首页 > 论文发表知识库 > 铸造工艺设计论文

铸造工艺设计论文

发布时间:

铸造工艺设计论文

随意推荐两篇,谨供参考1、国内外铸造生产线设计生产中的问题及解决办法 一.概述 随着国民经济的不断发展,近年来对铸件的要求越来越高,特别是汽车发动机缸体、缸盖类铸件,不仅要求材质好,而且还要求尺寸精度高、表面光法、重量轻。为此,作为影响铸件质量的关键工部件造型工部,纷纷采用新的工艺和设备,以满足铸件质量和产量的要求。据不完全统计,我国引进的高压造型线、气冲造型线、静压造型线已有60条左右;国内自己设计制造的高压造型线、气冲造型线已有70余条。 从使用情况来看,这些造型线确实为我国的铸件产量和质量的提高起了很重要的作用,但与我们的希望来比,还很不够。进口线的实际生产率一般在设计能力的5080%,国产线现在使用的估计只占50%,而在这50%中,开动率也较低,出现以上现象的原因是多方面的,归纳起来大概有以下几方面。 二.存在问题 1.设计存在的问题 由于造型线设备复杂,动作多,逻辑性强,因此,设计中就难免有考虑不周的地方,特别是造型线设计的初期,问题更多,比如:材质选用不合理,元件选用不当,逻辑关系不强等。这就决定了我国早期的高压线多数运行状况不太理想。比如:某大厂在70年代初期设计了一条高压造型线,制造安装后一直没有使用,其主要原因是:设计时许多辅机上的垂直液压缸原始位置设在中间位置,由于国产液压阀的泄漏,致使许多辅机不能处在原始位置;运行部件没有考虑制造的误差及液压泄漏,经常相碰,该联锁的电器上也没有联锁,放了这么多年,给工厂带来了很大的经济损失,听说最近要拆掉。国内如此,国外的造型线也同样存在设计上的不足,比如某厂引进一条高压造型线,由于设计时没有考虑砂箱走边的检测及清扫,以至砂箱的进翻箱机时经常卡死,甚至把翻箱机顶坏。还有一家厂引进的静压造型线在设计时工艺性考虑的不周,使上箱在下箱上边翻箱,从而导致造好的下箱内腔掉进砂子,造成铸件缺陷。 2.设备可靠性差 影响设计可靠性的因素主要有设计、制造、安装、生产管理、维修等。 设计中零件选用不当,材质选用不合理,是影响可靠性的重要原因之一,过去着重强调了国产化和降低成本,因此,元器件全为国产件。但由于国产无器件质量不过关,严重影响了造型线的开动率。比如:由于机械传动的误差,会导致转运车上的轨道与冷却道轨道对不准,致使输送器小车和砂箱脱轨,造成较长时间的停车;同样规格的密封件,国产的只能用3~6个月,而进口的能用12年;同样的管接头,国产的就漏油,进口的就不漏油,仅此一项,某一条造型线严惩时每年将漏油200多吨,价值100多万元;由于接近开关发讯不准,也常导致误动作造成停车;液压阀及气动阀的泄漏和精度不高,也是影响造型线开动率的主要因素。比如某厂造型机的控制不仅有电器联锁,而且有气动联锁,气动控制管路的管子是Φ8×1的,连接的管接头较多,由于管接头及气阀的漏气,常使控制气路压力降低,不能使气阀动作,为此,不得不冒险将部分联锁取消。 制造质量的好坏,也将影响造型线的开动率,包括内在质量和尺寸精度。比如:由于加工精度达不到要求,造成设备移动部分和固定部分相碰,定位不准等故障;由于元件的材质或热处理达不到要求,将影响设备的使用寿命和可靠性;由于液压系统的清理不干净,导致油液污染,使阀卡死的现象也经常出现。我到过一个现场,两台主机的工作台同样是球铁的,一台球化好了,用了几年就没问题,而另一台,没有多久就坏了,断面象马蜂窝似的。再如,某厂引进的气冲线96年投产以来,主机工作台油缸已更换了三次,第一次没过保质期就坏了,结果索赔了一台,此后,每两三年更换一次。另外,电线接头长时间使用后引起松动,也导致坏电路二三次。安装不按规范,偷工减料,也是造成可靠性差的重要原因之一。比如:安装时对管子不按规范进行清洗,该氩弧焊的用普通焊代替,造成管子里边有焊渣;该装管夹的地方不装或少装,造成管子震动,管接头松动,时间一长开始漏油;该用RVV软线的地方,用KVV代替,宜造成断路;该用螺栓固定的地方一焊了之,等等。 3.维修困难 由于设计人员现场经验不足,设计出来的设备往往只注意功能性,而没有注意维修容易,比如有些易损件或耐磨件,在制造厂装配时依次可以装上,但如果使用过程中磨损了,需要更换,则必须大卸八块,才能换上。这样,既费时,又影响了整个设备的精度。再如,过去将滤网放在泵的吸油口,并埋在油箱内,由于油的污染,经常要对滤网进行清理,但清理一次滤网必须先把油抽干净,而不是将滤网放在回油管上,清洗更换都方便。在阀箱里或多管平行的地方,安装管夹时,没有留出足够的维修空间,一旦一根管子漏油,必须选把别的管子拆掉,才能拧紧,形象地说,就跟栽葱的一样。制造过程中不注意质量,零件严重超差,也是造成维修困难的一个重要原因。比如一个零件与另一个零件为过度配合,由于加工超差,装配时变成了过盈配合,一旦零件出了问题需更换时,就很难取出。还有,经常拆装的缸端管接头,不用球铰接头,而用端直角接头,从而给维修带来困难。安装时只顾管子、电线走向,而忽略维修的可能性的情况也是常有的,比如,有些设备距地沟壁有一定的距离,本来是作为维修空间用的,但安装时不注意,觉得走管子或电缆桥架挺方便的,就装上了,但使用维修时就叫苦了。 4.生产任务不足,成本较高 在市场经济的今天,铸件成本的高低显得越来越重要了。近几年来,由于乡镇和民营铸造企业的蓬勃发展以及城市的环境保护要求,再加上乡镇和民营铸造企业的成本较低,企业经营灵活,这些企业的铸件在市场上的份额越来越大,从而导致一些具有造型线的大中型企业生产能力不足。例如:现在许多厂爱“开三停四”,一个月上半个月的班,由原来的两班或三班改为单班,经常放长假等。造型线的运行成本较高,也是影响使用的一个因素。如果开动造型线,必须所有设备开动,包括相关工部的设备,这样,用电量较大,同时,所有人员都得到岗,再加上漏油损失,在产量少的情况下,开机将很不划算。比如:有一个厂原来产量很大,上了一条气冲造型线,后来,产量锐减,开动造型线明显不划算,再加上实行成本核算,只好将造型线封存,改为地面造型。 5.管理不善 没有通盘计划,各自为政的现象严重,致使一些企业不考虑自己的实际情况,盲目上马,但后来由于资金不足,产品不对路等原因,造成虽已有较大投入,但尚未形成生产能力而闲置着的设备数量也不少。 企业内部管理不善,主要表现为:维修人员责任不明确,没有明确的设备维修制度,备件采购和维修脱节,维修人员素质较低,工资待遇差等。经常看到这样的现象:操作工上班时维修工在休息,操作工下班了维修工也下班了,至少设备是否需要备件,是否带病工作,是束需要维修,没有人去管,只有设备实在开不动了,才去修理,而这时换上的备件往往又不合适。比如某厂造型线上的备件是由设备科来组织,线上该备什么,备多少,基本不与维修人员通气,买来的备件也不与造型线上实际使用的实物对照,因此,常常出现原来是24伏的阀,更换时变成了220伏;应该是内控内泄阀,更换时变成了内控外泄阀;加工的备件更换时才发现超差等现象,从而影响生产。 6.各工部不匹配 由于国内外铸造设备的标定生产率与实际相差很大,所以,经常导致铸造车间各工部不匹配,从而影响造型线的开动率,据不完全统计,一般造型线由于各工部不匹配而占停机时间约为30-50%左右。例如有一个厂,在车间设计时引进了一条造型线,但其它工部选用国产设备,投入使用后出现两个问题:一是其它工部设备故障率高,严重影响了造型线的开动率,使造型线处于半停产状态;二是混砂能力不够,国产混砂机的混砂能力在实际实用中只能达到名义能力的一半左右,而设计时按名义能力考虑,因此,造成这样的后果。该车间这样生产了大概三、四年,厂里下决心又对砂处理工部进行了改造,目前,使用情况良好。 三.解决问题的办法 要想将一条造型线用好,无非要作好“防”和“备”两方面的工作,“防”是防止问题的出现,“备”是防不胜防时,出现问题了要有所准备,将问题尽快解决。但要做到这两点,必须在以下方面下功夫。 1.加强学习,吸引国内外先进技术和经验,以防为主 设计人员的素质直接影响到造型线的水平,只有设计水平提高了,才有可能制造出好的造型线。为此,设计人员必须掌握国内外的先进技术和设备,并不断总结经验,逐步提高,使设计水平从“小学”提高到“大学”。近年来,我国铸造设备设计人员已充分意识到这一点,通过他们的努力,再加上生产实践、消化吸引国外先进的工艺和技术,我国铸造设备设计水平大大提高,他们不仅具有了设计出高水平造型线的能力,而且具有现场动手的能力,通过不断改进,已设计出多条布置合理,性能可靠的造型自动线。这些改进有:工艺方面:由气动微震改为高压造型,再发展为气冲造型、静压造型、触头式动力撞击造型等。使设备越来越简单,工艺性越来越好。可靠性方面:过去造型线控制用顺控器控制,设备又庞大,故障又多,维修也困难,但有了PC以后,我们马上用在造型线控制上,目前,基本上没有人说电器有问题了;过去辅机及转运车为了实现慢--快--慢的动作,用子母电机或行程阀控制,现在有了调频电机和比例阀,很容易就解决了,可靠性也得到了提高;过去动作检测发讯用行程开关,现在用接近开关或编码器;过去由于油温过高,常使密封件容易老化,产生漏油等现象,严重影响造型线的开动,针对这一原因,现在增加了液压油冷却面积,改变溢流阀型号,使无负荷时泄荷,而不是溢流,减少产生热量的原因,降低落同温;活塞式蓄能器改为囊式蓄能器,性能可靠,动作灵敏;将不可靠的国产元件改为进口元件等。维修方面:一条造型线再好也不可能一点问题没有,但出了问题很难解决,设计水平就不能说很高,为此,设计人员也下了很大功夫。便好:过去液压系统出了故障,必须先把系统卸荷,回油完了再维修,现在将阀箱带在设备上,并在进出油口各加一个截止阀,维修时阀一关就行了,十分方便;还有,经常拆装的较大零件,设计时直接设计上两个吊装孔,使维修变的十分方便。专业设计方面:过去许多大厂车间设计由自己的技术人员来完成,但由于受专业和实际经验的限制,设计完成后问题较多,特别是各工部不匹配的现象普遍存在。因此,铸造项目最好不要请非专业的技术人员来设计,要请专业的设计院所来设计,这样,就会少出错或不出错,不走弯路。 2.强化质量意识,提高产品质量 “质量就是生命”这句话我们大家都很熟悉,但在实际中对质量的认识还很不够,还应该加强,使每一个员工意识到没有质量,就没有生存。一切操作按规范进行,绝对禁止为了一点小利进行偷工减料的行为。过去经常有这样的事,图纸归图纸,加工归加工,加工的人不看图纸要求,设备做成什么就是什么,比如端直通管接头的螺纹孔,由于要靠组合垫密封,图纸上螺纹孔和端面的锪平面有垂直度要求,但机加工工人是不管的,甚至不锪平,所以,容易造成漏油。还有多个螺钉固定的设备,往往有几个螺钉孔对不上,因此,把螺钉磨成丝锥一样拧进去或不拧。当然,经过这么多年的生产实践,许多厂已意识到质量的重要性,加工手段也提高了许多,比如现在许多厂用专机或加工中心加工砂箱,过去自己制造的油缸现在也外协到专业油缸厂制造。另外,必须提高基础件的质量,过去同样级的螺钉固定液压阀,进口的就不漏油,国产的就漏油。减速机内的齿轮,要求是硬齿面,耐实际是软齿面,用不了多外就坏,等等。 3.加强管理,健全维修制度,有备无患 首先上级主管部门要根据企业的具体情况,决定是否要上造型线,把好第一关,避免上了一半而中途下马,经国家和企业造成经济损失。如果上了造型线,企业内部必须加强管理,与造型线有关人员必须责、权、利分明,谁出了问题,谁负责任,谁来解决。要有严格的管理制度,注意各工部之间的匹配,注意人材的培养和合理利用。再好的一条线,如果管理维修跟不上,也不可能用好。因此,必须重视维修人员的素质。维修人员必须对造型线非常了解,明白每一个零件的用途,平时要进行预检预修及巡检,出了故障能很快正确地判断并及时排除。我到过一个现场,维修人员没见过造型线的液压原理图,对全线的动作原理不清楚,因此,出了故障手忙脚乱,最后捣鼓一通能用为止,究竟出了什么问题,怎样解决却不清楚。因此,大大影响了开动率。象这种状况,以后必须改进。备品备件的管理对自动化流水生产线来说,显得特别重要,建议此项工作由专人管理。备件清单的提供要与造型线上的需要一致,进货后要与造型线核对,并分类保管,保管条件要符合材质的要求,定期对备件进行检查,对过期的零件清理出去,及时补充新的零件。要做到造型线使用的备品备件随时能准确无误地提供,从而,确保造型线正常运转。总之,要用好一条造型,不是一件简单的事,几十台设备、一、二百个点,每天都毫无差错地运行,不仅要从设计、制造、安装、调试、维修、备品备件等造型线本身方面来下工夫,而且要从生产管理、各工部协调匹配、正确确定工艺参数等方面下功夫。随着技术水平、制造水平,加上设计人员的设计水平和使用者管理水平的不断提高,国产造型线一定能制造好,使用好。 刘小龙 2、浅谈如何提高压铸模寿命 材料自身存在的缺陷、维修和保养的方法都是会影响压铸模的寿命的。本文从后者来介绍如果提高压铸模的寿命,并列举了压铸模常见的故障原因及排除方法。 压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。 压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。 1、材料自身存在的缺陷 众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。 由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。 制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。 (1) 宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。 (2) 金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。 (3) 超声波检查。主要检查材料内部的缺陷和大小。 2、压铸模的加工、使用、维修和保养 模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。 在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。 电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。 模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。 焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。所用焊条应同模具钢成分一致,也必须是干净和经烘干的。模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。在焊接过程中,当温度低于260℃时,要重新加热。焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。最后于静止的空气中完全冷却,再进行型腔的修整和精加工。模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。 模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。在清除沉积物时,不能用喷灯加热清除,这可能导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。 经常保养可以使模具保持良好的使用状态。新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450—480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。以后每12000~15000模次进行同样保养。当模具使用50000模次后,可每25000~30000模次进行一次保养。采用上述方法,可明显减缓由于热应力导致龟裂的产生速度和时间。 在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。渗氮时,渗氮层厚度不应超过,过厚会于分型面和尖锐边角处发生脱落。 3、热处理 热处理的正确与否直接关系到模具使用寿命。由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。 压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失世大。因此,在热处理时应注意以下几点: (1) 锻件在未冷至室温时,进行球化退火。 (2) 粗加工后、精加工前,增设调质处理。为防止硬度过高,造成加工困难,硬度限制在25-32HRC,并于精加工前,安排去应力回火。 (3) 淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。 (4) 热处理时应注意型腔表面的脱碳与增碳。脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。 (5) 氮化时,应注意氮化表面不应有油污。经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。 (6) 两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。

将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。 铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。

推荐你去淘宝的:翰林书店,店主应该能下载到这类论文。我去下过,很及时的

快速成型技术及其向产品化生产发展所面临的技术问题作者:梁江波 葛正浩 厉成龙 前言 在新产品的开发过程中,总是需要在投入大量资金组织加工或装配之前对所设计的零件或整个系统加工一个简单的例子或原型。这样做主要是因为生产成本昂贵,而且模具的生产需要花费大量的时间准备,因此,在准备制造和销售一个复杂的产品系统之前,工作原型可以对产品设计进行评价、修改和功能验证。 一个产品的典型开发过程是从前一代的原型中发现错误,或从进一步研究中发现更有效和更好的设计方案,而一件原型的生产极其费时,模具的准备需要几个月,因此一个复杂的零件用传统方法加工非常困难。 快速成型(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其它方法将材料堆积而形成实体零件。由于它把复杂的三维制造转化为一系列二维制造的叠加。因而可以在不用模具和工具的条件下生成几乎任何复杂的零部件,极大地提高了生产效率和制造柔性。 一个更为人们关注的问题是一个产品从概念到可销售成品的流程速度。众所周知,在市场竞争中,产品在竞争对手之前进入市场更为有利可图并能享有更大的市场氛围。同时,还有一个更为令人关心的问题是产品的高质量。由于这些原因,努力使高质量的产品快速进人市场就显得极为重要。 快速成型技术问世以来,已实现了相当大的市场,发展非常迅速。人们对材料逐层添加法这种新的制造方法已逐步适应。该技术通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 1快速成型技术的优点 1)快速成型作为一种使设计概念可视化的重要手段,计算机辅助设计零件的实物模型可以在很短时间内被加工出来,从而可以很快对加工能力和设计结果进行评估。 2)由于快速成型技术是将复杂的三维型体转化为两维截面来解决,因此,它能制造任意复杂型体的高精度零件,而无须任何工装模具。 3)快速成型作为一种重要的制造技术,采用适当的材料,这种原型可以被用在后续生产操作中以获得最终产品。 4)快速成型操作可以应用于模具制造,可以快速、经济地获得模具。 5)产品制造过程几乎与零件的复杂性无关,可实现自由制造,这是传统制造方法无法比拟的。 2快速成型的基本原理 基于材料累加原理的快速成型操作过程实际上是一层一层地离散制造零件。为了形象化这种操作,可以想象一整条面包的结构是一片面包落在另一片面包之上一层层累积而成的。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,区别是制造每一层的方法和材料不同而已。 2. 1快速成型的一般工艺过程原理 三维模型的构造 在三维CAD设计软件(如Pro/E\UG\SolidWorks\SolidEdge等)中获得描述该零件的CAD文件,如图1(a)中所示的三维零件。目前一般快速成型支持的文件输出格式为5TL模型,即对实体曲面近似处理,即所谓面型化(Tessallation)处理,是用平面三角面片近似模型表面。这样处理的优点是大大地简化了GAD模型的数据格式,从而便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的准标准,每个三角面片用4个数据项表示,即3个顶点坐标和法向矢量,而整个CAD模型就是这样一组矢量的集合。 在三维CAD设计软件对模型进行面型化处理时,一般软件系统中有输出精度控制参数,通过控制该参数,可减小曲面近似处理误差。如Pro/E软件是通过选定弦高值(eh-chord height)作为逼近的精度参数,如图1为一球体,给定的两种ch值所转化的情况。对于一个模型,软件中给定一个选取范围,一般情况下这个范围可以满足工程要求。但是,如果该值选的太小,要牺牲处理时间及存贮空间,中等复杂的零件都要数兆甚至数十兆左右的存贮空间。并且这种数据转换过程中无法避免地产生错误,如某个三角形的顶点在另一三角形边的中间、三角形不封闭等问题是实践中经常遇到的,这给后续数据处理带来麻烦,需要进一步检查修补。 图1 不同ch值时的效果 (a) ch= (b) ch=三维模型的离散处理 通过专用的分层程序将三维实体模型(一般为5TL模型)分层,分层切片是在选定了制作(堆积)方向后,需对CAD模型进行一维离散,获取每一薄层片截面轮廓及实体信息。通过一簇平行平面沿制作方向与CAD模型相截,所得到的截面交线就是薄层的轮廓信息,而实体信息是通过一些判别准则来获取的。平行平面之间的距离就是分层的厚度,也就是成型时堆积的单层厚度。在这一过程中,由于分层,破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,分层切片后所获得的每一层信息就是该层片上下轮廓信息及实体信息,而轮廓信息由于是用平面与CAD模型的STL文件(面型化后的CAD模型)求交获得的,所以轮廓是由求交后的一系列交点顺序连成的折线段构成,所以,分层后所得到的模型轮廓已经是近似的,而层层之间的轮廓信息已经丢失,层厚大,丢失的信息多,导致在成型过程中产生了型面误差。 3快速成型的工艺方法 目前快速成型主要工艺方法及其分类见图2所示。文章仅介绍目前工业领域较为常用的工艺方法。 图2 目前快速成型主要工艺方法及其分类熔积成型法(Fused Deposition Modeling) 如图4所示,在熔积成型法( FDM)的过程中,龙门架式的机械控制喷头可以在工作台的两个主要方向移动,工作台可以根据需要向上或向下移动。热塑性塑料或蜡制的熔丝从加热小口处挤出。最初的一层是按照预定的轨迹以固定的速率将熔丝挤出在泡沫塑料基体上形成的。当第一层完成后,工作台下降一个层厚并开始迭加制造一层。FDM工艺的关键是保持半流动成型材料刚好在熔点之上,通常控制在比熔点高1℃左右。 1,热塑性塑料或蜡制熔丝;2,可在x-y平面移动的FDM喷头;3,塑料模型;4,不固定基座;5,提供熔丝FDM制作复杂的零件时,必须添加工艺支撑。如图5(a)的高度,下一层熔丝将铺在没有材料支撑的空间。解决的方法是独立于模型材料单独挤出一个支撑材料,支撑材料可以用低密度的熔丝,比模型材料强度低,在零件加工完成后可以将它拆除。 在FDA4机器中层的厚度由挤出丝的直径决定,通常是从0. 50mm到0. 25mm(从0. 02in到0. O1 in)这个值代表了在垂直方向所能达到的最好的公差范围。在x-y平面,只要熔丝能够挤出到特征上,尺寸的精确度可以达到0. 025mm()。 FDM的优点是材料的利用率高,材料的成本低,可选用的材料种类多,工艺干净、简单、易于操作且对环境的影响小。缺点是精度低,结构复杂的零件不易制造,表面质量差,成型效率低,不适合制造大型零件。该工艺适合于产品的概念建模以及它的形状和功能测试,中等复杂程度的中小成型,由于甲基丙烯酸ABS材料具有较好的化学稳定型,可采用伽马射线消毒,特别适于医用。 图5 快速成型支撑结构图 (a)有一个突出截面需要支撑材料的零件;(b)在快速成型机器中常用的支撑结构3. 2光固化法(Stereolithography ) 光固化法是目前应用最为广泛的一种快速成型制造工艺,它实际上比熔积法发展的还早。光固化采用的是将液态光敏树脂固化(硬化)到特定形状的原理。以光敏树脂为原料,在计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态树脂逐点扫描,使被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。 成型开始时工作台在它的最高位置(深度a),此时液面高于工作台一个层厚,零件第一层的截面轮廓进行扫描,使扫描区域的液态光敏树脂固化,形成零件第一个截面的固化层。然后工作台下降一个层厚,使先固化好的树脂表面再敷上一层新的液态树脂然后重复扫描固化,与此同时新固化的一层牢固地粘接在前一层上,该过程一直重复操作到达到b高度。此时已经产生了一个有固定壁厚的圆柱体环形零件。这时可以注意到工作台在垂直方向下降了距离ab。到达b高度后,光束在x-y面的移动范围加大从而在前面成型的零件部分上生成凸缘形状,一般此处应添加类似于FDM的支撑。当一定厚度的液体被固化后,该过程重复进行产生出另一个从高度b到c的圆柱环形截面。但周围的液态树脂仍然是可流动的,因为它并没有在紫外线光束范围内。零件就这样由下及上一层层产生。而没有用到的那部分液态树脂可以在制造别的零件或成型时被再次利用。可以注意到光固化成型也像FDM成型法一样需要一个微弱的支撑材料,在光固化成型法中,这种支撑采用的是网状结构。零件制造结束后从工作台上取下,去掉支撑结构,即可获得三维零件。 光固化成型所能达到的最小公差取决于激光的聚焦程度,通常是()。倾斜的表面也可以有很好的表面质量。光固化法是第一个投人商业应用的RF(快速成型)技术。目前全球销售的SL(光固化成型)设备约占Rl'设备总数的70%左右。SL(光固化成型)工艺优点是精度较高,一般尺寸精度控制在10. 1 mm;表面质量好,原材料的利用率接近100%,能制造形状特别复杂、特别精细的零件,设备的市场占有率很高。缺点是需要设计支撑,可以选择的材料种类有限,容易发生翘曲变形,材料价格较贵。该工艺适合成型制造比较复杂的中小件。 3. 3激光选区烧结(Selective Laser Sinering) 激光选区烧结(Selective Laser Sintering,简称SLS)是一种将非金属(或普通金属)粉末有选择地烧结成单独物体的工艺。该法采用CO:激光器作为能源,目前使用的在加工室的底部装备了两个圆筒: 1)一个是粉末补给筒,它内部的活塞被逐渐地提升通过一个滚动机构给零件造型筒供给粉末; 2)另一个是零件造形筒,它内部的活塞(工作台)被逐渐地降低到熔结部分形成的地方。 首先在工作台上均匀铺上一层很薄(l00~200μm)的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,从而使粉末固化成截面形状,一层完成后工作台下降一个层厚,滚动铺粉机构在已烧结的表面再铺上一层粉末进行下一层烧结。未烧结的粉末仍然是松散的保留在原来的位置,支撑着被烧结的部分,它辅助限制变形,无需设计专门的支撑结构。这个过程重复进行直到制造出整个三维模型。全部烧结完后去掉多余的粉末,再进行打磨、烘干等处理后便获得需要的零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行直接烧结的工艺正在实验研究阶段。它可以直接制造工程材料的零件,具有诱人的前景。 SLS工艺的优点是原型件的机械性能好,强度高;无须设计和构建支撑;可选用的材料种类多;原材料的利用率接近100% ,缺点是原型表面粗糙;原型件疏松多孔,需要进行后处理;能量消耗高;加工前需要对材料预热2h,成型后需要5~lOh的冷却,生产效率低;成型过程需要不断充氮气,以确保烧结过程的安全性,成本较高;成型过程产生有毒气体,对环境有一定的污染。SLS工艺特别适合制作功能测试零件。由于它可以采用各种不同成分的金属粉末进行烧结,进行渗铜等后处理,因而其制造的原型件可具有与金属零件相近的机械性能,故可用于直接制造金属模具。由于,该工艺能够直接烧结蜡粉,与熔模铸造工艺相接特别适合进行小批量比较复杂的中小零件的生产。 叠层制造(Lamited Object Manufacturing) LOM(叠层制造)工艺将单面涂有热溶胶的纸片通过加热辊加热粘接在一起,位于上方的激光器按照CAD分层模型所获数据,用激光束将纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置和下面已切割层粘合在一起,激光束再次切判,这样反复逐层切割一粘合一切割,直到整个零件模型制作完成。该法只需切割轮廓,特别适合制造实心零件。一旦零件完成.多余的材料必须手动去除,此过程可以通过用激光在三维零件周围切割一些方格形小孔而简单化。 L0M工艺优点是无须设计和构建支撑;激光束只是沿着物体的轮廓扫描,无需填充扫描,成型效率高;成型件的内应力和翘曲变形小;制造成本低。缺点是材料利用率低;表面质量差;后处理难度大,尤其是中空零件的内部残余废料不易去除;可以选择的材料种类有限,目前常用的主要是纸;对环境有一定的污染。LOM工艺适合制作大中型成型件,翘曲变形小和形状简单的实体类零件。通常用于产品设计的概念建模和功能测试零件,且由于制成的零件具有木质属性,特别适用于直接制作砂型铸造模。 4 快速成型技术在向产品生产化发展中所存在的主要问题 在制造业日趋国际化的状况下,缩短产品开发周期和减少开发新产品投资风险,成为企业赖以生存的关键。因此,快速成型、快速制模、快速制造技术将会得到进一步发展。 4. 1快速成型技术研究中存在的问题。 1)材料问题.目前快速成型技术中成型材料的成型性能大多不太理想,成型件的物理性能不能满足功能性、半功能性零件的要求,必须借助于后处理或二次开发刁'能生产出令人满意的产品。由于材料技术开发的专门性,一般快速成型材料的价格都比较贵,造成生产成本提高。 2)高昂的设备价格.快速成型技术是综合计算机、激光、新材料、CAD/CAM集成等技术而形成的一种全新的制造技术,是高科技的产物,技术含量较高,所以,目前快速成型设备的价格较贵,限制了快速成型技术的推广应用。 3)功能单一.现有快速成型机的成型系统都只能进行一种工艺成型,而且大多数只能用一种或少数几种材料成型。这主要是因为快速成型技术的专利保护问题,各厂家只能生产自己开发的快速成型工艺成型设备,随着技术的进步,这种保护体制已成为快速成型技术集成的障碍。 4)成型精度和质量问题.由于快速成型的成型工艺发展还不完善,特别是对快速成型软件技术的研究还不成熟,目前快速成型零件的精度及表面质量大多不能满足工程直接使用的需要,不能作为功能性零件,只能作原型使用。为提高成型件的精度和表面质量,必须改进成型工艺和快速成型软件。 5)应用问题.虽然快速成型技术在航空航天、汽车、机械、电子、电器、医学、玩具、建筑、艺术品等许多领域都已获得了广泛应用,但大多仅作为原型件进行新产品开发及功能测试等,如何生产出能直接使用的零件是快速成型技术面临的一个重要问题。随着快速成型技的进一步推广应用,直接零件制造是快速成型技术发展的必然趋势。 6)软件问题。随着快速成型技术的不断发展,快速成型技术的软件问题越来越突出,快速成型软件系统不但是实现离散/堆积成型的重要环节,对成型速度,成型精度,零件表面质量等方面都有很大影响,软件问题已成为快速成型技术发展的关键问题。 4. 2快速成型技术软件系统存在的问题 1)快速成型软件大多是随机安装,无法进行二次开发; 2)各公司的软件都是自行开发,没有统一的数据接口; 3)随机携带的快速成型软件都只能完成一种工艺的数据处理和控制成型; 4)已商品化的通用性软件价格较贵,功能单一,只能进行模型显示、加支撑、错误检验与修正等中的一种或几种功能,而且也存在数据接口问题,不易集成; 5)商品化的软件还不完善,不能满足当前快速成型技术对成型速度、成型精度和质量的要求; 6)当前的数据转换模型缺陷较多,对CAD模型的描述不够精确,从而影响了快速成型的成型精度和质里。 5快速成型技术的发展方向 目前国内外快速成型的研究、开发的重点是快速成型技术的基本理论、新的快速成型方法、新材料的开发、模具制作技术、金属零件的直接制造、生物技术与工程的开发与应用等。另外,还要追求RPM(快速成型制造)的更快的制造速度、更高的制造精度、更高的可靠性,使RPM设备的安装使用外设化,操作智能化;使RPM设备的安装和使用变得非常简单,不需专门的操作人员。具体说来,有以下几点: 1)采用金属材料和高强度材料直接成型是RPM重要发展方向,采用金属材料和高强度材料直接制成功能零件是RPM(快速成型制造)一个重要发展方向。美国Michigan大学的Manzumd采用大功率激光器进行金属熔焊直接成型钢模具;Stanford大学的Print。用逐层累加与五座标数控加工结合方法,用激光将金属直接烧结成型,可获得与数控加工相近的精度。 2)不同制造目标相对独立发展。从制造目标来说RPM(快速成型制造)主要用于快速概念设计成型制造、快速模具成型制造、快速功能测试成型制造及快速功能零件制造。由于快速概念型制造和快速模具型制造的巨大市场和技术可行性,将来这两个方面将是研究和商品化的重点。由于彼此特点有较大差距,两者将是相对独立发展的态势,快速测试型制造将附属于快速概念型制造。快速功能零件制造将是发展的一个重要方向,但技术难度很大,在今后的很长一段时间内,仍将局限于研究领域。 3)向大型制造与微型制造进军。由于大型模具的制造难度和RPM(快速成型制造)在模具制造方面的优势,可以预测,将来的RPM市场将有一定比例为大型原型制造所占据。与此成鲜明对比的将是RPM(快速成型制造)向微型制造领域的进军。SL技术的一个重要发展方向是微米印刷(Microlithography) ,用来制造微米零件( Microseale Parts)。而针对我国的具体国情,快速成型技术今后的主要发展方向有:1)成型工艺、成型设备和成型材料的研发与改进;2)直接快速成型的金属模具制造技术;3)基于因特网的分散化快速原型、快速模具的网络制造技术研究;4)与生物技术相结合;5)进一步完善软件的功能. 6 结束语 快速成型的出现把传统的加工带入全新的数字化领域,要让快速成型与制造技术得到越来越广泛、深人的应用,应从各个方面着手完善和发展该系统,进一步拓宽该技术的应用范围。 文秘杂烩网

铸造工艺及设备期刊2021

太原科技大学代码是10109

学校简介

太原科技大学(Taiyuan University of Science and Technology)位于山西省太原市,是山西省人民政府举办的全日制普通高等学校,入选国家中西部高校基础能力建设工程、教育部数据中国“百校工程”,CDIO工程教育联盟成员单位,是教育部本科教学工作水平评估优秀高校,教育部首批新工科研究与实践项目实施高校。

学校前身是始建于1952年的山西省机械制造工业学校;1953年,更名为第一机械工业部太原机器制造学校;1960年,更名为太原重型机械学院;2004年,更名为太原科技大学。

据2022年5月学校官网信息显示,学校有四个校区,分别为主校区、南校区、晋城校区、南社校区,总占地面积万平方米;有17个二级学院,开设66个本科专业;有博士后科研流动站2个,一级学科博士学位授权点3个,一级学科硕士学位授权点18个,硕士专业学位授权类别10个;有专任教师1369人,全日制在校学生27000余人。

历史沿革:

1952年,山西省工业厅创办山西省机械制造工业学校,首任校长支秉渊。

1953年,划归国家第一机械工业部,更名为第一机械工业部太原机器制造学校。

1955年,汉口机器制造学校(后并入武汉理工大学)锻冲专业师生全部并入、长春汽车工业学校(后并入吉林大学)锻压专业教师全部并入。

1960年,更名为太原重型机械学院。

1965年,大连工学院(现大连理工大学)、沈阳机电学院(现沈阳工业大学)起重运输机械专业师生全部并入。

1998年,学校改为教育部与山西省共建共管,以山西省管理为主。

2004年,学校更名为太原科技大学,山西省化学工业学校并入学校。

2005年,学校成为博士学位授予权单位。

2006年,本科教学工作水平评估被教育部评为优秀;入选国家大学生文化素质教育基地。

2013年,被确定为首批民政部社会工作专业人才培训基地。

2016年,入选教育部”中西部高校基础能力建设工程“支持高校、数据中国“百校工程”产教融合创新项目试点院校。

2017年,入选山西省“1331工程”(即山西省高等教育振兴计划工程)。

2018年,入选教育部首批“新工科”研究与实践项目。

院系专业

据2022年5月学校官网信息显示,学校有17个二级学院,开设66个本科专业,涵盖理学、工学、法学、文学、经济学、管理学、艺术学、教育学等八大学科门类。

学科建设

据2020年4月学校官网信息显示,学校有省级重点学科3个,省级重点建设学科15个,省级“1331工程”优势特色学科1个,省级服务产业创新学科群2个。

省级重点学科:机械工程、材料科学与工程、控制科学与工程

省级重点建设学科:冶金工程、哲学、马克思主义理论、数学、力学、光学工程、计算机科学与工程、软件工程、环境科学与工程、管理科学与工程、工商管理、法学、社会工作

省级“1331工程”优势特色学科:机械工程

省级服务产业创新学科群:重型与轨道交通装备学科群、清洁能源与现代交通装备关键材料及基础件学科群

师资力量

据2020年4月学校官网信息显示,学校有专任教师1266人,其中,高级职称教师533人,博士生导师50人,硕士生导师425人;有中国工程院院士1人,有多名教师入选为国家杰出青年基金获得者、国家百千万人才、教育部“长江学者”特聘教授、教育部新世纪优秀人才、省级教学名师、省级高校中青年拔尖人才、省级青年学术带头人、省级学术技术带头人、省级333人才、省级青年三晋学者等项目。

教学建设

质量工程

据2020年4月学校官网信息显示,学校有国家级综合改革试点专业1个,国家级特色专业建设点5个;有国家级和省部级大学生创新创业示范基地、大学生校外实践基地、实验教学示范中心、精品课程、精品视频公开课程等项目多个;有省级特色专业7个,省级优势专业6个,省级品牌专业11个,国家级一流本科专业建设点2个、省级一流本科专业建设点7个,通过工程教育专业认证的专业4个。

国家级特色专业

材料成型及控制工程、机械设计制造及其自动化、自动化、计算机科学与技术、工程力学

省级特色专业

环境科学、材料科学与工程、电气工程自动化、工业工程、机械电子工程、信息与计算科学

科研平台

据2020年4月学校官网信息显示,学校有国家级协同创新中心1个,国家地方联合工程研究中心1个,省部共建国家重点实验室培育基地1个,教育部工程研究中心1个;省级重点实验室6个,省级工程技术研究中心10个,省级(科技)创新团队7个,省级高等学校人文社科重点研究基地3个,省级协同创新中心3个。

科研成果

据2020年4月学校官网信息显示,学校“十一五”以来,先后获得国家科技进步奖4项,国家技术发明奖1项,何梁何利基金科学与技术创新奖1项及省部级科技奖励数十项,多次参与国家重大科研项目和国家重点工程科技攻关任务。

学术资源:

馆藏资源:

截至2018年12月,学校图书馆共有纸质图书约万册,电子图书约万种,电子期刊约万种、万册,其中包括中文电子期刊万种、万册。

学术期刊:

《太原科技大学学报》(双月刊)创刊于1980年10月,是太原科技大学主办的全国性学术刊物,其前身是《太原重型机械学院学报》向国内外公开发行。被中国科技论文统计源核心期刊、中国科学引文数据库、中国期刊网、中国科学技术期刊文摘数据库(CSTA)、《中国学术期刊(光盘版)》、万方数据、《中国核心期刊(遴选)数据库》、中国学术期刊综合评价数据库、中文电子期刊服务数据库(CEPS)全文收录。

《铸造设备与工艺》(双月刊)创刊于1979年,由太原科技大学(原太原重型机械学院)主办。主要刊登铸造设备、工艺、合金方面的学术研究论文及专题论述等。主要栏目:专题与综述、设计与计算、试验研究、应用技术、教学研究、信息与动态、科技成果、铸造市场。据学校官网2019年6月信息显示,学校设有16个二级学院,独立学院1所(华科学院)及58本科专业。

学术交流

合作交流:

据2020年4月学校官网信息显示,学校与美国奥本大学、北卡罗来纳大学、北佛罗里达大学、旧金山州立大学、澳大利亚卧龙岗大学、日本京都女子大学和日本丰桥创造大学等数十所中国以外高校建立了合作关系,联合开展大学生“2+2”、“3+1”等国际合作培养项目及教师互访交流。

获得荣誉

2021年1月21日晚,科睿唯安(ClarivateAnalytics,原汤森路透)公布了ESI从2010年1月1日到2020年10月31日的统计数据。太原科技大学全国的第301位,全球的第4534位。

校徽:

校徽为双圆套环,徽志内环正中由英语大写字母“U”和“螺旋式上升电子箭头”组成,其中,“U”代表“UNIVERSITY”,表示大学之意,“螺旋式上升电子箭头”表示当代科学技术进步。内环下方是“1952”字样,表示学校于1952年建立。外环上方是毛体“太原科技大学”,下方是英文“TAIYUANUNIVERSITYOFSCIENCEANDTECHNOLOGY”。主体色为深蓝色(标准色C100M80Y0K30)。

徽章:

学校徽章为长方形,印有毛体“太原科技大学”。

太原科技大学 学校代码:10109 。

《铸造技术》创刊于1979年,是中国铸造协会会刊,中文核心期刊,中国科技核心期刊,国内外公开发行。《铸造技术》是一本集中报导我国铸造领域先进科研成果、实用工艺技术、生产管理经验以及铸造行业发展动态的综合性科技期刊。覆盖铸铁、铸钢和有色合金铸造等整个铸造工业领域。读者对象为企业管理人员、技术人员、技术工人、大专院校师生、科研院所工程研究人员等。创刊三十多年来,《铸造技术》坚持“面向企业,服务一线”的办刊宗旨和“实用化、市场化、信息化”的办刊理念,在行业内产生了积极的影响,并被国内外19家数据库(网站)收录,成为读者喜爱的铸造行业专业技术期刊。《铸造技术》杂志内容主要由铸造材料研究和铸造成型工艺两大板块组成。前者主要设置:材料开发、材料改性、材料保护、材料失效分析等4各栏目;后者主要设置:今日铸造、工艺技术、生产技术、经验交流、行业动态(信息)等栏目。此外,为了扩大铸造工作者的视野,了解和借鉴与之相关专业的技术研究成果和发展动态,改版后的《铸造技术》杂志还开设了实用成型技术、设备改造及铸件加工等栏目。发表的话有点难度哦。。

铸造技术 ,一直都是北大中文核心期刊!!连续7届的北大中文核心主办单位:中国铸造协会;西安铸造学会出版周期:月刊该刊被以下数据库收录:CA 化学文摘(美)(2014)中国科技论文统计源期刊(2016-2017年度)北京大学《中文核心期刊要目总览》来源期刊:1992年(第一版), 1996年(第二版), 2000年版, 2004年版, 2008年版, 2011年版, 2014年版

铸造工艺铸铁毕业论文

推荐你去淘宝的:翰林书店,店主应该能下载到这类论文。我去下过,很及时的

专业一点好不好?这上面全由

我有一篇原创的论文,请参考。桑拿天气对冲天炉熔炼的影响及预防措施摘要:高温潮湿闷热天气使冲天炉熔炼不正常,熔化率下降,铸件气孔缺陷增加。采用调整鼓风机风量及炉料比例、加强炉料管理及炉前脱气处理等措施,取得了明显效果。关键词:高温;潮湿;气孔;脱气;风量山东省临沂市风机厂生产的冲天炉专用鼓风机具有风压高、流量变化小、重量轻、结构简单、耗电少、噪音低等特点,广泛应用于冲天炉熔炼等强制鼓风场合,深得用户好评。进入夏天后,很多用户来检修风机并反映:与春节期间相比冲天炉熔化率降低、熔化不正常、铸件气孔增加、废品率上升,而各方面都未变化(如风口、炉料、操作),鼓风机经检修又无问题,令人百思不得其解。无独有偶,我厂铸造车间(冲天炉为4t/h二排大间距冷风、配套45kW的HTD85-21鼓风机)亦出现了上述问题,熔化率由4t/h降至3t/h,生产的轴承箱体部分出现了气孔,这在以前是从未有过的事情。1 原因分析 熔化率下降的原因分析 风量的影响夏季气温高、空气体积膨胀大,空气密度比冬天低约10%,而粘度系数则是冬天的倍。夏天同样的进风量其重量要比冬天少约10%,即氧气量少了;同时粘度系数增加,导致进风速度下降。进气量不足,造成底焦燃烧不充分,导致熔化率降低,铁液温度下降,使铁液中的气体、氧化物、硫化物等杂质进入型腔而造成气孔或渣气孔。进风量是影响焦炭燃烧、熔化率的一个重要因素。 风压的影响风机的压力与空气的温度有如下关系(忽略大气压力的变化):P1/P2=(T+t2)/(T+t1)式中 P1——气温为t1时的压力P2——气温为t2时的压力T=273℃例如:在冬天气温为-10℃,夏天为38℃工作的一台鼓风机,它的压力变化:P1=,即在夏天时鼓风机的压力要比冬天低。风压低不利于克服沿途的各种阻力,气流不能射入炉心,炉膛断面供风不均匀,不能改善中心焦炭的燃烧,不利于提高铁液温度,同时也致使熔化率下降。 产生气孔的原因分析送风湿度与铸造缺陷有密切关系,夏天空气湿度比冬天高,空气中的水汽进入炉内分别与赤热的焦炭、铁液接触相互作用,产生大量H2,发生吸热反应,故降低炉温。产生大量H2会大幅增加铁液的吸气程度,铁液中的H2量超过时,铁液在型内冷却过程中,H2来不及排出,会在铸件表皮下形成1~3mm的气孔。炉温降低会加重铁液氧化,FeO含量增多,炉内Mn、Si等元素烧损加大,这样的铁液白口倾向严重、凝固快、流动性差、质量不好,浇注的铸件极易产生氧化性气孔。铁液温度随送风湿度增大而呈线性降低,过高的湿度除影响铁液温度外,还影响冲天炉的熔化率、铸件化学成分和白口深度。2 预防措施为减轻高温潮湿天气对铁液质量的不利影响,提高铁液温度是关键,即常说的“高温治百病”。除避开雨雾湿热极端天气熔炼外,我们还采取了一些措施,熔炼达到正常,使铁液温度稳定在1420—1440℃,废品率明显下降。 调整鼓风机风量遇桑拿天气应增大送风量12%,打开进风调节闸门,适当加大电机电流,但不得超过电机的额定电流,防止烧坏电机。若电机已达额定电流、鼓风机满负荷工作,在无法直接加大送风量的情况下,可适当降低料柱高度或缩小风口区的直径。 调整炉料比例增加底焦高度和层焦量约10%,适当降低废钢用量,尽量不用铁屑饼,以减轻炉内氧化性气氛和铁液吸气量。 加强炉前脱气处理在出铁槽随流加入的稀土合金,对铁液进行脱氧去硫,净化铁液;扒净铁液表面的浮渣后,用烘干好的覆盖剂盖严包面,减少二次氧化、吸气。 严格炉料管理将炉料室内存放,保持干燥;万不得已露天存放时,遇雨雾潮湿天必须苫盖,特别是生铁、焦炭;筛选焦炭,大小相差不宜过分悬殊,即块度均匀、适中;破碎回炉料,减小炉料块度,清除干净炉料的杂质(如芯砂);孕育剂、覆盖剂、铁合金等使用前必须充分烘烤,去除水分;出铁槽、炉衬、包衬烘烤至暗红色。 规范操作当天造好的铸型当天浇注,减少吸潮,避免铸型长时间停放;严格配料、称量,保持适当高度的料柱;按规程操作,确保不出现事故,只有保持“四稳”(炉膛尺寸稳定、底焦高度稳定、风量控制稳定、合格炉料稳定)、“三通”(保持风口、渣口、出铁口明亮、通畅、干净),才能熔化稳定,铁液优良。3 结束语采取相应措施后,冲天炉熔炼正常,铁液质量稳定,熔化率恢复到正常水平,铸件气孔废品率下降8%-10%,为用户解决了技术难题,为企业赢得了经济效益和社会效益。

给你一篇看看做参考,我有部分论文,也有自己写的。 漫谈湿砂型铸件表面缺陷 与其它铸造方法相比,湿型铸件是较容易产生粘砂、砂孔、夹砂、气孔等缺陷的。如果铸造工厂注意控制湿型砂的品质,这些缺陷本来是有可能减少或避免。以下用实例说明型砂性能与铸件表面缺陷的关系。 一.粘砂 研究工作表明,一般湿砂型铸件,不论铸钢还是铸铁,粘砂缺陷都是属于机械粘砂,而不是化学粘砂。机械粘砂的产生原因有多种,最多见的如下的实例: 1.砂粒太粗和透气性过高,金属液容易钻入砂粒间孔隙,使铸件表面粗糙,或将砂粒包裹固定在表面上。江苏某外资工厂的铸铁旧砂中不断混入大量30/50目粗粒芯砂,以致型砂透气性达到220以上,铸件表面极为粗糙。内蒙某工厂铸钢车间的气动微震造型机生产中、小铸件。使用主要集中在40目的40/70粗粒石英砂混制型砂,铸件表面产生严重粘砂。平时不检测型砂透气性,认为已经符合工艺规程规定的≥80。为了找到粘砂原因而专门检测一次,发现透气性居然高达1070左右,表明这就是产生粘砂的原因。因此型砂透气性必须有上限,型砂粒度粗细和透气性应当处于适宜范围内。一般震压机器造型单一砂最适宜的型砂粒度大多为70/140目,透气性大致为70~100,高密度造型的型砂粒度最好是50/140或100/50,透气性为80~140。有些生产发动机的铸造厂大量使用50/100目粗原砂制造砂芯,落砂时不断混入旧砂中,使型砂透气性可能达到180以上,就应加入100/140目细砂,或将旋流分离器中的细颗粒部分返回到旧砂中,以便纠正型砂粒度。 2.铸铁型砂中煤粉含量不足或煤粉品质不良。北京某铸造厂生产高速列车刹车盘,铸件材质符合要求,而表面有严重粘砂,需整体打磨后才能交货。型砂中所用煤粉来自郊区一家关系密切的私营小供应商。粘砂的产生原因可能是煤粉品质太差,还可能是型砂中有效煤粉量也不足够。安徽某阀门总厂使用的“煤粉”是生产焦炭洗选下来的废料,灰分高达76%。使用后整个型砂性能遭破坏,铸件废品超过一半。铸造工厂应该对购入的煤粉品质加强检验。优质煤粉要求灰分≤10%,挥发分30~37%,焦渣特征4~5级。型砂的有效煤粉含量可以用发气量进行检测。中小灰铁铸件震压造型应用普通煤粉的的型砂每1g的发气量大约在22~26mL,折合普通品质有效煤粉量约为6~7%,或优质煤粉5~6%,或增效煤粉4~5%。高紧实度造型用型砂发气量大体在18~24mL,折合增效煤粉含量3~4%。我国一些外资铸造工厂大多用灼减量(LOI)估计铸铁用湿型砂抗粘砂性能。例如江苏一汽车铸件厂的静压造型线规定面砂的灼减量为±。国内有多家造型材料公司供应各种“煤粉代用品”。铸造厂应先进行浇注试验,与优质煤粉或增效煤粉比较铸件表面效果、型砂性能变化以及铸件生产成本,然后确定是否选用。 二.砂孔 铸件表面的砂孔和渣孔通常合称为“砂眼”。渣孔大多是由于用了稻草灰或干砂当做聚渣剂形成的。关于砂孔的形成原因如以下几个实例: 1.天津某合资铸造厂手工造型生产电机壳等中、小灰铁铸件。主要缺陷是整个铸件上表面都可看到弥散分布的砂粒。分析这种砂孔形成原因是冲砂,是浇注系统和型腔被铁液冲蚀而掉落的零散砂粒漂浮在液面上形成的。该厂平常并不控制型砂品质,据云以前曾检测湿压强度只有25kPa。手工造型用型砂湿压强度最好在70~80kPa左右,震压机器造型应90~120kPa。如果是高密度造型,型砂湿压强度可以是140~180 kPa。大件可以再增高些。为了提高型砂的湿压强度,应避免使用劣质膨润土,膨润土吸蓝量最好在35mL以上。型砂还需要含有足够的有效膨润土,例如高密度造型的型砂5g吸蓝量大多在55~65mL。折合优质有效膨润土量6~7%。 2.山东某铸造工厂只有一台震压造型机,上班后先造下型铺满地面和下芯。半天以后更换模板制造上型和扣箱合型,准备浇铸。铸件经常出现砂孔等缺陷。其原因是湿砂型表面脱水干燥后表面强度急剧下降,表面砂粒很容易被冲蚀落入铁液中。天气干燥季节中“风干”现象更加严重。湿型砂下箱敞开时间最好不超过半小时。如果发觉砂型表面有干燥脱水的迹象,合型前应用喷雾器向砂型表面喷水使恢复潮湿状态。天津某日资汽车发动机厂过去曾用进口表面强化剂喷涂型腔表面,现也改用喷水。 3.四川某汽车件铸造厂使用静压造型机流水线生产汽缸体和汽缸盖,铸件表面都有多少不等的砂孔。该厂型砂采用本省品质不高的膨润土和煤粉,未对旧砂进行经常性除尘处理,致使旧砂中含泥量有时升高达到24%。为了保持型砂含水量%左右以防止产生气孔缺陷,不得不将型砂紧实率压低在27~32%范围内。型砂的湿压强度并不低,在170~210kPa,不是产生砂孔的原因。由于型砂的灰分过高和紧实率很低,影响韧性不足,破碎指数只有65~75%左右。这种型砂性能太脆,起模性差,砂型的棱角和边缘容易破碎,因而引起砂孔缺陷。该厂应当改用优质膨润土和煤粉;还应使用旧砂除尘设备,将旧砂含泥量控制在12%以下,型砂含泥量不超过13%;将型砂破碎指数控制为80~85%。在造型处的型砂紧实率提高为35~38%,含水量为,使(紧实率)/(含水量)的比例在10~12的范围内。这样就能提高型砂韧性和减少砂孔缺陷。上海、北京、哈尔滨有几家工厂在砂子中加入少量α-淀粉用来改善型砂韧性,降低起模摩擦阻力,增强表面风干强度。对防止砂孔缺陷和改善铸件表面光洁程度都有益处。 4.河南某拖拉机厂的发动机铸造分厂由于大量冷芯盒砂芯的混入,使型砂变脆,起模性能越来越差。不但砂型边棱易碎,而且吊砂易断。根据工厂规定,碾轮混砂机的周期时间只有3min,不能加长混砂时间以免影响造型机用砂需要。后来尽最大努力使混砂周期延长了1min,发现型砂的手感起了变化,起模性也有了改善。这说明原来的混砂时间太短,不能混制出优良的型砂性能。 三.夹砂(结疤、起皮) 自从国内有多家公司供应优质活化膨润土以来,湿型铸件表面夹砂缺陷已大为减少。但是个别湿型铸造工厂还会意外地产生夹砂缺陷。 1.江西一家小型汽车修配厂希望用湿型生产摩托车发动机铝铸件。开始时曾借来两只牛皮纸袋的仇山“陶土”供混砂使用。后来又到物资部门购买了两只麻袋包装的陶土。但是发现新购来陶土的型砂粘结力很低,砂型在火炉旁烘烤后开裂起皮,浇注铸件出现严重夹砂缺陷。当时用极为简陋的条件检查两种粘土的泥浆是否能用碱活化变稠。证明麻袋中不是膨润土而是真正陶土,不可用于湿型铸造。出现问题的原因是当初地质部门将呈微弱酸性的钙基膨润土称为“酸性陶土”。而很多铸造工厂又将“酸性陶土”简称为“陶土”。结果把以蒙脱石为主要矿物成分的膨润土与以高岺石为主要矿物成分的真正陶土(即普通粘土)混淆在一起。真正的陶土主要用来烧制陶瓷,不适合湿型铸造使用。铸造工厂也可以用吸蓝量来鉴别两种不同的粘土矿物,膨润土吸附亚甲基蓝在25~45mL,而普通粘土吸蓝量只有膨润土的十分之一。 2.水质的影响:天津的一家台资铸造工厂,使用挤压造型机生产出口铸铁煎锅。用优质活化膨润土混砂,型砂的湿压强度200~250kPa,紧实率35~38%,含水量3%左右。但是后来铸件靠近内浇道处产生夹砂缺陷,怀疑混砂所用井水有问题。该厂原来混砂用深井水的井管被堵塞。老板为了节约,打了一口20m浅井供混砂加水之用。工人发现这口井的水咸不能喝,洗手搓肥皂也不起泡沫。经化验这种浅井水中含有大量钠、镁、氯离子,对活化膨润土有强烈的反活化作用,用来混砂生产铸件容易产生夹砂缺陷。从邻近工厂引来饮用水混砂后,仍不能完全消除原来水质的影响。江苏有一家挤压造型生产冰箱压缩机铸件工厂,使用流经工厂外面小河中的河水混砂,适逢河水上游有化工厂向水中排废水而引起铸件产生夹砂缺陷,其原因也是由于废水的反活化效应。如果怀疑水质是否适合混砂,可以取2g或3g膨润土分别用纯净水和待试水测定膨润值,或膨胀倍数和自由膨胀量,如果待试水的测试结果比纯净水低很多,就表明待试水的品质不可用。 四. 气孔 铸件的气孔缺陷主要有裹携气孔、侵入气孔、析出气孔和反应气孔四个类型。以下举例说明工厂中常见气孔的生成原因和防止措施。 1.鉴别气孔的类型和生成原因都是不容易的。根据生产经验,提高浇注温度30~50℃经常可以减少任何类型气孔缺陷的发生。应当注意每包铁液浇注最后一两个砂型的温度,因为这时包中铁液温度已然下降而容易产生气孔缺陷。天津某台资铸造厂生产工业缝纫机壳体,每台铁液本可以浇注7个砂型,但是只浇5个砂型。剩在包中铁液倒回电炉中,然后再重新接一满包铁液去浇注砂型,就是为了保持浇注温度,减少气孔缺陷。 2.北京某日资工厂曾发现一个有气孔缺陷的铸件,锯开后看到气孔呈一个个连续上浮状态。估计在产生气孔的界面上背压力超过了铁液的静压力引起侵入气孔,但已无法判断气源是何物。有的工厂将旧砂堆当做垃圾堆,香烟头、冰棍捧、废纸团、瓜籽皮……扔到旧砂,混入型砂中都可能形成气孔缺陷。有些外资铸造工厂严格禁止在厂区中吸烟也是预防气孔的有效措施之一。 3.山东某厂生产中等大小出口阀门铸铁件,用震击造型机造型,冷芯盒制砂芯。该厂采取两天连续造型和下芯、合型,每隔一天冲天炉开炉浇注一次。所生产铸件气孔废品率极高。分析其原因是砂芯吸潮发气进入铁液中造成的侵入气孔。冷芯盒砂芯长时间放置在相对湿度极高的砂型中很容易吸潮。浇注时不仅粘结剂发气,而且砂芯吸收的水分也发出大量水汽,因而容易产生气孔缺陷。应当将隔日开炉攺为每日开炉,或者造型后先合空型,待开炉日再开箱下芯、合箱浇注。既可以防止砂芯吸潮,又可以减少砂型风干脱水,使气孔缺陷大为减少。多开出气冒口,增大排气能力。适当提高浇注速度,迅速建立静压力抵制界面气体侵入,也对防止侵入气孔有好处。 4.从河南、山东、辽宁、吉林…等发动机铸造工厂的气孔缺陷生成情况来看,所遇到的气孔仍多属于砂芯发生气体的侵入气孔缺陷,很少是析出性的氮针孔。因为所用砂芯的粘结剂都改为含氮量较低的树脂,而且必要时在芯砂中和涂料中加入适当的氧化铁。因此首先应当加强砂芯的排气能力。砂芯中间应开通畅的排气孔。对于厚大断面砂芯可以抽成空心或分半挖成网格形内腔而后粘合。树脂自硬砂芯最常用的排气办法是使用尼龙编织管,制芯时可以方便地沿砂芯的任意形状预埋在砂芯中。热芯盒、冷芯盒和壳芯都是整体射制的,不能预埋排气管路,可以安放通气针或棒,在取芯之前或之后抽出。但是更多的是在砂芯硬化后用硬质合金钻头从芯头钻孔帮助排气。例如山西某液压件厂生产形状极为复杂的液压阀,将壳芯所有芯头都角钻头钻盲孔帮助排气。西班牙有一家生产小轿车的铸造工厂,制出气缸盖的水套砂芯用专门多头钻床自下向上地将水套砂芯的各个冷却水通道芯头同时钻出盲孔。较大砂芯下芯时,如果芯头与芯座的间隙过大,会出现铁液钻入砂芯通气孔现象。应当用耐火纤维毡垫、泥条、石棉绳等密封材料围封砂芯芯头。还要注意高温快浇,迅速建立起铁水压力超过发气点背压力使气体不能钻入铁液中成为气泡。即使气体已经钻入铁液中,也能漂浮和随着铁液进入排气冒口排出。另外,采用低发气量粘结剂对防止气孔缺陷是必要的,例如北京某工厂生产英国的煤气炉燃烧圈只有一个芯头,排气困难,就尽量将壳芯的发气量控制在12mL/g以下,而且高温快速浇注。 5.山西某厂使用挤压造型机生产灰铸铁曲轴,在铸件表面和皮下形成宻集的小气孔。一般为直径1~3mm的小孔,大多存在于表皮内1~3mm处,抛丸清理或粗加工时露出。此工厂不用树脂砂芯,不会产生氮气孔,缺陷应当属于反应气孔。即金属液与铸型在界面处发生化学反应,产生的气体溶解在金属液中。冷却时溶解度降低析出成气泡。铸件材质为灰铁,也排除掉铁液中镁或稀土与砂型中水分引起反应。怀疑是炉料和孕育剂有可能将铝、钛带入铁液中。因为铝、钛与水反应放出极易溶入铁液层中的原子态[H]。该层凝固时氢的溶解度降低而以分子态气相析出和长大成氢气泡。由该厂硅铁孕育剂的分析报告中看到含铝量达到,可能是产生皮下气孔的主要原因。硅铁孕育剂的含铝量最好为左右,最多不可超过%。对于随流孕育用硅铁,不但要控制较低的含铝量,而且要限制加入量一般不超过%。为了防止铝、钛等元素与水的反应,挤压造型的型砂含水量也必须控制在不高于4%。 6.球墨铸铁的铁液浇注入湿砂型后,残留镁同水分子中氧强烈反应而产生原子态[H],是产生皮下气孔缺陷的主要原因。必须采取冶炼和工艺两方面的措施才能防止反应气孔的产生。河北某球墨铸铁工厂是生产载重汽车离合器压盘等球墨铸铁件的专业厂,铸件无皮下气孔。从该厂冶炼角度来分析其避免气孔的原因是各项指标都未超出常规范围。例如使用优质铸造焦,冲天炉出炉温度在1480℃以上,球化处理包的内腔深度为直径的倍,浇包和型腔表面抖冰晶石粉,铁水含硫,残留镁量为。但是从工艺角度来分析:面砂含水量高达,远远超过通常认为的最多不可超过。分析其不出气孔的原因可能是:(1)型砂加入了大量煤粉,灼减量高达。超过通常的4~5%。未测型砂发气量,估计在35mL/5g以上。浇注后露出的铸件表面呈现深蓝色,表明浇注时型腔中为大量强烈还原性气氛,将型腔中水汽冲淡。(2)砂型透气性100,并扎有大量排气孔,浇注生成的水汽大部分排出型腔以外,减少了可能参与反应的水汽。(3)面砂含水量虽然相当高,但含泥量高达21%。因此测得紧实率只有36%左右,说明型砂并不潮湿。可能泥分吸收了大量水分,减缓了化学反应的速度。因此可以设想产生反应气孔缺陷主要取决于紧实率(即型砂干湿程度),而不是含水量。 五. 讨论 1.获得优质型砂的条件首先是选用优质原材料,也还需要应用优良的混砂过程。一些技术管理比较严格的湿型砂铸造工厂要求在每班结束前将混砂机中的砂子完全清除干净。美国主要的湿型铸造厂大多要求混砂机刮板与底盘的距离为一个硬币厚度。日本几家使用碾轮式混砂机的汽车件铸造工厂的混砂周期都是6min。但是我国有的铸造厂的混砂机碾盘中和碾轮上的砂子都长期不清理,刮板磨损也不调整,碾轮混砂时间最多3min。这怎样能够混制出优良品质的型砂呢? 2.型砂品质表现在于性能如何,加强型砂性能的检测和控制才能制备出优等型砂。江苏某日资汽车件铸造工厂静压造型线用面砂的日常检测项目有二十余种,还未包括背砂和原材料的检测项目在内。我国有的铸造工厂的型砂实验室中仪器设备简陋,湿型砂性能的日常检测项目可能只有三、四种。怎能根据测得结果说明铸件表面缺陷产生原因呢?又怎能用来降低铸件废品率呢?

铸造设计工程师职称论文

“壹品优刊网”可以发表发表:建筑工程师,土建工程师,造价师,预算师,工程项目管理,工程监理,道路桥梁技术,给排水,暖通,测绘,测量,房地产开发,园林景观设计工程师等职称论文,价格从优哦!

或考 或评。。

有很多的啊,价格方面就是看你发表的期刊的等级了,如果是核心期刊那就比较贵一点,基本上过了2000.国家级的一般是1000左右,省级比较便宜一点,600块都能搞定。我朋友在品优刊 网上发过一篇国家级的,3个月就出刊了。你可以去问问具体的价格

评审条件:

1、大学本科毕业,从事专业工作十年以上,担任中级职务五年以上。

2、大学专科毕业,从事专业技术工作十五年以上,并需担任中级职务五年以上。

3、中专、高中毕业,从事专业技术工作二十五年以上,并担任中级的职务五年以上。

凡符合上述申报条件的人员,还必须遵纪守法,具有良好职业道德,能认真履行岗位职责,在本专业岗位上做出显著成绩,且具备相应的专业理论水平和实际工作能力。

扩展资料

注意事项:

1、申报材料须装订成册。申报人员应按照《专业技术资格送评材料目录单》认真准备相关材料,其中附件材料要按照要求一律用A4纸装订成册,未装订成册的不予接收。不再要求学历认证、期刊查询和论文检索,不再提交学历(学位)证书原件和复印件。

2、申报材料须真实有效。申报人员填写的表格和提供的材料附件必须真实有效,内容一致。在表格填报的业绩成果、论文论著需有附件材料佐证。

3、建立职称申报评审诚信档案。完善诚信承诺机制,专业技术人才申报职称须签署《职称申报诚信承诺书》,评审工作结束后,与《专业技术资格评审表》一并归档备案。

参考资料来源:百度百科-高级工程师

铸造设备与工艺期刊审稿流程

论文投稿期刊审核流程如下:

1、首先是初审环节,文章投稿后第一个审稿环节就是初审,初审几乎都是杂志社编辑来完成的,杂志社编辑会对文章进行大致浏览,这时的审核就是简单的浏览,并不会细致深入的阅读文章。

编辑主要看文章的基本写作上有没有问题,比如文章的结构、逻想、主要研究方向与期刊是否相符,是否涉及敏感话题或者字眼。这些没问题通过初审也就没问题。

2、而后是复审,复审也叫外审,是外部审稿专家来完成的,外审主要看文章的研究内容了,因为涉及到专业领域的东西,因此必须由本专业的专家来完成本审稿环节。

需要注意的是,有些刊物需要作者自己推荐审稿专家,一般审稿专家会有3—4位,所有专家审稿意见一致就可以通过外审。

3、最后是终审,终审是杂志社主编对文章的最终审核,这一环节相对于外审通过概率要大得多,主编会对文章进行全面的审核。

这一环节并不意味着没有退稿几率,只不过相对于外审要低一些,以上三个审稿环节是投稿之后文章要经过的三审三校,流程并不算复杂,但通过需要一定时间,因此发表论文务必尽早准备。

中文核心期刊爱接受作者投稿后执行审稿流程如下:

1、作者的论文方向与期刊方向不一致,或者论文内容和格式不符合期刊要求,这也是多数论文被拒的原因之一。

2、作者的论文方向与期刊一致,内容和格式符合要求,但是论文创新度不够,导致退稿。

3、作者的论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,但是外审专家一针见血,直接拒稿。

4、论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,第一个外审专家的意见可以接受,将交给第二个外审专家审定,但是第二个外审专家直接拒稿。

5、作者的论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,第一个外审专家的意见可以接受,将交给第二个外审专家审定,但是第二个外审专家直接拒稿。

6、论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,两个外审专家对论文的意见多数为建议拒稿,交由期刊决定。

7、论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,外审专家建议退修,作者将修改稿重新上传,外审专家复审,没有达到复审要求,导致拒稿。

8、作者的论文方向与期刊一致,内容和格式符合要求,经过期刊选择推荐到外审专家,外审专家建议退修,作者将修改稿重新上传,外审专家复审,达到复审要求,建议录用。

所有投稿论文都会交由期刊编辑先审过,主要是检查研究质量、分析、主题等是否有发表价值,在这个部分会检查研究是否原创,所以会有基本的抄袭检查,但不会有细节查重。在这个阶段被拒的稿件通常是因为与期刊的范畴不符、研究或分析有重大问题、缺乏原创性等,这个过程成为“初审”(initial review)。主编会将通过这个步骤的论文交给副编辑,称作“wait for Chief Editor”。副编辑会安排2位以上的评审员进行评审,评审员非期刊编辑部成员,所以称为外部评审员,他们是相关领域的专家,需要针对各项指标对投稿论文进行评分,提出看法与建议给期刊编辑与作者。根据外审的结果,论文可能会直接接受、有条件接受(需要修改)或是拒稿。

  • 索引序列
  • 铸造工艺设计论文
  • 铸造工艺及设备期刊2021
  • 铸造工艺铸铁毕业论文
  • 铸造设计工程师职称论文
  • 铸造设备与工艺期刊审稿流程
  • 返回顶部