细菌中,是其抵御噬菌体入侵的重要武器。 当噬菌体第一次侵染细菌时,细菌的Cas1和Cas2蛋白会将噬菌体的一小段DNA片段整合到自己的重复序列区中,成为一个新的间隔序列。待同一种噬菌体再次来袭时,病毒DNA被间隔序列转录的guide RNA识别,并激活Cas核酸酶,切断噬菌体的DNA双链,从而守护自身安全。利用此原理,科学家们可以实现对研究对象某一特定序列的靶向敲除、敲入等。CRISPR/Cas9 CRISPR/Cas9系统可分为三类,其中CRISPR/Cas9结构和操作更简洁,由guide RNA引导Cas9核酸内切酶进行靶向基因编辑,自2013年首次运用到真核生物基因编辑以来,发展迅速,曾于2013年、2015年两次被Science杂志评为当年十大科学突破,且今年终于不负众望,摘得诺奖桂冠。 目前关于CRISPR基因编辑技术的报道多集中于人类医学(处于实验室研究阶段)和线虫、拟南芥、果蝇、斑马鱼、小鼠等模式生物。那么,这把“上帝的手术刀”在海洋生物中的应用取得了哪些进展呢?构建海洋模式生物与疾病模型 将CRISPR基因编辑技术运用于海洋生物的最早报道可追溯至2014年。这一年,Sasaki、Stolfi等人均以海洋模式生物——玻璃海鞘(Ciona intestinalis)为研究对象,利用CRISPR技术先后实现了Hox基因定位和ebf基因定点突变。 Hox基因是一种动物基因组内高度保守的发育调控基因,在动物体轴形成过程中起重要的作用。ebf基因可在胚胎发育过程中决定细胞命运。这两种基因突变的玻璃海鞘模型可用于探究脊索动物身体形成的分子机制。 2016年,Nymark等将CRISPR技术运用到了海洋藻类中, 成功敲除了三角褐指藻(Phaeodactylum tricornutum)的CpSRP54基因。 CRISPR技术为海洋生物模型构建提供了新的视角,加快了科学家们探秘海洋生物起源与进化的步伐。培育海洋经济新品种 海产鱼虾贝蟹是我们饮食中重要的蛋白质来源,而良种的培育能促进海水养殖业快速发展。利用基因编辑技术在新品种培育中具有诸多优势,如育种周期短、靶向性强、比转基因技术安全性高等,有着广阔的应用前景。 2019年,Kim等将肌生成抑制素(PoMSTN)基因相关基因编辑组件通过显微注射导入牙鲆(Paralichthys olivaceus)胚胎中,经过筛选,得到了杂合双等位基因突变体,表现为身体增厚,肉质更加肥满。与野生型(左)相比,PoMSTN基因杂合突变的牙鲆(右)的肥满度增加(图片来自Kim等,2019) 今年,来自河北大学的研究者们利用CRISPR/Cas9技术敲除了脊尾白虾(Exopalaemon carinicauda)的类胡萝卜素异构加氧酶(EcNinaB-X1)基因,发现突变体在受到副溶血性弧菌或嗜水弧菌的攻击时存活率明显高于野生型;又敲除了另一个类胡萝卜素加氧酶基因EcBCO2,突变体具有更高的抗病性。这些研究发现为培育抗病抗逆对虾新品种提供了新思路。解析海洋生物基因功能 解密基因的功能是解读生命这部“天书”的先决条件,基因编辑技术为科学家们提供了一个解密的绝妙手段。2014 年,Nakanishi等人将CRISPR 技术首次运用于甲壳动物,失活了大型溞(Daphnia magna)的pax6 基因,证明了该基因在眼发育中的关键作用。2019年,Liu等人成功敲除海胆的聚酮化合物合酶1基因(Psk1),突变个体从表现为白化。野生型(左)与Pks1基因敲除的白化海胆(右)(从3个月至成年) 需要承认,基因编辑技术在海洋生物的应用仍处于初级阶段,受到海洋生物材料本身问题(如显微注射后的受精卵孵化率有待提高、海洋生物细胞系数目较少等)、CRISPR系统脱靶问题等方面的制约。但毫无疑问,海洋生物基因编辑领域的前途是光明的,我们有理由相信科研工作者们会不断创新,成功解决上述问题,取得海洋生物基因编辑领域的一个又一个成就!参考文献Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): J, Cho J Y, Kim J W, et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus[J]. Aquaculture, 2019, 512: D, Awazu A, Sakuma T, et al. Establishment of knockout adult sea urchins by using a CRISPR‐Cas9 system[J]. Development, Growth & Differentiation, 2019, 61(6): 378-388.

1. 细胞背景: HCT116细胞是由M·Brattain等人于1979年从一位患结直肠癌的48岁男性病人中分离得到的。该细胞在半固体琼脂糖培养基中形成克隆,在无胸腺裸鼠中有致瘤性,形成上皮样的肿瘤,属于上皮样贴壁生长的肿瘤细胞系。 2. 应用范围和前景: 结直肠癌(colorectal cancer,CRC)是常见的消化道恶性肿瘤之一,在恶性肿瘤中发病率位居第三,死亡率位居第二,根据 GLOBOCAN 数据显示,2018 年全球结直肠癌新增 185 万例,约 88 万人死亡,给人类健康带来了巨大威胁。[1]因此,研究结直肠癌的发病机制以及治疗手段对临床诊断和治疗结直肠癌具有十分重要的意义。目前,在药物开发的最初级阶段即细胞生物学水平的鉴定中,HCT166细胞已成为结直肠癌研究领域中被广泛使用的模式细胞,具体应用举例如下: (1) 探究药物影响结直肠癌细胞增殖,迁移和侵袭的机制。例如:PPARα在白霉素处理的HCT116细胞迁移活性及CYP2S1和CYP1B1的表达中起重要作用[2] (2) 探究药物影响结直肠癌细胞生长的体外作用机制,如细胞凋亡和细胞周期改变等。例如:Raddeanin A通过PI3K/AKT通路调控人HCT116细胞凋亡和周期阻滞[3] (3) 探究药物对结直肠癌治疗的敏感性和耐药性。例如:Doxorubicin抑制HCT116细胞中miR-140的表达而上调PD-L1,从而使肿瘤细胞对药物产生耐药性[4] (4) 开发新的癌相关信号通路,为临床治疗结直肠癌提供指导:例如,研究Notch和Wnt信号通路在结直肠癌细胞HCT116耐药中的意义等[5] (5) 开发LncRNA和miRNA在结直肠癌治疗中的新途径。例如:在HCT116细胞中,YWHAE长链非编码RNA通过激活K-Ras/Erk1/2和PI3K/Akt信号通路与miR-323a-3p和miR-532-5p竞争,为结直肠癌的治疗提供新的靶位点[6] 如上所述,HCT116细胞在结肠癌的各种机制都具有重要的研究价值,而最基本的研究思路一般都从分子层面即基因或蛋白开始,因此CRISPR/Cas9技术的身影也就理所当然地出现在许多研究课题中,毕竟它在研究致癌相关的单基因功能中有着无可替代的优势。 如发现TRPM4在人结直肠癌中高表达,似乎与结直肠癌细胞的增殖、细胞周期和侵袭有关,通过在HCT116细胞中利用CRISPR/Cas9技术对TRPM4基因敲除后发现肿瘤细胞的迁移和侵袭的确都降低了,同时伴随着细胞周期的改变[7]; 以及Cell报道利用CRISPR/Cas9技术,将野生型KRAS替换为突变型使得杂合突变的HCT116细胞对药物治疗更为敏感[8]; 再如利用CRISPR/Cas9技术对HCT116细胞中的Tks4基因敲除,表现出显著的上皮间质转化,细胞运动增加,细胞间的粘附程度降低,发现Tks4基因在EMT调控和肿瘤发展中发挥重要作用[9]; 发现CTC1L1142H突变导致端粒酶维持受损,研究人员利用CRISPR/Cas9技术对HCT116细胞中的CTC1点突变,证实了CTC1:STN1相互作用为抑制端粒酶活性所必需[10]。 可以看出,研究人员对于CRISPR/Cas9技术的青睐是毋庸置疑的,源井生物提供的CRISPR/Cas9技术服务也为众多科研人员解决了实验难题,如细胞基因敲除不彻底、细胞基因敲入不稳定等等,让更多科研人员能顺利实现他们的科研目标。 1. 基因点突变[11] Hiroyuki Kato等研究者利用CRISPR/Cas9技术在HCT116细胞中突变了UTX基因第137和138位氨基酸:G137V和 G137VΔ138,发现原本表达于细胞核的野生型UTX,在两种突变株的细胞核中表达量大大降低了,而在细胞质中的表达增加了,如图A-C所示:A,B为免疫荧光图片,C为Western Blot结果;免疫共沉淀的结果如图D所示,这是一种新的UTX调控机制,文章中还进一步揭示了UTX与MLL3/4复合物(ASH2L, PTIP and PA1是MLL3/4复合物的成分)相互作用在癌症形成中的重要性。 2. 基因敲除[12] Sara Steinmann等人利用CRISPR/Cas9基因编辑技术获得了DAPK1缺失型的HCT116单克隆细胞系,最终揭示了DAPK1对结直肠癌侵袭性的影响。 经过Western Blot验证,Sara Steinmann等人得到了三种DAPK1基因敲除型单克隆细胞(如图A所示)。免疫荧光实验检测pERK1/2主要位于野生型HCT116细胞质,然而在三种基因敲除型细胞中,pERK1/2均在细胞核中显著表达。(如图B所示) 由于绒毛膜尿囊膜模型(CAM)实验是血管生成的经典体内模型,研究人员将DAPK1基因敲除型克隆和野生型HCT116细胞移植到鸡CAM上,并在蛋中培养5天,发现DAPK1的缺失导致CAM体内生长模式的改变和肿瘤出芽的增强(如图C所示) 此外,该研究团队利用大鼠脑3D体外模型发现肿瘤细胞在鸡胚胎器官中有更多的扩散,并且侵袭能力也增强了。DAPK缺失型HCT116细胞表现出更多的弥散性肿瘤细胞,并优先在鸡胚的肝、心、脑中积累(如图D所示)。最后,研究人员发现DAPK1-ERK1信号通路参与了CRC的转移过程(如图E所示)。 3. 基因敲入[13] Bax是促凋亡Bcl-2基因家族成员之一,在线粒体依赖的凋亡起始中发挥重要作用,R Peng等研究人员在BAX-KO HCT116细胞中敲入了5种位于Bax基因上且与Bcl-2其它成员有相互作用的突变位点。 已有文献报道BAX-KO HCT116细胞在一种甾醇类药物 sulindac的刺激下并不会发生凋亡,而R Peng等研究人员发现在BAX-KO HCT116细胞中敲入WT BAX能恢复sulindac和TRAIL引起的HCT116细胞凋亡;敲入K21E和D33A突变,Bax介导的凋亡被完全恢; 敲入D68R和 S184V突变只恢复了一部分,而敲入L70A/D71A突变恢复药物引起的凋亡程度更低。 该研究是在目的基因敲除了的目的细胞的基础上,再进行含有突变位点的目的基因敲入以及WT目的基因敲入(作为对照),便可清晰地了解目的基因表达的蛋白和与之相互作用的其它蛋白间相互作用的特定位点关系,是一个验证通过生物信息学分析得到的预测位点是否在蛋白质相互作用中真实起作用的好方法。因此,源井生物也为科研人员提供了相应的服务便利,在享受细胞基因敲入服务的同时,还会得到我们赠送的基因敲除细胞,满足科研人员的各种研究需求。 参考文献 : [1] Bray, Freddie et al. “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.” CA: a cancer journal for cliniciansvol. 68,6 (2018): 394-424. doi:[2] Khor CY, Khoo BY. PPARα plays an important role in the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated HCT116 cells. Biotechnol Lett. 2020;42(8):1581-1595. doi: [3] Meng C, Teng Y, Jiang X. Raddeanin A Induces Apoptosis and Cycle Arrest in Human HCT116 Cells through PI3K/AKT Pathway Regulation In Vitro and In Vivo. Evid Based Complement Alternat Med. 2019;2019:7457105. Published 2019 May 26. doi: [4] Naba NM, Tolay N, Erman B, Sayi Yazgan A. Doxorubicin inhibits miR-140 expression and upregulates PD-L1 expression in HCT116 cells, opposite to its effects on MDA-MB-231 cells. Turk J Biol. 2020;44(1):15-23. Published 2020 Feb 17. doi: [5] Kukcinaviciute, Egle et al. “Significance of Notch and Wnt signaling for chemoresistance of colorectal cancer cells HCT116.” Journal of cellular biochemistry vol. 119,7 (2018): 5913-5920. doi: [6] Bjeije, Hassan et al. “YWHAE long non-coding RNA competes with miR-323a-3p and miR-532-5p through activating K-Ras/Erk1/2 and PI3K/Akt signaling pathways in HCT116 cells.” Human molecular genetics vol. 28,19 (2019): 3219-3231. doi: [7] Kappel, Sven et al. “TRPM4 is highly expressed in human colorectal tumor buds and contributes to proliferation, cell cycle, and invasion of colorectal cancer cells.” Molecular oncology vol. 13,11 (2019): 2393-2405. doi: [8] Szeder, Bálint et al. “Absence of the Tks4 Scaffold Protein Induces Epithelial-Mesenchymal Transition-Like Changes in Human Colon Cancer Cells.” Cells vol. 8,11 1343. 29 Oct. 2019, doi: [9] Burgess, Michael R et al. “KRAS Allelic Imbalance Enhances Fitness and Modulates MAP Kinase Dependence in Cancer.” Cell vol. 168,5 (2017): . doi: [10] Gu, Peili et al. “CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length.” Aging cell vol. 17,4 (2018): e12783. doi: [11] Kato, Hiroyuki et al. “Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization.” Oncogene vol. 39,16 (2020): 3322-3335. doi: [12] Steinmann, Sara et al. “DAPK1 loss triggers tumor invasion in colorectal tumor cells.” Cell death & disease vol. 10,12 895. 26 Nov. 2019, doi: [13] Peng, R et al. “Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation.” Cell death and differentiation vol. 20,5 (2013): 744-54. doi:

自 20 世纪 70 年代末开始,全球乳腺癌发病率一直呈上升趋势。美国女性乳腺癌的患病率高达。中国虽然不是乳腺癌的高发国家,但是近年来我国乳腺癌发病率的增长速度却高出高发国家 1~2 个百分点。同时,在卫计委公布的 2013 年年鉴中显示,我国在2004年到2005年间,乳腺癌的已经成为女性死亡率最高的生殖系统肿瘤。甚至有研究表明,现在在中国,与其他大多数国家一样,乳腺癌也成为了中国女性最常见的癌症。 多梳基因家族(polycomb group,PcG)蛋白PcG是一类表观遗传抑制因子,包括PRC1和PRC2两大复合物,在决定细胞命运以及肿瘤发生等方面发挥重要作用。PCGF1是多梳基因家族PRC1复合体的重要组成部分,该复合体主要包括PCGF蛋白、CBX蛋白,RING1蛋白和HPH蛋白。 前期研究发现PCGF1在多种肿瘤细胞中表达丰度较高,尤其以乳腺癌细胞和胶质瘤细胞表达尤为明显。以PCGF1序列为模板,设计sgRNA干扰序列,两端加入载体连接序列。通过DNA片段合成所需sgRNA序列。退火形成oligo二聚体序列后,使用T4 DNA连接酶重组干扰序列与pCAG-T7-Cas9-pgk-Puro-T2A-GFP质粒,最终成功构建 PCGF1 敲低载体。将pCAG-T7-Cas9-gRNA-pgk-Puro-T2AGFP重组载体通过脂质体转染MCF7细胞系。通过嘌呤霉素进行阳性克隆筛选,Western blotting检测PCGF1表达。结果显示成功得到了PCGF1稳定敲低的MCF7细胞系转染 MCF7 细胞系。 根据CRISPR/Cas9靶点设计原则,设计能特异性针对CDH1基因的sgRNA,以lentiCRISPR v2质粒为骨架构建能表达此sgRNA和Cas9蛋白的重组质粒.测序鉴定后,将重组质粒与逆转录病毒包装质粒VSVG,PAX2在氯化钙介导下共同转入HEK293T细胞进行病毒包装,转染48 h后收集病毒上清,直接感染人乳腺癌MCF-7细胞.采用嘌呤霉素筛选CDH1缺失的乳腺癌MCF-7细胞,通过DNA测序,Western印迹及免疫荧光染色实验验证获得的MCF-7细胞.结果:构建了靶向CDH1的CRISPR/Cas9质粒;DNA测序和Western印迹实验结果表明获得了稳定敲除CDH1的人乳腺癌MCF-7细胞.免疫荧光染色结果显示,相比对照组,稳定敲除CDH1的MCF-7细胞中已无法明显观察到E-钙黏蛋白的表达分布.结论:通过CRISPR/Cas9基因编辑技术构建了CDH1基因缺失的MCF7细胞系,为进一步研究CDH1在肿瘤免疫治疗中的作用提供了基础. ESR1突变已经被证实与乳腺癌内分泌治疗耐药密切相关,在经过至少一线内分泌治疗的转移性乳腺癌患者中,ESR1 LBD突变的阳性率在54%左右,研究证实Y537S位点突变型ER的活性最高,并且近几年的研究发现ESR1 Y537S突变不仅对传统的内分泌治疗耐药,也会对最新的CDK4/6抑制剂产生耐药。 为了解决晚期转移性患者在化疗期间遇到的一系列问题,空军军医大学西京医院李南林教授与来自哈佛大学Dana-Farber Cancer Institute 的乳腺癌专家Rinath Jeselsohn开展合作,最终发现氟维司群联合化疗在ER阳性、P53野生型乳腺癌细胞系中具有协同效应,同时拥有ESR1 Y537S突变的细胞系具有更高的协同效应分数;细胞G0/G1期阻滞和细胞凋亡增加可能是这两种药物发挥协同作用的主要机制。因此,对于ESR1 Y537S突变、P53野生型的乳腺癌患者,氟维司群联合化疗或许可以发挥更好的作用,但仍需进一步动物实验和临床试验研究证实。 参考文献: 闫睿, 樊嵘, 董瓅瑾,等. 利用CRISPR/Cas9系统构建PCGF1基因敲除MCF7稳定细胞系[J]. 武警后勤学院学报(医学版), 2017(04):11-14. 高伟健, 朱一超, 郑幽,等. 利用CRISPR/Cas9基因编辑技术构建CDH1基因敲除的人乳腺癌MCF-7稳定细胞系[J]. 生物技术通讯, 2020, ;(02):33-37+117. Huang M , J Wu, Ling R , et al. Quadruple negative breast cancer[J]. Breast Cancer, 2020, 27(4).

基因编辑技术研究进展参考文献

环状RNA(circular RNAs, circRNAs)是一类由mRNA 前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为环状 RNA 只是错误剪接的副产物,对circRNA的关注并不高。 随着高通量测序技术和生物信息学的发展,成千上万种circRNA被发现,围绕着circRNA的基础研究也越来越多。大量研究表明circRNA在哺乳动物细胞中具有内生、丰富、保守、稳定等特点,并经常表现出组织或时空特异性,可以通过多种机制参与机体生长发育调控,以及疾病的发生和发展。因此,近年来circRNA逐渐成为非编码RNA研究领域的热点。 根据circRNA序列的来源,可以分为3类: 1. 序列全部来源于外显子,称为Exonic circRNAs   2.  序列来源于外显子和内含子,称为EIciRNAs   3. 序列全部来源于内含子,称为ciRNAs。 circRNA是由mRNA前体(pre-mRNA)经反向剪接(back-splicing)形成的,目前报道的成环模型主要有以下3种: · 内含子反向互补序列驱动环化环化 外显子两端的侧翼内含子含有多对反向互补序列,反向互补序列促使内含子序列配对,使得下游的剪接供体(Splice-Donor)与上游的剪接受体(Splice-Acceptor)靠近,从而结合形成环状RNA。(图1.左) · RNA结合蛋白驱动环化 环化外显子两端的侧翼内含子含有RNA结合蛋白(RBPs)识别的基序,RBP分别与两翼内含子特异基序结合后,会形成二聚体,促进两翼内含子互相靠近,进而连接成环。(图1.右) · 套索驱动环化 mRNA前体剪接时,会发生外显子跳读事件,产生包含外显子和内含子的套索中间体,随后该中间体发生反向剪接,形成环状RNA。(图2.) circRNA最常见的功能是作为miRNA海绵体与miRNA结合,从而影响miRNA对基因的调控。比如研究得比较多的小脑退行性相关蛋白基因(CDR1)反义链转录的环状RNA分子: Cdr1as,它包含约70个miR-7 的结合位点和1个miR-671结合位点,其中与miR-7的结合方式是非完全互补,只是结合,不会被AGO2蛋白介导降解,而与miR-671的结合方式是完美的互补。当Cdr1as高表达时,miR-7被结合,无法抑制原癌基因的mRNA,从而上调原癌基因的表达,导致癌症的发生。当miR-671高表达时,Cdr1as被降解,miRNA得到释放,与原癌基因mRNA结合,起到基因下调的作用,抑制癌症的发生。(图3.) 很多环状RNA上含有蛋白结合的位点,可以作为蛋白的海绵体。如RNA剪切因子MBL,可结合亲本基因第二外显子,促使其环化形成circ-Mbl,circ-Mbl又能与MBL结合,降低MBL有效浓度,减少MBL生成。 除了作为miRNA及蛋白海绵体,circRNA还可以作为支架蛋白促进酶的共定位、结合转录因子抑制靶基因表达、参与亲本基因表达调控、在特定的情况下还可以翻译出多肽。根据参与的功能不同,circRNA所处的细胞定位也不同,如作为miRNA或蛋白海绵体时,circRNA需由细胞核运输到细胞基质起作用,而参与亲本基因表达调控或结合转录因子抑制靶基因时,circRNA常在细胞核中起作用。 (参考文献:Kristensen, L. S., Andersen, M. S., Stagsted, L. V., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691.) 随着越来越多内源性的circRNA被发现在人体组织中有着广泛表达,circRNA与疾病的关系逐渐成为焦点。目前研究最多的是circRNA与实体瘤之间的关系,促进肿瘤生成的一些circRNA,如头颈部鳞状细胞癌中的circPvt1;结直肠癌,食道鳞状细胞癌和肝细胞癌中的cirs-7(CDr1as)。抑制肿瘤的circRNA,如胶质母细胞瘤中的circsMARCA5 and circ-SHPRH。还有一些circRNA在不同组织或不同细胞所起的作用可能不同,如circHiPK3,在直肠癌中是原癌基因,但是在膀胱癌中又是抑制癌细胞的。 除了癌症,研究还发现circRNA与糖尿病,心血管疾病,慢性炎症和神经系统疾病都有密切的关系。相信随着生物技术的发展以及越来越多对circRNA的深入研究,circRNA的形成和作用机理可以更加清晰,在疾病预防,检测及治疗方面也可以起到重要的作用。 circRNA敲除方案比较难设计,一般会使用以下两种方法: 方案一:将两条gRNA分别设计在circRNA exon的两端,直接敲除环化的外显子序列。这种方案虽然敲除彻底,但是在敲除circRNA的同时,也会影响到编码蛋白的亲本基因,需要根据具体的实验目的考虑是否可行。   方案二:通过破坏circRNA成环来达到敲除的目的。需要先找到circRNA的成环元件,成环元件一般位于被环化外显子两端的长侧翼内含子中。找到成环元件后,在两端设计gRNA进行敲除,既不破坏编码基因的外显子,又可以实现circRNA的敲除(图4.) 应用案例: circ-HIPK3是人体细胞内含量丰富的一种环状RNA,它可以与多种miRNA结合,作为细胞生长的调节剂,影响肿瘤的形成。为了验证circ-HIPK3成环的机制,需要找到侧翼内含子中的成环元件,对上下游预测的两个成环元件分别设计一对sgRNA,利用CRISPR/Cas9系统将预测的成环元件进行敲除,检测circRNA表达情况是否发生变化。经过PCR和RT-QPCR验证,发现下游成环元件敲除后,circHIPK3表达明显下调,而上游成环元件敲除后,circHIPK3的表达不仅没有下调还有所升高。推测可能是上游的成环元件序列太多,预测的不准确。为了进一步验证是其他成环元件驱动的成环,将gRNA3或gRNA4分别与gRNA5或gRNA6共注射,敲除成环元件上游大片段内含子。RT-QPCR结果显示circHIPK3表达确实下降了,说明上游是由其他的成环元件起到成环的作用。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) 在研究circRNA功能的方法中,最经典的抑制circRNA的方法是通过RNAi的方式(shRNA)进行敲降。为了避免影响到mRNA,设计方案时需将干扰序列设计在反向剪接位点(BSS)处。 源井生物通过设计高效的shRNA,用慢病毒法将干扰载体转入细胞中,根据最佳药筛浓度对细胞进行药物筛选,直到对照组细胞全部死亡,获得circRNA敲降的稳定细胞株。 应用案例: 用siRNA进行敲降后,通过检测细胞增殖凋亡情况,说明circ-HIPK3敲除后抑制细胞增殖。首先设计三组实验,分别针对HIPK3 mRNA线性转录本、circ-HIPK3环状转录本和两种转录本共有部分设计siRNA,并在HEK-293 T细胞系上验证设计的siRNA只干扰相应的转录本。 利用增殖凋亡检测试剂盒:CCK-8和EdU进行细胞增殖凋亡检测,结果显示HIPK3 mRNA敲降后不明显影响细胞增殖,而circ-HIPK3敲降后,会明显抑制细胞增殖。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) circRNA过表达一直有成环效率低,容易错配成环等难点。通过优化侧翼成环框架,如成环元件、QKI等RBP的结合位点,使circRNA准确高效环化。过表达后仍需要检测是否成功成环,以及线性mRNA是否表达。为了研究一种新环状RNA 载体表达 系统的成环效率,选择小鼠circRtn4环状基因在多种细胞系(包括Hela,N2a,HEK293)中进行表达验证。根据不同细胞系中进行的RT-QPCR实验数据显示,新载体系统pCircRNA-DMo-Rtn4成环效率在几种不同的细胞系中均比普通的载体系统(pCircRNA-BE-Rtn4)要高效得多。Northern Blotting是检测circRNA的金标准,探针通常跨反向剪接位点设计。但由于Northern Blotting需要的circRNA量非常大,耗时间精力,而且探针一般是放射性标记,操作上比较困难。常用的检测方案还是用RT-PCR或者是RT-QPCR,引物设计在反向剪接位点两端。(图9.)

自 20 世纪 70 年代末开始,全球乳腺癌发病率一直呈上升趋势。美国女性乳腺癌的患病率高达。中国虽然不是乳腺癌的高发国家,但是近年来我国乳腺癌发病率的增长速度却高出高发国家 1~2 个百分点。同时,在卫计委公布的 2013 年年鉴中显示,我国在2004年到2005年间,乳腺癌的已经成为女性死亡率最高的生殖系统肿瘤。甚至有研究表明,现在在中国,与其他大多数国家一样,乳腺癌也成为了中国女性最常见的癌症。 多梳基因家族(polycomb group,PcG)蛋白PcG是一类表观遗传抑制因子,包括PRC1和PRC2两大复合物,在决定细胞命运以及肿瘤发生等方面发挥重要作用。PCGF1是多梳基因家族PRC1复合体的重要组成部分,该复合体主要包括PCGF蛋白、CBX蛋白,RING1蛋白和HPH蛋白。 前期研究发现PCGF1在多种肿瘤细胞中表达丰度较高,尤其以乳腺癌细胞和胶质瘤细胞表达尤为明显。以PCGF1序列为模板,设计sgRNA干扰序列,两端加入载体连接序列。通过DNA片段合成所需sgRNA序列。退火形成oligo二聚体序列后,使用T4 DNA连接酶重组干扰序列与pCAG-T7-Cas9-pgk-Puro-T2A-GFP质粒,最终成功构建 PCGF1 敲低载体。将pCAG-T7-Cas9-gRNA-pgk-Puro-T2AGFP重组载体通过脂质体转染MCF7细胞系。通过嘌呤霉素进行阳性克隆筛选,Western blotting检测PCGF1表达。结果显示成功得到了PCGF1稳定敲低的MCF7细胞系转染 MCF7 细胞系。 根据CRISPR/Cas9靶点设计原则,设计能特异性针对CDH1基因的sgRNA,以lentiCRISPR v2质粒为骨架构建能表达此sgRNA和Cas9蛋白的重组质粒.测序鉴定后,将重组质粒与逆转录病毒包装质粒VSVG,PAX2在氯化钙介导下共同转入HEK293T细胞进行病毒包装,转染48 h后收集病毒上清,直接感染人乳腺癌MCF-7细胞.采用嘌呤霉素筛选CDH1缺失的乳腺癌MCF-7细胞,通过DNA测序,Western印迹及免疫荧光染色实验验证获得的MCF-7细胞.结果:构建了靶向CDH1的CRISPR/Cas9质粒;DNA测序和Western印迹实验结果表明获得了稳定敲除CDH1的人乳腺癌MCF-7细胞.免疫荧光染色结果显示,相比对照组,稳定敲除CDH1的MCF-7细胞中已无法明显观察到E-钙黏蛋白的表达分布.结论:通过CRISPR/Cas9基因编辑技术构建了CDH1基因缺失的MCF7细胞系,为进一步研究CDH1在肿瘤免疫治疗中的作用提供了基础. ESR1突变已经被证实与乳腺癌内分泌治疗耐药密切相关,在经过至少一线内分泌治疗的转移性乳腺癌患者中,ESR1 LBD突变的阳性率在54%左右,研究证实Y537S位点突变型ER的活性最高,并且近几年的研究发现ESR1 Y537S突变不仅对传统的内分泌治疗耐药,也会对最新的CDK4/6抑制剂产生耐药。 为了解决晚期转移性患者在化疗期间遇到的一系列问题,空军军医大学西京医院李南林教授与来自哈佛大学Dana-Farber Cancer Institute 的乳腺癌专家Rinath Jeselsohn开展合作,最终发现氟维司群联合化疗在ER阳性、P53野生型乳腺癌细胞系中具有协同效应,同时拥有ESR1 Y537S突变的细胞系具有更高的协同效应分数;细胞G0/G1期阻滞和细胞凋亡增加可能是这两种药物发挥协同作用的主要机制。因此,对于ESR1 Y537S突变、P53野生型的乳腺癌患者,氟维司群联合化疗或许可以发挥更好的作用,但仍需进一步动物实验和临床试验研究证实。 参考文献: 闫睿, 樊嵘, 董瓅瑾,等. 利用CRISPR/Cas9系统构建PCGF1基因敲除MCF7稳定细胞系[J]. 武警后勤学院学报(医学版), 2017(04):11-14. 高伟健, 朱一超, 郑幽,等. 利用CRISPR/Cas9基因编辑技术构建CDH1基因敲除的人乳腺癌MCF-7稳定细胞系[J]. 生物技术通讯, 2020, ;(02):33-37+117. Huang M , J Wu, Ling R , et al. Quadruple negative breast cancer[J]. Breast Cancer, 2020, 27(4).

crispr基因编辑技术

CRISPR-Cas9是继ZFN、TALENs等基因编辑技术推出后的第三代基因编辑技术,短短几年内,CRISPR-Cas9技术风靡全球, 成为现有基因编辑和基因修饰里面效率最高、最简便、成本最低、最容易上手的技术之一,成为当今最主流的基因编辑系统。

一、什么是CRISPR-Cas系统

CRISPR-Cas系统是原核生物的一种天然免疫系统 。某些细菌在遭到病毒入侵后,能够把病毒基因的一小段存储到自身的 DNA 里一个称为 CRISPR 的存储空间。当再次遇到病毒入侵时,细菌能够根据存写的片段识别病毒,将病毒的DNA切断而使之失效。

C RISPR-Cas系统包含CRISPR基因座和Cas基因(CRISPR关联基因)两部分。

[图片上传失败...(image-890ed-1634820207331)]

1、CRISPR(/'krɪspər/)是原核生物基因组内的一段重复序列 。CRISPR全称Clustered Regularly Interspersed Short Palindromic Repeats(成簇的规律性间隔的短回文重复序列)。分布在40%的已测序细菌和90%的已测序古细菌当中。 (注:生活在深海的火山口、陆地的热泉以及盐碱湖等极端环境中,有一些独特结构的细菌,称为古细菌)

CRISPR基因序列主要由前导序列(leader)、重复序列(repeat)和间隔序列(spacer)构成 。

①前导序列 :富含AT碱基,位于CRISPR基因上游, 被认为是CRISPR序列的启动子 。

②重复序列 :长度约20–50 bp碱基且包含5–7 bp回文序列,转录产物可以形成发卡结构, 稳定RNA的整体二级结构 。

③间隔序列 : 是被细菌俘获的外源DNA序列 。这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。

2、Cas基因位于CRISPR基因附近或分散于基因组其他地方,该基因编码的蛋白均可与CRISPR序列区域共同发生作用。因此,该基因被命名为CRISPR关联基因( CRISPR associated,Cas )。

Cas基因编码的Cas蛋白在防御过程中至关重要,目前已经发现了Cas1-Cas10等多种类型的Cas基因。

依据Cas蛋白在细菌免疫防御过程中参与的角色,目前将CRISPR-Cas系统分为两大类。

第一大类 :它们切割外源核酸的效应因子为多个Cas蛋白形成的复合物,包括Ⅰ型、Ⅲ型和Ⅳ型。

第二大类 :它们的作用因子是比较单一的Cas蛋白,比如Ⅱ型的Cas9蛋白和Ⅴ型的Cpf蛋白。

目前,被最为广泛应用的CRISPR系统是II型CRISPR-Cas系统,也就是CRISPR-Cas9系统。

二、CRISPR-Cas9的作用原理

对于CRISPR-Cas9的作用机理可以分为三个阶段来理解。

1、第一阶段:CRISPR 的高度可变的间隔区的获得 ( 俘获外源DNA,登记“黑名单” )

CRISPR 的高度可变的间隔区获得,其实就是指外来入侵的噬菌体或是质粒DNA 的一小段DNA 序列被整合到宿主菌的基因组,整合的位置位于CRRSPR 的5' 端的两个重复序列之间。因此,CRISPR 基因座中的间隔序列从5' 到3' 的排列也记录了外源遗传物质入侵的时间顺序。

新间隔序列的获得可能分为三步:

第1步:Cas1和Cas2编码的蛋白将扫描入侵的DNA,并识别出PAM区域,然后将临近PAM的DNA序列作为候选的原型间隔序列。

[图片上传失败...(image-b6e38b-1634820207330)]

第2步:Cas1/2蛋白复合物将原间隔序列从外源DNA中剪切下来,并在其他酶的协助下将原间隔序列插入临近CRISPR序列前导区的下游。

第3步:DNA会进行修复,将打开的双链缺口闭合。这样一来,一段新的间隔序列就被添加到了基因组的CRISPR序列之中。

[图片上传失败...(image-4831b9-1634820207330)]

2、第二阶段:CRIPSR 基因座的表达(包括转录和转录后的成熟加工)

CRISPR序列在前导区的调控下转录产生pre-crRNA( crRNA的前体 ),同时与pre-crRNA序列互补的tracrRNA( 反式激活crRNA )也被转录出来。pre-crRNA通过碱基互补配对与tracrRNA形成双链RNA并与Cas9编码的蛋白组装成一个复合体。它将根据入侵者的类型,选取对应的“身份证号码”( 间隔序列RNA ),并在核糖核酸酶Ⅲ( RNaseⅢ )的协助下对这段“身份证”进行剪切,最终形成一段短小的crRNA( 包含单一种类的间隔序列RNA以及部分重复序列区 )。

crRNA,Cas9以及tracrRNA组成最终的复合物,为下一步剪切做好准备。

3、第三阶段:CRISPR/Cas 系统活性的发挥(靶向干扰)

crRNA,Cas9以及tracrRNA组成最终的复合物就像是一枚制导导弹,可以对入侵者的DNA进行精确的打击。这个复合物将扫描整个外源DNA序列,并识别出与crRNA互补的原间隔序列。这时,复合物将定位到PAM/原间隔序列的区域,DNA双链将被解开,形成R-Loop。crRNA将与互补链杂交,而另一条链则保持游离状态。

随后,Cas9蛋白精确的平端切割位点位于PAM上游3个核苷酸位置,形成平末端产物。Cas9蛋白的HNH结构域负责切割与crRNA互补配对的那一条DNA链,而RuvC结构域负责切割另外一条非互补DNA链。最终在Cas9的作用下DNA双链断裂(DSB),外源DNA的表达被沉默,入侵者被一举歼灭。

三、 CRISPR-Cas9基因编辑技术及应用…

tracrRNA-crRNA在被融合为单链向导RNA(sgRNA)时也可以发挥指导Cas9的作用。

CRISPR-Cas9基因编辑技术就是通过人工设计的 sgRNA(guide RNA)来识别目的基因组序列,并引导 Cas9 蛋白酶进行有效切割 DNA 双链,形成双链断裂,损伤后修复会造成基因敲除或敲入等,最终达到对基因组DNA 进行修饰的目的。

CRISPR-Cas9的广泛应用

1、基因敲除(Knock-out)

Cas9可以对靶基因组进行剪切,形成DNA的双链断裂。在通常情况下,细胞会采用高效的 非同源末端连接 方式(NHEJ)对断裂的DNA进行修复。但是,在修复过程中通常会发生碱基插入或缺失的错配现象,造成移码突变,( 移码突变 :是指DNA分子由于某位点碱基的缺失或插入,引起阅读框架变化,造成下游的一系列密码改变,使原来编码某种肽链的基因变成编码另一种完全不同的肽链序列。)使靶标基因失去功能,从而实现基因敲除。为了提高CRISPR系统的特异性,可将Cas9的一个结构域进行突变,形成只能对DNA单链进行切割造成DNA缺口的Cas9 nickase核酸酶。因此想要形成双链断裂的效果可以设计两条sgRNA序列,分别靶向DNA互补的两条链,这样两条sgRNA特异性的结合靶标序列,即可形成DNA断裂,并在修复过程中通过移码突变实现基因敲除

2、基因敲入(Knock-in)

当DNA双链断裂后,如果有DNA修复模板进入到细胞中,基因组断裂部分会依据修复模板进行 同源重组修复 (HDR),从而实现基因敲入。修复模板由需要导入的目标基因和靶序列上下游的同源性序列(同源臂)组成,同源臂的长度和位置由编辑序列的大小决定。DNA修复模板可以是线性/双链脱氧核苷酸链,也可以是双链DNA质粒。HDR修复模式在细胞中发生率较低,通常小于10%。为了增加基因敲入的成功率,目前有很多科学家致力于提高HDR效率,将编辑的细胞同步至HDR最活跃的细胞分裂时期,促进修复方式以HDR进行;或者利用化学方法抑制基因进行NHEJ,提高HDR的效率

3、基因抑制、基因激活(Repression or Activation)

Cas9的特点是能够自主结合和切割目的基因,通过点突变的方式使Cas9的两个结构域RuvC-和HNH-失去活性,形成的dCas9只能在sgRNA的介导下结合靶基因,而不具备剪切DNA的功能。因此,将dCas9结合到基因的转录起始位点,可以阻断转录的开始,从而抑制基因表达;将dCas9结合到基因的启动子区域也可以结合转录抑制/活化物,使下游靶基因转录受到抑制或激活。因此dCas9与Cas9、Cas9 nickase的不同之处在于,dCas9造成的激活或者抑制是可逆的,并不会对基因组DNA造成永久性的改变。

4、多重编辑(Multiplex Editing)

将多个sgRNA质粒转入到细胞中,可同时对多个基因进行编辑,具有基因组功能筛选作用。多重编辑的应用包括:使用双Cas9nickases提高基因敲除的准确率、大范围的基因组缺失及同时编辑不同的基因。通常情况下,一个质粒上可以构建2~7个不同的sgRNA进行多重CRISPR基因编辑。

5、功能基因组筛选

利用CRISPR-Cas9进行基因编辑可以产生大量的基因突变细胞,因此利用这些突变细胞可以确认表型的变化是否是由基因或者遗传因素导致的。基因组筛选的传统方法是shRNA技术,但是shRNA有其局限性:具有很高的脱靶效应以及无法抑制全部基因而形成假阴性的结果。CRISRP-Cas9系统的基因组筛选功能具有高特异性和不可逆性的优势,在基因组筛选中得到了广泛的应用。目前CRISPR的基因组筛选功能应用于筛选对表型有调节作用的相关基因,如对化疗药物或者毒素产生抑制的基因、影响肿瘤迁移的基因以及构建病毒筛选文库对潜在基因进行大范围筛选等。 CRISPR-Cas9基因编辑技术简介 - 知乎 ()

基本原理

CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,其序列由一个前导区(Leader)、多个短而高度保守的重复序列区(Repeat)和多个间隔区(Spacer)组成。

前导区一般位于CRISPR簇上游,是富含AT长度为300~500bp的区域,被认为可能是CRISPR簇的启动子序列。重复序列区长度为21~48bp,含有回文序列,可形成发卡结构。

重复序列之间被长度为26~72bp的间隔区隔开。Spacer区域由俘获的外源DNA组成,类似免疫记忆,当含有同样序列的外源DNA入侵时,可被细菌机体识别,并进行剪切使之表达沉默,达到保护自身安全的目的。

工作原理

当细菌抵御噬菌体等外源DNA入侵时,在前导区的调控下,CRISPR被转录为长得RNA前体(Pre RISPR RNA,pre-crRNA),然后加工成一系列短的含有保守重复序列和间隔区的成熟crRNA,最终识别并结合到与其互补的外源DNA序列上发挥剪切作用。

目前发现的CRISPR/Cas系统有三种不同类型即I型、II型和III型,它们存在于大约40%已测序的真细菌和90%已测序的古细菌中。其中II型的组成较为简单,以Cas9蛋白以及向导RNA(gRNA)为核心组成,也是目前研究中最深入的类型。

CRISPR基因编辑技术,常被比作“基因剪刀”。

CRISPR(/'krɪspər/,Clustered Regularly Interspaced Short Palindromic Repeats)是原核生物基因组内的一段重复序列,是生命进化历史上,细菌和病毒进行斗争产生的免疫武器。

简单说就是病毒能把自己的基因整合到细菌,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出CRISPR-Cas9系统。

利用这个系统,细菌可以不动声色地把病毒基因从自己的基因组上切除,这是细菌特有的免疫系统,是古菌和细菌抵抗病毒等外源遗传物质入侵的一种获得性免疫系统。

微生物学家掌握了细菌拥有多种切除外来病毒基因的免疫功能,其中比较典型的模式是依靠一个复合物,该复合物能在一段RNA指导下,定向寻找目标DNA序列,然后将该序列进行切除。

许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas的操作技术,并先后对多种目标细胞DNA进行切除。

这种技术被称为CRISPR/Cas基因编辑系统,迅速成为生命科学最热门的技术。该技术具有非常精准、廉价、易于使用,并且非常强大的特点。

2018年2月,专家预测称,这种基因编辑技术将改变我们的星球,改变我们生活的社会和周围的生物。

基因编辑技术原理

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

这是运用了好梦技术做到的,有了这样的技术。所以可以运用它们的工具,医生只手操作就可以看到结果。

我之前碰到过类似的问题,总结一下就是,基因编辑的原理的确是基因突变,不是基因重组。基因编辑是比较精确的能对生物体基因组特定目标基因进行修饰(改变几个碱基之类的);转基因技术才是基因重组(将特定的外源目的基因转移到受体生物中)。

"公众对转基因担心的并不是基因技术,关键是转基因的“转”,现在通过基因测序研究已发展出基因编辑技术,可根据需要对原来的基因进行重新编辑,它可以不转任何新的基因,也能产生很好效果。中国今后将在进一步开展转基因研究的同时,积极推动基因编辑技术研究"。大妈连基因编辑都知道,真是厉害啊。既然提到这个,我就来科普一下啦。这个技术被Science期刊列为2013年十大突破中的第二位。导引RNA-Cas9系统是目前最简单有效的基因编辑方法。这个系统本身最初是受细菌抵抗噬菌体的启发。理论上你可以合成跟任何基因的DNA互补的导引RNA,这个RNA通过DNA-RNA序列互补(碱基配对),把核酸酶Cas9定位到目标基因,然后Cas9利用它的核酸酶活性把目标基因在特定的部位切断。之后,细胞自身的DNA损伤修复机制可以被用来改变目标基因Cas9切割点附近的DNA序列。这个系统可以用来选择性剔除某个基因,控制目标基因的转录活性,甚至有可能用来纠正导致遗传性疾病的突变基因。可是说到底,这个系统还是需要导入外源蛋白Cas9(最常用的是来自链球菌的Cas9)。另外,基因编辑只是对内源(原有)基因的修饰,而作物之所以需要转基因,常常是因为它们的内源基因里面没有包括编码某些有益性状的基因。如果要把内源的某个基因就地变成一个新的基因,即使技术上可以做到,带来的坏处也很可能超过好处(当然在特定条件下可能有例外),因为这个基因就会失去了原来该有的功能。当然,在有的情况下,可以利用基因编辑技术改变基因组里面某些基因的表达水平,就可以加强某些有益的性状和减弱某些有害性状。总之反转跟信教一样,是一种思维定式,基本上无解,不是技术手段可以解决的问题。

  • 索引序列
  • 基因技术论文参考文献
  • 基因编辑技术参考文献
  • 基因编辑技术研究进展参考文献
  • crispr基因编辑技术
  • 基因编辑技术原理
  • 返回顶部