首页 > 论文发表知识库 > 钢轨检测论文

钢轨检测论文

发布时间:

钢轨检测论文

论文:运用惯性法测量波磨的实践及应用

【摘 要】 基于当前检测方法,弦测法的传递函数不恒等于1,不能正确反应轨道的不平顺性,惯性基准法受速度影响较大,低速时加速度信号比较微弱,信燥比低,要做积分运算,且低频信号容易引起积分饱和,考虑积分稳定性问题,误差较大。因此当前检测方法还有许多不足之处。随着光电技术的发展,在弦测法和惯性基准法基础上需开发一种采用光电位移计或光电摄像技术获得位移信号的检测方式,检测精度会大大提高。本文在朔黄铁路应用波磨检测系统基础上,指导钢轨铣磨,探索铣磨周期。

【关键词】 波磨 RMS值 铣磨

波磨是出现于铁路线路钢轨顶面呈波浪型的磨耗,轨面光带忽明忽暗。它有波长和谷深两种属性。波长是相邻的两波峰之间的纵向距离,谷深是相邻的波峰与波谷间的垂直距离。

1 钢轨波磨对列车运行的影响

增加工务部门的维修费用,破坏轨道

(1)加速石砟粉碎。当轨道受垂向作用力加大后,石砟受挤压,换砟及补砟工作增多。

(2)空吊、泛白接头、翻浆冒泥的增多。接头空吊会使白色底砟翻到轨道表面,是空吊的典型特征,长期空吊加上自然灾害的影响会使轨道形成翻浆冒泥。(3)枕木裂纹、失效增多。在波磨地段,波峰对枕木载荷和垂向作用力加大,对轨道压溃增加,多处枕木会形成裂纹、甚至失效。

2 组成及功能

波磨检测系统由软件和硬件两部分组成,硬件主要包括左右轴箱加速度计、实时采集计算机、前置预处理装置、波磨波形机等。软件主要包括钢轨波磨实时检测软件、数据接收软件、超限编辑和报表生成软件以及波形分析软件。

系统各部件功能

(2)前置预处理装置。前置预处理装置由±15V和±5V集成一体化稳压电源、左(L)右(R)加速度处理板组成。前面板设有调试和检测孔,可在此监视各路传感器的原始信号及经过处理板进入A/D采集板的信号。左(L)右(R)加速度信号处理板分别对左右加速度信号进行预处理,包括调零点、调增益、抗混叠滤波等。

(3)波磨实时处理计算机。波磨实时处理计算机是波磨系统的核心和大脑,在波磨实时处理平台下实现对原始加速度信号的等距离采用、显示、存储,同时通过数字处理、积分滤波等技术,计算钢轨顶面相对于轴箱的位移,输出钢轨波磨幅值。开启工控机后需在该界面正确设置检测信息。

实时处理界面在采集前应正确设置检测线路、方向、起始里程、状态,界面自上至下共显示3组波形,依次为波磨峰值波形图、波磨RMS值波形、原始触发信号波形,并将数据实时传递给波形机。

(4)波磨波形机。波磨波形机位于车内波磨实时处理计算机下方,主要功能是数据存储和波形显示,并能对波形进行历史数据对比、实时输出超限报表,可对数据进行编辑、统计、打印。

(5)超限报表包含超限位置、类型、峰值大小、长度、等级、速度、检测标准。

(6)波形图包含实时检测速度和里程、左右股原始触发信号、左右股原始值波形、左右股RMS值波形,浏览波形图可以纵观轨面波动情况及趋势,点击缩放功能,放大波形图,点击测量,可以获取任意点的波磨原始峰值、任意区段波磨的均方根值,还可以通过波形历史数据对比,预见病害发展趋势,指导钢轨维护和评价轨道维护质量。

检测原理

钢轨波浪磨耗检测系统是一个对钢轨顶面波浪磨耗进行动态在线检测的系统。它采用惯性基准法,在QNX实时操作系统平台下实现对原始加速度信号的等距离采样、显示和存储,由计算机对原始触发信号进行二次积分和滤波处理,计算出钢轨顶面相对于轴箱的位移,从而得到波磨幅值。

实践及应用

因为波磨病害主要发生在曲线下股,当前波磨检测系统指导钢轨打磨,主要依靠曲线下股RMS均值进行降序排列,从而制定铣磨或打磨计划(如表1所示)。

(2)评价轨道维护质量。不论是铣磨作业还是打磨作业,利用波磨检测系统可以利用波形图对施工前后的作业质量进行评价。利用波形图的`缩放及测量功能,可以读取具体数值,灰色波形代表铣磨前轨面波磨幅值,蓝色波形代表铣磨后波磨幅值,通过对比发现铣磨后波磨幅值明显下降。

(3)建立波磨观测台账。波磨为轨面主要病害,为了探索线路打磨(铣磨)周期,研究重载铁路延长钢轨使用寿命的综合技术措施,因此需要现场验证来研究综合技术措施的有效性和实用性。基于此,我们采取对铣磨地段建立观测台账的方式,来探究打磨(铣磨)周期。如表2所示。

如表2中,4月代表铣磨前波磨情况,5、6、7、8、9月代表铣磨后波磨的发展情况,明显看出,铣磨后较铣磨前波磨明显下降,随着时间推移波磨幅值逐月上升。通过追踪观察,当波磨幅值与铣磨前相等时,即得到铣磨周期。

3 结语

基于当前检测方法,弦测法的传递函数不恒等于1,不能正确反应轨道的不平顺性,惯性基准法受速度影响较大,低速时加速度信号比较微弱,信燥比低,要做积分运算,且低频信号容易引起积分饱和,考虑积分稳定性问题,误差较大。因此当前检测方法还有许多不足之处。

随着光电技术的发展,在弦测法和惯性基准法基础上需开发一种采用光电位移计或光电摄像技术获得位移信号的检测方式,检测精度会大大提高。

钢轨探伤检测论文

城市轨道交通具有安全、准时、快捷、舒适、环保等优点,已成为解决城市交通问题的根本途径。这是我为大家整理的城市轨道交通工程技术论文,仅供参考!

浅谈城市轨道交通工程技术

摘 要:本文作者结合多年工作和理论研究经验,主要就城市轨道交通工程技术进行了简单探讨,希望对相关从业人员有所助益。

关键词:城市轨道交通;基本类型;建设现状;发展趋势

前言

城市轨道交通具有安全、准时、快捷、舒适、环保等优点,已成为解决城市交通问题的根本途径。经过近二十年的发展,我国城市轨道交通的研究已从建设的必要性、重要性转向技术与管理等具体领域,工程建设也已进入到网络化、区域化与制式多样化的新阶段。因此,有必要对城市轨道交通工程建设的发展趋势和管理予以足够的关注和重视。下面本人结合多年工作和理论研究经验,主要就城市轨道交通的定义、建设现状以及发展趋势和管理等方面浅谈几点看法,仅供同行参考。

1 城市轨道交通概述

城市轨道交通的定义

(1)城市轨道交通是指具有固定线路,铺设固定轨道,配备运输车辆及服务设施等的公共交通设施。在中国国家标准《城市公共交通常用名词术语》中,将城市轨道交通定义为“通常以电能为动力,采取轮轨运输方式的快速大运量公共交通的总称”。

(2)“城市轨道交通”是一个包含范围较大的概念,在国际上没有统一的定义。一般而言,广义的城市轨道交通是指以轨道运输方式为主要技术特征,是城市公共客运交通系统中具有中等以上运量的轨道交通系统(有别于道路交通),主要为城市内(有别于城际铁路,但可涵盖郊区及城市圈范围)公共客运服务,是一种在城市公共客运交通中起骨干作用的现代化立体交通系统。

城市轨道交通的作用

⑴城市轨道交通是城市公共交通的主干线,客流运送的大动脉,是城市的生命线工程。建成运营后,将直接关系到城市居民的出行、工作、购物和生活。

⑵城市轨道交通是世界公认的低能耗、少污染的“绿色交通”,是解决“城市病”的一把金钥匙,对于实现城市的可持续发展具有非常重要的意义。

⑶城市轨道交通是城市建设史上最大的公益性基础设施,对城市的全局和发展模式将产生深远的影响。

城市轨道交通的类型

城市轨道交通种类繁多,技术指标差异较大,世界各国标准不一,尚无十分统一的分类标准。一般按运能范围、车辆类型及主要技术特征可分为:有轨电车、地下铁道、轻轨道交通、市郊铁路、单轨道交通、新交通系统、磁悬浮交通七类,在此就不一一介绍了。

2 我国城市轨道交通工程建设现状

近20年来,国内北京、上海、广州等城市的城市轨道交通工程建设规模和技术水平有了较大的进展。近二十年的城市轨道交通建设实践证明,国内在工程建设的许多技术上并不落后。例如:明挖法、盾构法等技术已达到了国际先进水平,大跨度暗挖法隧道施工技术接近了国际领先水平。

在城市轨道交通机械化施工方面与国际先进水平有一定差距。目前,国内城市轨道交通建设所使用的盾构隧道掘进机主要靠进口。

在城市轨道交通专用系统设备方面,诸如:通信、信号、AFC等自动控制系统技术水平与国际相比有一定差距。

在城市轨道交通的技术水平上与发达国家相比存在差距。主要表现在系统集成能力不强,缺乏具有对工程项目管理、设计、咨询、施工、运营进行全过程管理的专业化公司。

在运营管理方面与发达国家相比有较大的差距。主要表现在我国人工较多,自动化、信息化水平较低。正线每公里运营管理人员接近先进国家的两倍。

在城市轨道交通技术创新上国内存在明显不足,尤其在新型交通系统研究与开发方面。

3 城市轨道交通建设的发展趋势

城市轨道交通建设统筹化

目前,国内交通枢纽存在的最严重问题就是乘客换乘不方便,一个主要原因就是技术与管理方面缺乏统筹规划和统一设计。目前,国内一些城市已开展了城市轨道交通线网系统技术标准与方案、车辆段与停车场、主变电站、联络线等综合规划方面的专项研究。

城市轨道交通建设的区域延伸化

目前,国内一些城市在开展中心城区城市轨道交通建设的同时,已着手开展市域城市轨道交通线网规划的编制工作,个别城市已启动了市域城市轨道交通建设。

城市轨道交通工程技术装备国产化

城市轨道交通工程投资规模巨大,而国产化是降低工程投资的重要途径。目前,国内城市轨道交通制造企业通过与国际企业合作进行产品开发与生产,使得企业的核心竞争力得到提高,也降低了城市轨道交通工程的建设成本。然而,国内更应重视对引进技术的消化、吸收和提高,做到自主研发并真正实现国产化,逐步开发研制关键零部件及易损易耗备品,在保证设备的正常运行的条件下,大幅度降低工程成本。

城市轨道交通技术的信息智能化

智能化城市轨道交通系统是高新自动控制技术在城市轨道交通领域的综合体现,它是充分利用信息传输和自动化处理技术,在提高现有交通设施利用率方面发挥着极为重要的作用。目前,国内城市轨道交通机电设备系统技术标准较高,但整体集成水平不高。因此,国内应该开展城市轨道交通安全保障体系研究,综合研制具有高度智能化、集成化的快速事故防范预警系统和安全疏散、救援系统。

城市轨道交通建设的环保节能化

城市轨道交通建设的发展必须重视协调生态建设和资源综合利用等重大问题。建设生态城市对城市轨道交通的有关设施(如风井、出入口、冷却塔等)提出了更高的环境要求。为使城市轨道交通与周围环境融为一体,城市轨道交通应当加强环保与节能研究,技术装备与管理过程中应当协调好安全、环保、节能、低维护之间的关系。此外,在建设集约型社会的要求下,如何节省建设投资及运营成本,也是一项非常重要的任务。

4 城市轨道交通工程建设发展的管理策略

加强宏观领导和管理,成立国家级领导与协调机构,会同规划、技术与运营等部门,协调城市轨道交通发展中的重大技术问题,在引进、消化和吸收国外先进经验的基础上,制定城市轨道交通系统的发展规划及实施计划,明确城市轨道交通发展战略的相关产业政策、技术政策和建设标准,并在适当时机制定相关法规,加强对城市轨道交通建设行业的监督管理和组织协调,促进城市轨道交通建设快速、有序、健康的发展。

加强技术研发,提高产业水平。开展城市快速轨道交通系统成套技术研究,提升我国城市轨道交通的整体技术水平,完成行业技术跨越,打破国外的技术垄断,促进产业发展。城市轨道交通管理部门、研发机构与运营商应就技术开发项目的立项、筹资、研发、鉴定、知识产权管理等密切合作并达成一致性意见,以促进技术开发项目管理有序、高效开展。

促进技术整合并加强协同管理。技术整合是技术创新活动的一种形式,是城市轨道交通发展过程中解决技术创新问题的一种快速有效途径。它是通过系统集成的方法评估、选择适宜的新技术,并将新技术与城市轨道交通现有技术有机地融合在一起,从而推出新产品和新工艺的一种创新方法。技术整合的过程管理注重新旧技术的相融,其核心就是合作各方的协同管理。

加强技术联盟的管理。技术联盟是通过共同的研究开发信念,将联盟内研发人员紧密联系起来。它已成为新技术、新产品研发的最新方式。随着国际化进程的发展,为了完成城市轨道交通中一些高投入的技术研究开发项目,有必要开展国内城市、国外机构或企业联合一起组建技术联盟进行技术研发。

5 结束语

综上所述,城市轨道交通建设应朝着统筹化、区域化、国产化的方向发展,并逐渐建立起信息化的建设管理系统和智能化的运营管理控制系统,从而把国内城市轨道交通工程建设成一种安全、准时、便捷、环保、节能、低维护的新型骨干交通方式。

城市轨道交通工程无缝线路铺设技术的分析

【摘 要】无缝线路不仅是提升轨道结构技术的重要条件,还是高速、重载轨道结构的最优越选择。超长无缝线路铺设的加速扩大,可以将缓冲区进行最大限度降低,甚至于取消。这种情况下对固定区延长十分有利,并能充分发挥无缝线路的优越性,这也是城市轨道交通工程技术发展的必然趋势。本文主要对城市轨道交通工程无缝线路铺设的要求、方式选择及施工工艺进行了分析与研究,以期为城市轨道交通工程事业的发展提供一份力量。

【关键词】城市轨道交通工程 无缝线路 铺设技术 要求 施工工艺 方式选择 长钢轨

无缝线路是指将诸多标准长度钢轨焊接成一定长度的轨条,并在轨枕上铺设的线路。与一般线路相比,无缝线路的优势主要集中在接缝少、列车冲击振动小、运行稳定及舒适等,同时在轨道养护维修成本中起到降低的作用。现阶段无缝线路已经成为轨道结构发展的趋势,是现代化铁路发展的重要方向。自无缝线路铺设后,我国在理论研究、设计、焊接等多个方面都得到了极大的进步。在无缝线路稳定性探究中,通过钢轨厂焊能力的提升与移动式气压焊在大修中的应用,对铝热焊剂质量进行有效改善,并规范了铝热焊工艺,为长钢轨焊接铺设技术的发展提供了可靠的保障。

1无缝线路铺设的要求

确定长轨条长度

选择轨道铺设技术,必须严格遵循设计规定,充分考虑铁路运输能力、通过能力及承受能力等,并对设计的最高速度、运行速度等进行确定。200米为长轨条最小长度。在自动闭塞设置区段,无缝线路长轨条设计长度为闭塞区间2信号机轨端绝缘之间的距离,根据以下公式计算设计长度:

其中公式表示:

每段无缝线路长轨条设计长度由L长表示

自动闭塞区间2信号机轨端绝缘之间距离由L绝表示

长轨条前端缓冲区长度由L前缓表示

长轨条后端缓冲区长度由L后缓表示

在部分紧张运能区段,为施工无法提供较长的封锁时间时,必须严格遵循施工条件与封锁能力,对长轨条长度进行合理确定。在几个曲线连续的区段,铺设中往往存在2股钢轨长度差导致卡车情况的出现,进而造成封锁时间延误等问题,此时可将长轨条长度减短。

无缝线路对轨道部件的要求

(1)钢轨接头。遵循设计要求,无缝线路钢轨接头应进行轨缝预留,选用级高强度螺栓作为夹板螺栓,并遵循相关要求进行稳固。选用高弹性胶垫作为接头前后6根轨枕材料。捣固钢轨接头工作应在铺设前进行,选用胶接绝缘钢轨接头作为绝缘接头。

(2)轨枕扣件。选用混凝土枕作为无缝线路施工材料(明桥除外)。在铺设后必须对扣件进行适当调整,确保其紧密性。在扣件位置调正过程中,必须将钢轨原始弯曲消除,选用K型分开式扣件作为木桥枕。

(3)道床。道喳填补作业应在铺设道床前进行,并根据设计规定对道床断面进行处理,夯实喳肩。

2 城市轨道交通工程无缝线路铺设技术的选择

连入法铺设

选用连入法作为超长线路铺设方式时,应通过焊接法焊联长轨条始端和上次铺入的长轨条终端。换言之,在续铺始端,将换轨车龙门引入新旧钢轨,换轨车慢速前行,确保新轨落地后,就可以连入焊接始端,这个过程中,可以同时进行连入与焊接两项工作,并在换车边前行,在终端位置停止,同时利用临时联结器联结新铺入的长轨条终端和线路上的旧轨。一般选用小型气压焊与铝热焊进行连入焊接施工。

插入法

插入法一般在轨温不符合设计相关规定时使用。这种方式进行长轨条铺设时,可在不同轨温环境中进行铺设,一般遵循分段铺设的原则,将一根缓冲轨插入2单元长轨条内,确保轨温符合施工要求后,进行应力放散。随后拆掉缓冲轨,并将一段焊接轨插入长轨条有孔端,进行终焊施工。通常在温度较低的情况下进行终焊施工,选用拉伸法,进行应力放散施工。

3城市轨道交通工程无缝线路铺设的施工工序

钢轨装卸―运输―焊联―换轨―线路整修与旧轨回收等都是无缝线路铺设的重要的组成部分。选用“分段焊接、分段铺设、线上连焊、交叉放散”的方式进行城市轨道交通工程无缝线路铺设施工。

长轨运输作业

由负责人在长轨列车出发前确认锁定,对各项设备、装轨情况进行详细检查,确保在车辆限界以下,车钩则位于锁闭状况,避免重车自动开钩问题的出现。运输过程中应降低冲撞的次数,不能选用紧急制动。在列车长刚给上不允许人员站立。一般要将枕木垫加到安全挡之间,尽可能对长轨窜动距离降低。

长钢轨卸车

选用拖卸法进行长钢轨卸车作业。下达调度指令后,机车牵引长轨运输车向指定卸轨点进行运输,车上施工人员在线路指定位置设置地面拉轨轨卡,通过施工人员将另一端连挂到待卸轨卡上,随后以每小时1到2千米的速度由卸轨列车进行牵引施工,在2侧喳肩上将长轨卸除。

单元轨焊接与锁定焊接施工

单元轨焊接与锁定焊接施工作为城市轨道交通工程无缝线路施工的重要组成部分,只有规范其施工流程,才能提升整体焊接质量。其焊接主要分为以下几个方面:

首先,钢轨端面打磨。端面50厘米范围内钢轨表面杂物应在端面打磨前清理干净,如油污、水锈等。如焊机斜铁卡紧部位轨面污垢较为严重,也需要进行清理。焊端打磨后,其表面为较为光滑,锉刀在打磨施工中,必须具有较高清洁度,不能用手直触。为其最大粗糙允许值。打磨施工后必须对端面加以保护,确保其不被污染,端面完成后焊接工作必须在30分钟内进行。

其次,对轨迹安装。对2条待焊钢轨进行拨正,在与焊缝相距20米以外指派专人进行目测,确保其焊接的准确性。一般测量都会选用1米的直尺,顶面焊缝位置的拱度必须控制在毫米以下,不能出现向下凹陷的情况,应确保工作边缘的平整性。对齐2轨底角时,如存在偏差,应及时进行调整。 再次,点火、焊接。加热时间和定锻压力必须与施工要求相符合,确保表面温度在全压顶锻前在1350摄氏度与1450摄氏度之间。施工中如必须停止焊接施工,应确保顶锻量在6毫米以上,进而提升其压力。问题处理后,需再次进行焊接施工,当顶锻量在6毫米以下,必须将焊缝锯掉,重新进行焊接。

随后,推凸。装刀时间必须控制在10秒以内,当推凸压力在40Mpa以上时,必须将推凸作业停止,改为气割除瘤。正火施工应在焊缝表面温度下降到400摄氏度到500摄氏度之间进行,确保表面温度为850摄氏度与950摄氏度之间时,熄火空冷。

最后,打磨成型。不能有凹下情况出现在焊接缝位置,焊接缝相比相邻轨面高度差必须低于毫米。轨顶测量时,一般选用长度为1米的直尺,中间拱度控制在毫米以下。

长钢轨换铺施工

选用人工的方式进行长钢轨换铺施工。在龙口位置人口提前将每米60千克的短钢轨进行散布施工,在长轨条接头位置散布无眼夹板。在龙口位置开启砂轮片锯轨机与钻眼机械,新单位轨节始点位置可通过方尺进行确定。并将原有工具轨扣件拆除,在混凝土枕端设置工具轨条。选用人工的方式在槽内放置长钢轨,根据相隔3根轨枕进行1套扣件安装的规定,安排施工人员安装扣件。在线路2侧放置旧轨,并进行回收。换轨施工中,应防止旧轨将轨枕挂带起来。

道岔施工

充分的准备工作,是道岔施工的重要前提。将拼装平台设置在道岔铺设的基地上,按照道岔设计要求将每根岔枕的位置与岔枕的编号准确画在道岔拼装平台上,随后进行吊装作业,一般选用龙门吊进行施工,并进行临时固定。在道岔组装施工中,应对道岔所有关键点的位置、结构情况进行准确调整,确保其质量符合施工要求后,将道岔分成若干份。因宽度原因,导曲线与岔心部位,将产生导曲线内轨不能与岔枕结合的情况,这种情况的出现对汽车平板分段运输十分有利,随后进行检测,一般选用手推式轨道检测仪或钢轨检测仪等。

4 结语

综上所述,随着社会经济的不断发展,城市轨道交通工程已经成为我国基础建设中的一项重要建设项目,无缝线路轨道铺设施工作为城市轨道交通工程施工中的重要内容,其施工技术水平的高低直接关系着工程的整体质量。施工中应对无缝线路轨道铺设的施工流程加以重视,才能确保城市轨道交通工程的质量。

参考文献:

[1]王欣.城市轨道交通工程无缝线路铺设方法[J].城市轨道交通研究,2005(01).

[2]殷继友.秦沈客运专线跨区间无缝线路铺设综合技术研究[D].中南大学,2007.

具体的要求告诉我,我帮你完成。

铁路工程无砟轨道施工测量技术分析论文

摘要:无砟轨道在平顺性以及线路中心线几何线性的准确性方面具有较高的要求,而且无砟轨道的敷设工艺较为复杂,必须要将误差控制在毫米级以内,但想要对无砟轨道施工的各项要求进行有效的满足,需要对相关测量技术进行有效的落实,并做好精度控制工作。只有如此,才能使无砟轨道施工质量得到保证,不仅能够提升工程的使用寿命,还能对铁路工程建设事业的发展产生一定的推动作用。因此,本文针对铁路工程当中的无砟轨道施工测量技术及精度控制进行讨论,对相关测量技术加以了解,并探讨实现精度控制的具体措施,意在提升铁路工程的建设水平。

关键词:铁路工程;无砟轨道施工;测量技术;精度控制

传统形式的有砟轨道,在受到列车荷载作用影响下,会导致道床出现道砟粉化及磨损的问题,从而导致结构变形,使轨道使用寿命受到严重影响。在列车高速行驶的情况下,还可能造成道砟飞溅,容易引发安全事故问题,无砟轨道不仅具有较高的稳定性和平顺性,而且几何变形不高、便于维护,具有较长的使用寿命。也正是受到这些特点的影响,无砟轨道的施工具有较高的要求,需要通过准确的测量来确保施工的质量,所以有必要针对无砟轨道施工过程中的测量技术以及精度控制进行深入的研究。

1铁路工程中的无砟轨道施工测量技术

轨道测量控制网

在铁路工程当中,测量控制网分为高程控制网和平面控制网,而根据施测阶段、功能以及目的,又可以分为施工控制网、勘测控制网以及运维控制网。为了确保控制测量质量能够对勘测、施工以及运维等阶段的要求加以满足,确保铁路工程建设及运营管理等工作的顺利进行,需要保证各阶段中的高程、平面控制测量能够具有统一的标准,即在平面控制方面应统一采用CPI作为标准,而高程控制则可以将二等水准基点作为标准,在铁路工程中的平面测量控制网主要是由线路平面控制网、基础平面控制网以及轨道控制网组成。高程测量控制网包括轨道控制网和线路水准基点控制网,其中前者主要作为运营维护、轨道精调以及铺设调整等工作的高程控制基准,而后者主要用于铁路施工、勘测工作的高程基准。

板式无砟轨道板精调技术

当前阶段,我国在客运专线当中应用的无砟轨道形式主要有以下几种:CRTSⅠ型、Ⅱ型、Ⅲ型无砟轨道,其中CRTSⅡ型无砟轨道又分为板式和双板式。而CRTSⅠ型无砟轨道主要是在钢筋混凝土底座上利用水泥沥青砂浆铺设调整层。其中设置了凸形挡台限位,在确保轨道板铺设能够满足相关精度需求的基础上,通常会通过调整扣件的方式对钢轨最终的几何状态进行控制,其系统构成包括混凝土底座、GA砂浆层、轨道板、凸形挡台、钢轨以及扣件系统等。即便隧道、路桥在线下基础方面存在差异,但CRTSⅠ型板式无砟轨道的构成并不会发生改变,而我国首条应用无砟轨道结构形式的铁路,已经对相关技术进行了有效的消化,并对制造Ⅱ型板的工艺进行研究和实验,经过不断的摸索和总结,已经开发出了独具特色的Ⅱ型板制造工艺,而这种轨道结构形式即为CRTSⅡ型板无砟轨道形式。

无砟轨道平顺性检测技术

在完成轨道板精调以后,需要使用CA砂浆进行浇筑,而铺设精度在通过验收以后,就可以进行铺轨和扣件安装,完成轨道铺设需要使用轨检小车来测量轨道的几何状态,并利用扣件进行轨道的调整,使其进度能够达到设计要求。从理论上来讲,要求线路中心轴为轨距中心,在直线段当中要与两根铁轨平行,在曲线段当中要与曲线切线平行,我国标准轨距是1435mm,轨距变化率要保持在1mm/,以±1mm作为验收标准,在活动端设有复位弹簧,确保在轨检小车运行过程中能够与轨道内侧紧密相连,而具体测量范围在-35~35mm。在铁路工程中,轨面高程以及轨道中线是工程质量的直观反映,通过将线路高程、坐标与设计值进行对比得出其中的偏差,可以对轨道自身的几何状态进行全面的反映,在测量轨道高程和坐标的过程中,需要通过高精度全站仪对轨检小车当中的'棱镜中心三维坐标进行实测。根据标定好的轨面情况、线路中心线以及小车几何参数,将对应里程中的轨面高程及中心线位置换算出来,并与设计参数进行对比,从而得出设计和实测的差值,利用相关技术规范完成评价。水平轨向就是轨道里程方向上的内线状态,而高低轨向则是轨道顶面部分的线形状态,如果横向轨道不良,会导致列车在横下加速度过程中缺乏稳定性,而高低轨向不良则会对列车垂向加速度造成影响,对于高低轨向和水平轨向的平顺检测,可以对德国长、短波不平顺检测法加以借鉴,并使用300m弦或30m弦的轨道平顺性核检。走行轨、支脚以及模板的安装,需要通过支脚对无砟轨道进行测量精度控制,这种测量方法主要是将加密基桩和控制基桩作为依据,根据线形设计资料将各模板及支脚的位置计算出来,然后在施工现场进行放样,并完成定点和划线。在对走行轨、支脚以及模板进行固定时,需要保证左右支脚的中轴线位置位于线路中心线的法线上,而支脚前后间距即为轨枕间距,对于曲线路段,外侧两支脚间距要大于内侧两支脚间距,因此在安装支脚的过程中,要将外侧作为基准。

全站仪自由设站程序设计

在对轨道的几何状态进行测量时,应该针对测区钢轨中的8个CPⅢ控制点运用边角后方交会的办法完成全站仪的自由设站,利用无线控制端,实现全站仪的有效控制,从而达到自动观测的目的。在对全站仪进行换站处理时,相邻站之间需要对4个CPⅢ控制点进行搭接,使数据之间能够具有较强的关联性,下述内容为相关设计流程。第一,利用全站仪对2个CPⅢ控制点进行手动瞄准,结合后方交会原理对近似的全站仪位置进行确定;第二,根据待测点坐标以及近似全站仪坐标,对待测控制点自身的棱镜方向值进行计算,并通过相关指令,使全站仪将剩余控制点的自动观测完成;第三,针对CPⅢ观测值对数据稳定性进行检测,查看观测值是否存在超限问题,并将其中不合格的点剔除在外。

2控制无砟轨道施工测量精度的具体措施

做好测量仪器设备的配置工作

第一,要对高精度全站仪加以准备,要求其具有ATR自动照准功能;第二,准备精密水准仪,要求该仪器能够对数据进行显示和存储,且误差要小于;第三,对电子轨道尺加以配置,要求具有数码显示功能,且精度误差在以内。

线路基标测设

对于无砟轨道施工而言,线路基标是其实现精度控制的基础,具体测设内容包括加密基标记控制基标,基标方面的测设精度不但会对无砟轨道施工精度造成影响,同时还会影响到施工的效率,具体测定方法为:第一,选定CPⅢ控制点,并以此为基础,采用精密水准测量以及设站极坐标法对施工高程和平面进行测设;第二,在直线段中以100m为一个间距进行控制基标的设置,而曲线段则每间隔60m就要设置一个控制基标;第三,对特殊路段需要进行控制基标的加密设置,结合轨排长度,在直线段中应以为一个间隔进行设置,而曲线段要以为一个间隔进行设置;第四,在混凝土地板强度达到一定水平以后,对控制基标以及加密基标进行布设,并做好标识,在完成基标布设以后,要在道床板顶面使用墨线标记中心线位置。

轨排架精确调整

为了确保测量数据的准确性,在借助轨道检测小车完成测量时,应该严格按照测量规定要求进行,通常在测站20~80m的范围内测量准确度较高,所以顺接段以及搭接段的测量长度应控制在~20m,具体长度需要结合两次测量数据对比以及测量距离来确定。在此过程中,需要对测站位置、数据的收集和分析保持重视,在精调过程中,需要将小车静置在待测轨道当中,利用全站仪进行小车棱镜点的测量,从而对设计位置、轨道位置、位置偏差以及调轨方向进行实时的显示,使现场调轨作业能够获得相应的指导。

测量控制网复测

第一,在进行复测以前,需要对线路测量的相关资料进行检查,并与设计单位针对现场桩橛进行交接,包括控制点、水准点、导线点以及GPS点等;第二,针对水准点高程、GPS点坐标以及导线点间距和右角进行展开复测,如果复测结果和设计单位的勘测结果存在差异,应在此进行复测,如果是设计单位的勘测资料存在误差,要通过协商之后进行及时的更正;第三,完成复测以后需要对复测报告加以编制,并反馈给设计和监理单位,在完成批复以后才能进行后续测量。

测量精度控制中的注意事项

第一,不管是粗调还是精调,在对棱镜进行移动的过程中,都要一直面向全站仪,且棱镜与全站仪之间不能有阻碍物;第二,在精调轨排架时,工作区域当中严禁无关人员的进入,且在测量过程中要保证轨排架轨面具有较高的清洁性;第三,由于在精调过程中,轨排架和鱼尾夹板相连,所以在调整时要对连续2~3榀轨排架展开联测,就是要求每榀排架调整以后,都要对与之相连并完成调整的轨排架进行复测,确认是否存在影响,如果受到影响需要进行适当的调整。

3结束语

综上所述,在铁路工程中,针对无砟轨道施工落实相关测量技术,并做好精度控制工作能够使无砟轨道施工质量得到有效的保证,因此相关部门在进行铁路施工的过程中,一定要将各项工作做好,以此来推动铁路建设事业的发展。

参考文献:

[1]范群述,张建锋.高速铁路无砟轨道施工技术难点分析[J].建材与装饰,2018(2):282-283.

[2]夏冰.高铁测量控制网及无砟轨道精调施工研究[D].江苏科技大学,2014.

[3]宫海鹏.无砟轨道施工精测技术及其运用[D].西南交通大学,2013.

[4]杭芬.无砟轨道基桩控制网测量技术研究[D].西南交通大学,2014.

[5]耿振峰.高速铁路无砟轨道CPIII控制网测量技术[J].建筑工程技术与设计,2017,5(18):3483-3483+671.

[6]刘佳男.高速铁路桥梁及无砟轨道工程施工测量实践[J].商品与质量,2017,3(40):276.

钢轨检测分析的论文

铁路工程无砟轨道施工测量技术分析论文

摘要:无砟轨道在平顺性以及线路中心线几何线性的准确性方面具有较高的要求,而且无砟轨道的敷设工艺较为复杂,必须要将误差控制在毫米级以内,但想要对无砟轨道施工的各项要求进行有效的满足,需要对相关测量技术进行有效的落实,并做好精度控制工作。只有如此,才能使无砟轨道施工质量得到保证,不仅能够提升工程的使用寿命,还能对铁路工程建设事业的发展产生一定的推动作用。因此,本文针对铁路工程当中的无砟轨道施工测量技术及精度控制进行讨论,对相关测量技术加以了解,并探讨实现精度控制的具体措施,意在提升铁路工程的建设水平。

关键词:铁路工程;无砟轨道施工;测量技术;精度控制

传统形式的有砟轨道,在受到列车荷载作用影响下,会导致道床出现道砟粉化及磨损的问题,从而导致结构变形,使轨道使用寿命受到严重影响。在列车高速行驶的情况下,还可能造成道砟飞溅,容易引发安全事故问题,无砟轨道不仅具有较高的稳定性和平顺性,而且几何变形不高、便于维护,具有较长的使用寿命。也正是受到这些特点的影响,无砟轨道的施工具有较高的要求,需要通过准确的测量来确保施工的质量,所以有必要针对无砟轨道施工过程中的测量技术以及精度控制进行深入的研究。

1铁路工程中的无砟轨道施工测量技术

轨道测量控制网

在铁路工程当中,测量控制网分为高程控制网和平面控制网,而根据施测阶段、功能以及目的,又可以分为施工控制网、勘测控制网以及运维控制网。为了确保控制测量质量能够对勘测、施工以及运维等阶段的要求加以满足,确保铁路工程建设及运营管理等工作的顺利进行,需要保证各阶段中的高程、平面控制测量能够具有统一的标准,即在平面控制方面应统一采用CPI作为标准,而高程控制则可以将二等水准基点作为标准,在铁路工程中的平面测量控制网主要是由线路平面控制网、基础平面控制网以及轨道控制网组成。高程测量控制网包括轨道控制网和线路水准基点控制网,其中前者主要作为运营维护、轨道精调以及铺设调整等工作的高程控制基准,而后者主要用于铁路施工、勘测工作的高程基准。

板式无砟轨道板精调技术

当前阶段,我国在客运专线当中应用的无砟轨道形式主要有以下几种:CRTSⅠ型、Ⅱ型、Ⅲ型无砟轨道,其中CRTSⅡ型无砟轨道又分为板式和双板式。而CRTSⅠ型无砟轨道主要是在钢筋混凝土底座上利用水泥沥青砂浆铺设调整层。其中设置了凸形挡台限位,在确保轨道板铺设能够满足相关精度需求的基础上,通常会通过调整扣件的方式对钢轨最终的几何状态进行控制,其系统构成包括混凝土底座、GA砂浆层、轨道板、凸形挡台、钢轨以及扣件系统等。即便隧道、路桥在线下基础方面存在差异,但CRTSⅠ型板式无砟轨道的构成并不会发生改变,而我国首条应用无砟轨道结构形式的铁路,已经对相关技术进行了有效的消化,并对制造Ⅱ型板的工艺进行研究和实验,经过不断的摸索和总结,已经开发出了独具特色的Ⅱ型板制造工艺,而这种轨道结构形式即为CRTSⅡ型板无砟轨道形式。

无砟轨道平顺性检测技术

在完成轨道板精调以后,需要使用CA砂浆进行浇筑,而铺设精度在通过验收以后,就可以进行铺轨和扣件安装,完成轨道铺设需要使用轨检小车来测量轨道的几何状态,并利用扣件进行轨道的调整,使其进度能够达到设计要求。从理论上来讲,要求线路中心轴为轨距中心,在直线段当中要与两根铁轨平行,在曲线段当中要与曲线切线平行,我国标准轨距是1435mm,轨距变化率要保持在1mm/,以±1mm作为验收标准,在活动端设有复位弹簧,确保在轨检小车运行过程中能够与轨道内侧紧密相连,而具体测量范围在-35~35mm。在铁路工程中,轨面高程以及轨道中线是工程质量的直观反映,通过将线路高程、坐标与设计值进行对比得出其中的偏差,可以对轨道自身的几何状态进行全面的反映,在测量轨道高程和坐标的过程中,需要通过高精度全站仪对轨检小车当中的'棱镜中心三维坐标进行实测。根据标定好的轨面情况、线路中心线以及小车几何参数,将对应里程中的轨面高程及中心线位置换算出来,并与设计参数进行对比,从而得出设计和实测的差值,利用相关技术规范完成评价。水平轨向就是轨道里程方向上的内线状态,而高低轨向则是轨道顶面部分的线形状态,如果横向轨道不良,会导致列车在横下加速度过程中缺乏稳定性,而高低轨向不良则会对列车垂向加速度造成影响,对于高低轨向和水平轨向的平顺检测,可以对德国长、短波不平顺检测法加以借鉴,并使用300m弦或30m弦的轨道平顺性核检。走行轨、支脚以及模板的安装,需要通过支脚对无砟轨道进行测量精度控制,这种测量方法主要是将加密基桩和控制基桩作为依据,根据线形设计资料将各模板及支脚的位置计算出来,然后在施工现场进行放样,并完成定点和划线。在对走行轨、支脚以及模板进行固定时,需要保证左右支脚的中轴线位置位于线路中心线的法线上,而支脚前后间距即为轨枕间距,对于曲线路段,外侧两支脚间距要大于内侧两支脚间距,因此在安装支脚的过程中,要将外侧作为基准。

全站仪自由设站程序设计

在对轨道的几何状态进行测量时,应该针对测区钢轨中的8个CPⅢ控制点运用边角后方交会的办法完成全站仪的自由设站,利用无线控制端,实现全站仪的有效控制,从而达到自动观测的目的。在对全站仪进行换站处理时,相邻站之间需要对4个CPⅢ控制点进行搭接,使数据之间能够具有较强的关联性,下述内容为相关设计流程。第一,利用全站仪对2个CPⅢ控制点进行手动瞄准,结合后方交会原理对近似的全站仪位置进行确定;第二,根据待测点坐标以及近似全站仪坐标,对待测控制点自身的棱镜方向值进行计算,并通过相关指令,使全站仪将剩余控制点的自动观测完成;第三,针对CPⅢ观测值对数据稳定性进行检测,查看观测值是否存在超限问题,并将其中不合格的点剔除在外。

2控制无砟轨道施工测量精度的具体措施

做好测量仪器设备的配置工作

第一,要对高精度全站仪加以准备,要求其具有ATR自动照准功能;第二,准备精密水准仪,要求该仪器能够对数据进行显示和存储,且误差要小于;第三,对电子轨道尺加以配置,要求具有数码显示功能,且精度误差在以内。

线路基标测设

对于无砟轨道施工而言,线路基标是其实现精度控制的基础,具体测设内容包括加密基标记控制基标,基标方面的测设精度不但会对无砟轨道施工精度造成影响,同时还会影响到施工的效率,具体测定方法为:第一,选定CPⅢ控制点,并以此为基础,采用精密水准测量以及设站极坐标法对施工高程和平面进行测设;第二,在直线段中以100m为一个间距进行控制基标的设置,而曲线段则每间隔60m就要设置一个控制基标;第三,对特殊路段需要进行控制基标的加密设置,结合轨排长度,在直线段中应以为一个间隔进行设置,而曲线段要以为一个间隔进行设置;第四,在混凝土地板强度达到一定水平以后,对控制基标以及加密基标进行布设,并做好标识,在完成基标布设以后,要在道床板顶面使用墨线标记中心线位置。

轨排架精确调整

为了确保测量数据的准确性,在借助轨道检测小车完成测量时,应该严格按照测量规定要求进行,通常在测站20~80m的范围内测量准确度较高,所以顺接段以及搭接段的测量长度应控制在~20m,具体长度需要结合两次测量数据对比以及测量距离来确定。在此过程中,需要对测站位置、数据的收集和分析保持重视,在精调过程中,需要将小车静置在待测轨道当中,利用全站仪进行小车棱镜点的测量,从而对设计位置、轨道位置、位置偏差以及调轨方向进行实时的显示,使现场调轨作业能够获得相应的指导。

测量控制网复测

第一,在进行复测以前,需要对线路测量的相关资料进行检查,并与设计单位针对现场桩橛进行交接,包括控制点、水准点、导线点以及GPS点等;第二,针对水准点高程、GPS点坐标以及导线点间距和右角进行展开复测,如果复测结果和设计单位的勘测结果存在差异,应在此进行复测,如果是设计单位的勘测资料存在误差,要通过协商之后进行及时的更正;第三,完成复测以后需要对复测报告加以编制,并反馈给设计和监理单位,在完成批复以后才能进行后续测量。

测量精度控制中的注意事项

第一,不管是粗调还是精调,在对棱镜进行移动的过程中,都要一直面向全站仪,且棱镜与全站仪之间不能有阻碍物;第二,在精调轨排架时,工作区域当中严禁无关人员的进入,且在测量过程中要保证轨排架轨面具有较高的清洁性;第三,由于在精调过程中,轨排架和鱼尾夹板相连,所以在调整时要对连续2~3榀轨排架展开联测,就是要求每榀排架调整以后,都要对与之相连并完成调整的轨排架进行复测,确认是否存在影响,如果受到影响需要进行适当的调整。

3结束语

综上所述,在铁路工程中,针对无砟轨道施工落实相关测量技术,并做好精度控制工作能够使无砟轨道施工质量得到有效的保证,因此相关部门在进行铁路施工的过程中,一定要将各项工作做好,以此来推动铁路建设事业的发展。

参考文献:

[1]范群述,张建锋.高速铁路无砟轨道施工技术难点分析[J].建材与装饰,2018(2):282-283.

[2]夏冰.高铁测量控制网及无砟轨道精调施工研究[D].江苏科技大学,2014.

[3]宫海鹏.无砟轨道施工精测技术及其运用[D].西南交通大学,2013.

[4]杭芬.无砟轨道基桩控制网测量技术研究[D].西南交通大学,2014.

[5]耿振峰.高速铁路无砟轨道CPIII控制网测量技术[J].建筑工程技术与设计,2017,5(18):3483-3483+671.

[6]刘佳男.高速铁路桥梁及无砟轨道工程施工测量实践[J].商品与质量,2017,3(40):276.

论文:运用惯性法测量波磨的实践及应用

【摘 要】 基于当前检测方法,弦测法的传递函数不恒等于1,不能正确反应轨道的不平顺性,惯性基准法受速度影响较大,低速时加速度信号比较微弱,信燥比低,要做积分运算,且低频信号容易引起积分饱和,考虑积分稳定性问题,误差较大。因此当前检测方法还有许多不足之处。随着光电技术的发展,在弦测法和惯性基准法基础上需开发一种采用光电位移计或光电摄像技术获得位移信号的检测方式,检测精度会大大提高。本文在朔黄铁路应用波磨检测系统基础上,指导钢轨铣磨,探索铣磨周期。

【关键词】 波磨 RMS值 铣磨

波磨是出现于铁路线路钢轨顶面呈波浪型的磨耗,轨面光带忽明忽暗。它有波长和谷深两种属性。波长是相邻的两波峰之间的纵向距离,谷深是相邻的波峰与波谷间的垂直距离。

1 钢轨波磨对列车运行的影响

增加工务部门的维修费用,破坏轨道

(1)加速石砟粉碎。当轨道受垂向作用力加大后,石砟受挤压,换砟及补砟工作增多。

(2)空吊、泛白接头、翻浆冒泥的增多。接头空吊会使白色底砟翻到轨道表面,是空吊的典型特征,长期空吊加上自然灾害的影响会使轨道形成翻浆冒泥。(3)枕木裂纹、失效增多。在波磨地段,波峰对枕木载荷和垂向作用力加大,对轨道压溃增加,多处枕木会形成裂纹、甚至失效。

2 组成及功能

波磨检测系统由软件和硬件两部分组成,硬件主要包括左右轴箱加速度计、实时采集计算机、前置预处理装置、波磨波形机等。软件主要包括钢轨波磨实时检测软件、数据接收软件、超限编辑和报表生成软件以及波形分析软件。

系统各部件功能

(2)前置预处理装置。前置预处理装置由±15V和±5V集成一体化稳压电源、左(L)右(R)加速度处理板组成。前面板设有调试和检测孔,可在此监视各路传感器的原始信号及经过处理板进入A/D采集板的信号。左(L)右(R)加速度信号处理板分别对左右加速度信号进行预处理,包括调零点、调增益、抗混叠滤波等。

(3)波磨实时处理计算机。波磨实时处理计算机是波磨系统的核心和大脑,在波磨实时处理平台下实现对原始加速度信号的等距离采用、显示、存储,同时通过数字处理、积分滤波等技术,计算钢轨顶面相对于轴箱的位移,输出钢轨波磨幅值。开启工控机后需在该界面正确设置检测信息。

实时处理界面在采集前应正确设置检测线路、方向、起始里程、状态,界面自上至下共显示3组波形,依次为波磨峰值波形图、波磨RMS值波形、原始触发信号波形,并将数据实时传递给波形机。

(4)波磨波形机。波磨波形机位于车内波磨实时处理计算机下方,主要功能是数据存储和波形显示,并能对波形进行历史数据对比、实时输出超限报表,可对数据进行编辑、统计、打印。

(5)超限报表包含超限位置、类型、峰值大小、长度、等级、速度、检测标准。

(6)波形图包含实时检测速度和里程、左右股原始触发信号、左右股原始值波形、左右股RMS值波形,浏览波形图可以纵观轨面波动情况及趋势,点击缩放功能,放大波形图,点击测量,可以获取任意点的波磨原始峰值、任意区段波磨的均方根值,还可以通过波形历史数据对比,预见病害发展趋势,指导钢轨维护和评价轨道维护质量。

检测原理

钢轨波浪磨耗检测系统是一个对钢轨顶面波浪磨耗进行动态在线检测的系统。它采用惯性基准法,在QNX实时操作系统平台下实现对原始加速度信号的等距离采样、显示和存储,由计算机对原始触发信号进行二次积分和滤波处理,计算出钢轨顶面相对于轴箱的位移,从而得到波磨幅值。

实践及应用

因为波磨病害主要发生在曲线下股,当前波磨检测系统指导钢轨打磨,主要依靠曲线下股RMS均值进行降序排列,从而制定铣磨或打磨计划(如表1所示)。

(2)评价轨道维护质量。不论是铣磨作业还是打磨作业,利用波磨检测系统可以利用波形图对施工前后的作业质量进行评价。利用波形图的`缩放及测量功能,可以读取具体数值,灰色波形代表铣磨前轨面波磨幅值,蓝色波形代表铣磨后波磨幅值,通过对比发现铣磨后波磨幅值明显下降。

(3)建立波磨观测台账。波磨为轨面主要病害,为了探索线路打磨(铣磨)周期,研究重载铁路延长钢轨使用寿命的综合技术措施,因此需要现场验证来研究综合技术措施的有效性和实用性。基于此,我们采取对铣磨地段建立观测台账的方式,来探究打磨(铣磨)周期。如表2所示。

如表2中,4月代表铣磨前波磨情况,5、6、7、8、9月代表铣磨后波磨的发展情况,明显看出,铣磨后较铣磨前波磨明显下降,随着时间推移波磨幅值逐月上升。通过追踪观察,当波磨幅值与铣磨前相等时,即得到铣磨周期。

3 结语

基于当前检测方法,弦测法的传递函数不恒等于1,不能正确反应轨道的不平顺性,惯性基准法受速度影响较大,低速时加速度信号比较微弱,信燥比低,要做积分运算,且低频信号容易引起积分饱和,考虑积分稳定性问题,误差较大。因此当前检测方法还有许多不足之处。

随着光电技术的发展,在弦测法和惯性基准法基础上需开发一种采用光电位移计或光电摄像技术获得位移信号的检测方式,检测精度会大大提高。

铁路钢轨伤损检测技术论文

可以在知网上搜索一下啊

无损检测是一门综合性的应用科学技术,它是在不改变或不影响被检对象使用性能的前提下,检验和分析材料,零件和构件的一种非破坏检测方法。无损检查是提高产品质量,确保安全的重要手段.钢轨探伤仪具有特殊的技术条件,环境适应性强工作湿度范围在-20°C—-50°C。有五个通道,五条基线,可同时用五只探头对钢轨作全面探测。其中上方二条基线的回波向上,下方三条基线的回波向下,有利于分辨各类不同的伤损。每个通道都有独立的粗衰减器,细衰减器和培益旋钮,调节方便,互不牵。牵每台仪器共设置5只探头前后37°探头,前后50°探头和一个0°探头,前后37°探头和前后50°探头是利用横波进行探行,而0°探头是利用纵波进行探伤的。三种不同的探头都具有不同的报警声道和声音。在超声波钢轨探伤中,根据钢轨的几何形状和尺寸,可将钢轨分为三个区域,轨头部位为70°探头探测区,轨头中的核伤一般与轨头侧面近似垂直,这对核伤的检测十分有利根据理论推算,轨型尺寸核伤存在的规律,对核伤的回波信号进行鉴别,以及对核伤的校对。在校对时要注意采用多方位,多角度,多方式,灵活运用,来提高校对的精度。要求对核伤定位,定量综合判定。37°探头探测轨腰部位的螺孔裂纹,探测时二孔和三孔的螺孔部位的几何尺寸发生变化,不符合标准孔的要求,在实践中不断摸索经验,从而总结出了一种更好的行之有效的方法(倒打螺孔波)。加强了轨端到一孔之间的探测。0°探头主要探测轨底部位,根据0°探头所具有的特点,探测轨底纵向裂纹及横向裂纹。还可以与37°探头互补综合判定轨腰部位的螺孔水平裂纹。超声波钢轨探伤中,最重要的前提是应该保证探伤仪的技术指探头的技术指标以及探伤仪和探头的综合性能指标,在国家规定的允许误差范围内。误差的大小直接影响到伤损的检测能力。综上所述,只要保证各项技术指标标准。性能完好,这样才能及时发现伤损钢轨,对防止钢轨折断,保证行车安全起到重大作用。 满意请采纳

更多铁路论文可以到百度搜一下“铁路吧”找一下。铁路运输安全的内容,包括旅客运输安全、行李包裹运输安全、货物运输安全、行车安全、道口安全,也就是整个运输生产过程和所有运输对象的安全。1. 铁路运输安全的重要意义铁路运输并不生产有形的产品,而只是改变运输对象(旅客、行李包裹和货物)的空间位置。由于铁路是以独特的列车方式进行运输,旅客和货物依附并伴随着列车运行而共同移动,完成“位移”。因此,以列车运行的方式对旅客和货物进行位移,是铁路运输生产过程的基本特点。同样,列车运行安全,即行车安全,也就成为铁路运输安全最重要、最核心的部分,所有旅客运输安全、行李包裹运输安全以及货物运输安全在很大程度上都取决于行车安全。对于铁路运输本身而言,运输安全不仅是运输生产过程的基本要求,而且也是铁路运输产品质量的第一个重要特性。旅客和货物在全部运输过程中,除了由于不可抗拒的天灾和由于旅客本身的机能或货物本身的性质而无法防止的以外,铁路必须保证不使旅客造成心理和生理机能的损伤,保证不改变货物的物理性质(如重量、件数不能短少、不能破损、变形或掺入其它杂质等)。在运输过程中发生的人员伤亡、货物破损、设备破坏等任何事故,都必然在造成生命财产损失的同时,降低铁路运输在公众中的信誉和在运输市场上的竞争能力。2. 改善铁路运输安全的途径作为现代化运输方式之一,铁路运输在世界许多国家中,对于国民经济发展和满足人民生活需要起着重要而积极的作用。它联接城市,深入乡村,密切联系着亿万旅客和货主,不仅对于社会经济生活,而且对于人民群众的生命、财产都具有最广泛、最直接、最迅速的影响。当某一干线铁路发生运输堵塞、中断,或当某一次旅客列车发生列车冲突、脱轨事故时,必然直接妨碍千百个企业的生产或引起千家万户的焦虑。正因为如此,铁路运输安全对于整个社会生活是具有重要意义和重大影响的。铁路运输安全的状况反映了铁路运输的设备质量、管理水平、人员素质以及社会秩序的状况。世界各国铁路企业和政府当局历来都十分重视铁路运输安全,把防止铁路运输事故放在重要位置,并为此而进行持久不懈的努力。各国铁路和政府通过改善技术设备、加强管理和健全法制三个途径来不断改善铁路运输安全状况。改善技术设备是保证运输安全的重要物质基础。线路、车站、通信信号以及机车车辆的破损、故障和性能不良是发生运输事故,首先是行车事故的重要原因。线路上钢轨的损伤、信号的故障以及机车车辆的车钩、车轴、转向架、制动装置的破损往往导致严重的事故。随着科学技术进步,必须不断提高各种技术设备的性能、强度和可靠性,并努力采用设备故障防护报警和自动检测、自动控制、远程控制等先进手段,切实保证运输安全。加强运输管理是保证铁路运输安全的基本环节,大多数的事故都是由于违反规章制度、违反劳动纪律以及职工技术业务素质不良而引起,因此必须反复不断地健全规章制度,严格劳动纪律、并加强技术业务培训。许多国家铁路还为此而制定安全奖惩办法,开展安全月、安全周和各种形式的安全竞赛活动。健全铁路安全的法制是增强运输安全的重要保证。制定和实施有关铁路运输安全的法规、法令,有助于使保证铁路运输安全成为各级政府、铁路企业、各有关行业以及广大社会公众共同承担的义务。目前世界各国,有的在一般法律中列入有关铁路安全的条款,有的制定关于铁路安全的专门法律,如铁路安全法以及其它关于保安设备、特种运输的安全法规等。3. 铁路运输安全监察机构为了保证国家有关铁路安全法规的贯彻执行,加强铁路运输安全的监督管理,许多国家和铁路设有专职的铁路安全监督机构。但是各国铁路安全监督机构和组织形式。名称和职能并不完全相同。最初设置铁路安全监督机构的是英国,早在1840年就根据铁路管理法设置铁路视察室,由主任铁路视察员领导全室工作,归当时的贸易委员会领导,1919年成立运输部后划归运输部,目前是环境总署领导下的一个机构。铁路视察室的工作主要包括以下三个方面:(1) 对新建和改建的土建、信号及电气化等工程项目进行检查,为部长依法批准使用作好准备;(2) 对上报事故进行调查(包括公开传讯),编写铁路事故报告以备公开发表;(3) 向国务大臣提供有关铁路事宜的技术咨询意见。此后,许多国家和铁路也相继设置类似的铁路安全监察机构。目前各国铁路的安全监察机构,就其基本职能来看,大体分为两类:一类是英国、印度、美国、日本等国,铁路安全监察机构都直属政府有关部门,代表政府依据法律执行任务,能够对铁路的安全运输实行有力的监督;另一类是苏联、东欧等国,因为铁路运输部门是政企合一的,铁路安全监察机构受交通部(或运输部)直接领导,在部内设立安全总监察室,根据部令和铁路有关规程进行工作,代表部长检查、监察铁路的安全工作。各铁路局和分局都分别设立安全监察室,在各种管辖范围内工作。中国铁路各级管理机构都设有安全监察机构,代表部长监督检查安全工作,调查处理事故,帮助贯彻安全规章制度,并具体帮助各级单位研究采取防止事故的有效措施,以确保运输安全。

具体的要求告诉我,我帮你完成。

论文钢筋检测

浅谈钢筋工程的质量控制 论文 【摘 要】钢筋工程是钢筋混凝土工程的重要组成部分,要加强钢筋工程施工过程的配料、加工、绑扎、安装等工序质量控制,以确保钢筋工程质量。 【关键词】钢筋工程 建筑施工 质量控制 钢筋工程是钢筋混凝土工程的重要组成部分,重视钢筋施工是保证钢筋混凝土质量的重要途-【摘 要】钢筋工程是钢筋混凝土工程的重要组成部分,要加强钢筋工程施工过程的配料、加工、绑扎、安装等工序质量控制,以确保钢筋工程质量。 【关键词】钢筋工程 建筑施工 质量控制 钢筋工程是钢筋混凝土工程的重要组成部分,重视钢筋施工是保证钢筋混凝土质量的重要途径。钢筋工程的施工包括配料、加工、绑扎、安装等实施过程,在建筑施工中,要确保钢筋工程质量,必须加强以下方面的质量控制。 一、钢筋的检验 钢筋是钢筋混凝土结构中主要受力材料,钢筋质量是否符合标准,直接影响建筑物的使用和安全。钢筋进入施工现场或加工厂,必须具有出厂质量证明或试验报告单,钢筋应平直、无损伤,表面不得有裂纹、油污、颗粒状或片状老锈。每捆(盘)钢筋均应标牌,标牌上应有厂标,钢号,炉罐(批)号,尺寸等标记。进场钢筋应按进场批次和产品的抽样检验方案抽取试样作机械性能试验,当发现钢筋脆断、焊接性能不良或力学性能显著不正常等现象,要对该批钢筋进行化学成分或其他专项检验。合格后方可使用。 二、钢筋的保管 钢筋进入施工现场后,必须严格按批次规格、牌号、直径、长度挂牌存放,并注明数量,不得混淆。钢筋应尽量堆放在仓库式料棚内,现场条件不具备时,要选择地势高,土质坚实、平坦的露天场地存放,钢筋下面要加垫木,离地距离不宜小于200㎜,以防钢筋锈蚀和污染。堆放场地周围要挖排水沟,以利排水。钢筋成品要按照工程名称和构件名称,按编号挂牌排列,牌上注明构件名称、部位、钢筋形式、尺寸等,不能将几项工程的钢筋混放在一起,以便提取和查找。 三、钢筋加工的质量控制 钢筋加工主要包括调直、切断和弯曲成型,其质量控制措施主要是:1.为防止钢筋调直过程过度损伤钢筋表面,钢筋穿过调直机压辊之后,要控制调直机上下压辊间隙为2-3㎜。调直时可以根据调直模的磨损情况及钢筋的性能,通过试验确定调直模合适的偏移量,以保证钢筋调直的质量;2.钢筋切断时为确保切断尺寸准确,要拧紧定尺卡板的紧固螺丝,调整钢筋切断机的固定刀片和冲切刀片间的水平间隙;3.钢筋弯曲成型时,要确保成型的尺寸准确,质量控制措施是加强钢筋配料及下料的管理,根据实际情况和经验预先确定钢筋的下料长度调整值。为了确保下料画线准确,要制订切实可行的画线程序,对形状比较复杂或大批量弯曲的钢筋,要通过试弯确定合适的操作参数。 四、钢筋连接的质量控制 钢筋连接是指钢筋接头的连接,其方法有绑扎连接、焊接和机械连接。钢筋绑扎连接中,受拉钢筋和受压钢筋的搭接长度及接头位置要符合《混凝土结构工程施工质量验收标准》(GB50204-2002)的相关规定。钢筋焊接的接头形式、焊接工艺和质量验收要符合设计文件及《钢筋焊接及验收规范》。钢筋机械连接接头有套筒挤压接头、钢筋锥螺纹接头、钢筋直螺纹接头等,必须满足相应接头的连接技术规程。 五、钢筋绑扎和安装的质量控制 1.钢筋骨架外形尺寸控制 绑扎钢筋骨架时,要将多根钢筋端部对齐,要防止钢筋绑扎偏斜或骨架扭曲。对尺寸不准的骨架,可将导致尺寸不准的个别钢筋松绑,重新安装绑扎。 2.保护层厚度的控制 为保证保护层的厚度,钢筋骨架要用砂浆垫块或塑料定位卡,其厚度应根据设计要求的保护层厚度来确定。骨架内钢筋与钢筋之间的间距为25㎜时,宜用25㎜的钢筋控制,其长度同骨架宽度。所用垫块与25㎜的钢筋头之间的距离宜为1米,不超过2米。对于双向双层板钢筋,为确保钢筋位置准确,要垫铁马凳,间距1米。在混凝土浇筑过程中,,发现保护层尺寸不准确,要及时采取补救措施。 3.钢筋接头位置和接头数量的控制 配料时要仔细了解钢材原材料长度,根据设计要求,要组织钢筋班组学习相关规范,选择合理搭配方案。当梁、柱、墙钢筋的接头较多时,配料加工应根据设计要求预先画施工操作图,注明各编号钢筋的搭配顺序,并根据受拉区和受压区的要求正确决定接头位置和接头数量。现场绑扎时,事先进行详细交底,以免放错位置。若发现接头位置或接头数量不符合规范要求,应重新制订设置方案;已绑扎好的,要拆除钢筋骨架,重新确定配置绑扎方案再进行绑扎。如果个别钢筋的接头位置有误,可将其抽出,返工重做。 4.弯起钢筋放置方向的控制 为防止出现弯起钢筋放置方向及弯起点的位置不正确,事先要对操作人员进行详细的技术交底,加强施工过程检查与监督,确保工序质量必要时在钢筋骨架上挂提示牌,提醒安装人员注意。 5.现浇楼板负弯矩钢筋的质量控制 负弯矩钢筋按设计图纸定位,绑扎要牢固,适当放置钢筋支撑,将其与下部钢筋连接,形成整体,浇注混凝土时,采取保护措施,避免人员踩压。对已被压倒变形的负弯矩钢筋,浇注混凝土前要及时调整复位加固,不能修整的钢筋要重新制作安装。 6.梁中构造钢筋的控制 当梁高大于700㎜时,在梁的两侧沿高度每隔300-400㎜设置一根不小于10㎜的纵向构造钢筋,纵向构造钢筋用拉筋连接。箍筋被钢筋骨架的自重或施工荷载压弯时,要将压弯箍筋的钢筋骨架临时支上,补充纵向构造钢筋和拉筋。 六、钢筋工程施工质量检查验收方法的控制 钢筋工程质量检查的目的是掌握质量动态,发现质量隐患。要按照工程质量检查的依据、内容和质量标准,采取直观检查、实测检查、仪器测试等方法,结合工程质量的“三检制”,使质量检查工作贯穿于钢筋施工全过程。 钢筋工程属于隐蔽工程,在浇注混凝土前应对钢筋及预埋件进行隐蔽工程验收,并按规定做好隐蔽工程记录,以便查验。其主要内容包括:纵向受力钢筋的品种、规格、数量、位置是否正确,特别注意检查负弯矩钢筋的位置;钢筋的连接方式、接头位置、接头数量、接头面积百分率是否符合规定;箍筋、横向钢筋的品种、规格、数量、间距及预埋件的规格、数量、位置等是否符合设计文件和规范要求;要检查钢筋骨架或网片是否牢固,有无变形、松脱和开焊等。 参考文献: [1]建设部人事教育司.钢筋工.中国建筑工业出版社. [2]汤振华.钢筋工.中国环境科学出版社,2003. [3]中国建设监理协会组织编写.建设工程质量控制.中国建筑工业出版社,2002. [4]姚谨英.建筑施工技术.中国建筑工业出版社,2003.

钢筋混凝土结构工程施工质量验收规范GB50204-2002 这本规范上都有 可以查看

屈服度表示钢材强度;抗拉强度与屈服度的比值是评价钢材使用可靠性的参数。

重量及允许偏差� 钢筋可按实际重量或理论重量交货。� 钢筋实际重量与理论重量的允许偏差应符合表4的规定。�表 4公称直径/ mm 实际重量与公称重量的偏差/ %6~12 ±714~20 ±522~50 ±4

  • 索引序列
  • 钢轨检测论文
  • 钢轨探伤检测论文
  • 钢轨检测分析的论文
  • 铁路钢轨伤损检测技术论文
  • 论文钢筋检测
  • 返回顶部