首页 > 论文发表知识库 > 数据分类方法毕业论文

数据分类方法毕业论文

发布时间:

数据分类方法毕业论文

论文写作方法及注意事项在整个论文写作过程中,草拟初稿是一项最重要的工作,也是最需要花费心思的工作。初稿虽然只是文章的一个坯子,但却是下步进行加工的基础。不能因为它是初稿,写作时就可以草率行事。起草初稿应注意些什么问题呢?1、周密思考,慎重落笔毕业论文是一项“系统工程”,在正式动笔之前,要对文章进行通盘思考,检查一下各项准备工作是否已完全就绪。首先,要明确主题。主题是文章的统帅,动笔之前必须想得到十分清楚。清人刘熙载说:“凡作一篇文,其用意俱可以一言蔽之。扩之则为千万言,约之则为一言,所谓主脑者是也。”(《艺概》)作者要想一想,自己文章的主题能否用一句话来概括。主题不明,是绝对不能动手写文的。其次,是理清思路。思路是人订]思想前进的脉络、轨道,是结构的内在依据。动笔之前,对怎样提出问题,怎样分析问题,怎样解决问题,以及使用哪些材料等,都要想清楚。第三,立定格局。所谓“格局”,就是全文的间架、大纲、轮廓。在动笔之前先把它想好“立定”,如全文分几部分,各有哪些层次,先说什么,后说什么,哪里该详,哪里该略,从头至尾都应有个大致的设想。第四,把需要的材料准备好,将各种事实、数据、引文等找来放在手头,以免到用时再去寻找,打断思路。第五,安排好写作时间、地点。写作要有相对集中的时间,比较安静的环境,才能集中精力专心致志地完成毕业论文写作任务。古人说:“袖手于前,方能疾书于后。”鲁迅也曾说,静观默察,烂熟于心;凝神结想,一挥而就。做好了充分的准备,写起来就会很快。有的人不重视写作前的准备,对所写的对象只有一点粗浅的认识就急于动笔,在写作过程中“边施工边设计”,弄得次序颠倒,手忙脚乱,或做或掇,时断时续,结果反而进展缓慢。所以,在起草之前要周密思考,慎重落笔。2一气呵成,不重“小节”在动笔之前要做好充分的准备,一旦下笔之后,则要坚持不懈地一口气写下去,务必在最短时间内拿出初稿。这是许多文章家的写作诀窍。有的人写文章喜欢咬文嚼字,边写边琢磨词句,遇到想不起的字也要停下来查半天字典。这样写法,很容易把思路打断。其实,初稿不妨粗一些,材料或文字方面存在某些缺陷,只要无关大局。暂时不必去改动它,等到全部初稿写成后,再来加工不迟。鲁迅就是这样做的,他在《致叶紫》的信中说:先前那样十步九回头的作文法,是很不对的,这就是在不断的不相信自己——结果一定做不成。以后应该立定格局之后,一直写下去,不管修辞,也不要回头看。等到成后,搁它几天,然后再来复看,删去若干,改换几字。在创作的途中,一面炼字,真要把感兴打断的。我翻译时,倘想不到适当的字,就把这些字空起来,仍旧译下去,这字待稍暇时再想。否则,能因为一个字,停到大半天。这是鲁迅的经验之谈,对我们写毕业论文也极有启发。3、行于所当行,止于所当止北宋大文学家苏拭在谈到他的散文写作时说:“吾文如万斜泉涌,不择地而出。在乎地,滔滔汩汩,虽一日干里无难;及其与山石曲折,随地赋形而不可知也。所可知者,常行于所当行,常止于不可不止,如是而已矣。”(《文说》)苏拭是唐宋八大散文家之一,作文如行云流水,有神出鬼没之妙,旁人不可企及。但他总结的“行于所当行,止于所不可不止”,则带有一定的普遍性。“行于所当行”,要求作者在写作时,该说的一定要说清楚,不惜笔墨。如一篇文章的有关背景,一段事情的来龙去脉,一种事物的性质特征等,如果是读者所不熟悉的,就应该在文章中讲清楚,交代明白,不能任意苟简,而使文意受到损害,以致出现不周密、不翔实的缺陷。“止于所不能不止”,就是说,不该写的,一字也不可多写,要“惜墨如金”。如果情之所至,任意挥洒,不加节制,也不肯割爱,势必造成枝蔓横生,冗长拖杏,甚至出现“下笔千言,离题万里”的毛病。4、写不出的时候不硬写鲁迅在《答北斗杂志社问》一文中,提出了八条写文章的规则,其中第二条是:“写不出的时候不硬写”。这是很有道理的。“写不出”,有种种原因:或者对所谈的问题认识不充分,仅停留在表面上,未能透过现象深入其本质;或则对所论的问题分析不透彻,没有从不同层面、不同角度进行剖析,只见一点,不及其余;或者所掌握的材料还不够充分,或则对文章的主题、结构、语言表达还没有想好,等等,都可使文章写不下去。“写不出”,正好暴露出自己写作中存在的问题,并不一定是坏事。它说明准备工作还没有做好,写作时机还不成熟。这时候,应该明智地停下来,细心地分析写不出的原因,回顾写作的各个环节,找出问题的症结所在。如果是材料问题,就要进一步搜集材料;如果是认识问题,就要用马克思主义的立场、观点和方法,对写作对象进行再认识。“不硬写”,不等于不能再写。只要查明原因,对症下药,克服了写作中的障碍,就会出现“山重水复疑无路,柳暗花明又一村”的新境界。。毕是衡量自考毕业生是否达到全日制普通高校相同层次相同专业的学力水平的重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对论文的独立写作感到压力很大,心中无数,难以下笔。因此,对本科专业自考生这一特定群体,就论文的撰写进行必要指导,具有重要的意义。本文试就如何撰写论文作简要论述,供参考。论从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成论文的撰写可以分两个步骤,即选择课题和研究课题。首先是选择课题。选题是论文撰写成败的关键。因为,选题是论文撰写的第一步,它实际上就是确定“写什么”的问题,亦即确定科学研究的方向。如果“写什么”不明确,“怎么写”就无从谈起。教育部自学考试公室有关对毕业论文选题的途径和要求是“为鼓励理论与工作实践结合,应考者可结合本单位或本人从事的工作提出论文题目,报主考学校审查同意后确立。也可由主考学校公布论文题目,由应考者选择。毕业论文的总体要求应与普通全日制高等学校相一致,做到通过论文写作和答辩考核,检验应考者综合运用专业知识的能力”。但不管考生是自己任意选择课题,还是在主考院校公布的指定课题中选择课题,都要坚持选择有科学价值和现实意义的、切实可行的课题。选好课题是毕业论文成功的一半。第一、要坚持选择有科学价值和现实意义的课题。科学研究的目的是为了更好地认识世界、改造世界,以推动社会的不断进步和发展。因此,毕业论文的选题,必须紧密结合社会主义物质文明和精神文明建设的需要,以促进科学事业发展和解决现实存在问题作为出发点和落脚点。选题要符合科学研究的正确方向,要具有新颖性,有创新、有理论价值和现实的指导意义或推动作用,一项毫无意义的研究,即使花很大的精力,表达再完善,也将没有丝毫价值。具体地说,可从以下三个方面来选题。首先,要从现实的弊端中选题,学习了专业知识,不能仅停留在书本上和理论上,还要下一番功夫,理论联系实际,用已掌握的专业知识,去寻找和解决工作实践中急待解决的问题。其次,要从寻找科学研究的空白处和边缘领域中选题,科学研究还有许多没有被开垦的处女地,还有许多缺陷和空白,这些都需要填补。应考者应有独特的眼光和超前的意识去思索,去发现,去研究。最后,要从寻找前人研究的不足处和错误处选题,在前人已提出来的研究课题中,许多虽已有初步的研究成果,但随着社会的不断发展,还有待于丰富、完整和发展,这种补充性或纠正性的研究课题,也是有科学价值和现实指导意义的。第二、要根据自己的能力选择切实可行的课题。毕业论文的写作是一种创造性劳动,不但要有考生个人的见解和主张,同时还需要具备一定的客观条件。由于考生个人的主观、客观条件都是各不相同的,因此在选题时,还应结合自己的特长、兴趣及所具备的客观条件来选题。具体地说,考生可从以下三个方面来综合考虑。首先,要有充足的资料来源。“巧妇难为无米之炊”,在缺少资料的情况下,是很难写出高质量的论文的。选择一个具有丰富资料来源的课题,对课题深入研究与开展很有帮助。其次,要有浓厚的研究兴趣,选择自己感兴趣的课题,可以激发自己研究的热情,调动自己的主动性和积极性,能够以专心、细心、恒心和耐心的积极心态去完成。最后,要能结合发挥自己的业务专长,每个考生无论能力水平高低,工作岗位如何,都有自己的业务专长,选择那些能结合自己工作、发挥自己业务专长的课题,对顺利完成课题的研究大有益处。选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。第一、研究课题的基础工作———搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。第二、研究课题的重点工作———研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。通读即对全文进行阅读,选读即对有用部分、有用内容进行阅读,研读即对与研究课题有关的内容进行全面、认真、细致、深入、反复的阅读。在研读过程中要积极思考。要以书或论文中的论点、论据、论证方法与研究方法来触发自己的思考,要眼、手、脑并用,发挥想象力,进行新的创造。在研究资料时,还要做好资料的记录。第三、研究课题的核心工作―――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。根据已确立的基本论点和分论点选定材料,这些材料是自己在对所搜集的资料加以研究的基础上形成的。组织材料要注意掌握科学的思维方法,注意前后材料的逻辑关系和主次关系。第四、研究课题的关键工作―――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。拟定提纲包括题目、基本论点、内容纲要。内容纲要包括大项目即大段段旨、中项目即段旨、小项目即段中材料或小段段旨。拟定提纲有助于安排好全文的逻辑结构,构建论文的基本框架。基本格式:一般论文由标题、摘要、正文、参考文献等4方面内容构成。标题要求直接、具体、醒目、简明扼要。摘要即摘出论文中的要点放在论文的正文之前,以方便读者阅读,所以要简洁、概括。正文是论文的核心内容,包括绪论、本论、结论三大部分。绪论部分主要说明研究这一课题的理由、意义,要写得简洁。要明确、具体地提出所论述课题,有时要写些历史回顾和现状分析,本人将有哪些补充、纠正或发展,还要简单介绍论证方法。本论部分是论文的主体,即表达作者的研究成果,主要阐述自己的观点及其论据。这部分要以充分有力的材料阐述观点,要准确把握文章内容的层次、大小段落间的内在联系。篇幅较长的论文常用推论式(即由此论点到彼论点逐层、步步深入的写法)和分论式(即把从属于基本论点的几个分论点并列起来,一个个分别加以论述)两者结合的方法。结论部分是论文的归结收束部分,要写论证的结果,做到首尾一贯,同时要写对课题研究的展望,提及进一步探讨的问题或可能解决的途径等。参考文献即撰写论文过程中研读的一些文章或资料,要选择主要的列在文后。第五、研究课题的保障工作―――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

基本信息描述

数据分析法论文研究方法怎么写

数据分析法论文研究方法怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的数据是很重要的,如果你的论文数据不准确,就没研究意义了, 下面我和大家分享数据分析法论文研究方法怎么写。

确定数据分析方法

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

搜集整理实验数据

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

使用软件进行分析

接下来第三部分就是使用软件进行数据分析,本部分是非常重要的一个部分。因而可能会出现各种各样的问题。

在本部分大家可以通过软件对所得数据按照前面选定的研究方法进行分析。实践是检验一切的'唯一标准。有很多问题往往都是在进行了数据分析以后才暴露出来的。

根据自身经历,通过软件分析了实验数据以后,才发现结果非常不理想,此时就需要及时跟论文指导老师沟通去进行数据分析方法的调整。

在使用软件进行数据分析之前,一切都是未知的,只有分析之后才能对症下药。所以本环节大家一定要高度重视,根据分析结果及时对研究方法或者样板数据进行微调。

梳理归纳实验结果

最后一个部分就是梳理和归纳实验数据分析结果,此时,大家要讲结果进行合理化解释。同时也需要大量参考先前学者的优秀文献,寻找类似的结果或者解释,从而为自己的实验结果的合理解释提供参考。

有的实证性论文的课题研究可能还不止一个阶段,因为很多研究方法会分阶段进行,比如考虑外部因素的影响或者投出产入效率等等,所以大多研究方法都是两阶段或者三阶段。此时就需要大家根据论文整体性原则,及时对实验结果进行分阶段阐述,所以大家一定要自己思维清晰,层次分明。

这一部分也是将来在毕业论文答辩需要大家重点向答辩老师介绍和阐述的,一定要熟稔于心。

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

毕业论文中的数据分析方法

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

通过数据进行分析的论文用数据是数学方法。

数据分析方法:将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系。

此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

数据分析目的:

数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。

这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。

本科论文常用分析方法有:定量分析与定性分析,定性分析与定量分析是人们认识事物时用到的两种分析方式。

1、定量分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型针对数量特征、数量关系与数量变化去分析的一种方法。

2、定性分析法

定性分析法就是对研究对象进行“质”的方面的分析。定性就是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,运用主观上的判断来对分析对象的性质、特点、发展变化规律进行分析的一种方法。

扩展资料:

定量分析法的具体方法:

1、比率分析法。它是财务分析的基本方法,也是定量分析的主要方法。

2、趋势分析法。它对同一单位相关财务指标连续几年的数据作纵向对比,观察其成长性。通过趋势分析,分析者可以了解该企业在特定方面的发展变化趋势。

3、结构分析法。它通过对企业财务指标中各分项目在总体项目中的比重或组成的分析,考量各分项目在总体项目中的地位。

4、数学模型法。在现代管理科学中,数学模型被广泛应用,特别是在经济预测和管理工作中,由于不能进行实验验证,通常都是通过数学模型来分析和预测经济决策所可能产生的结果的。

参考资料来源:百度百科-定量分析法

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

本科毕业论文数据分析方法

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。

如果你是做问卷调查类(发放问卷,收集数据<通常学营销的人会这样做>)的,那么就根据你的题项设置变量,并录入数据(通常是用SPSS分析,也有用其他工具比如说Eviews的)。然后做数据的信度和效度检验(此处KMO值是比较重要的),再做基本的描述性统计分析,然后是主成份提取(即因子分析),从多个变量中提取几大因子,结果主要看旋转成分矩阵,然后用几个因子跟因变量做回归,得出影响关系的回归方程。举个例子说,你的问卷中有30个题项(前提是你已经做过小规模问卷测试以验证题项设置的合理性),则对应30个变量X1,X2,......,X29,X30,录入这30个变量的数据,如果你收集了500份问卷,其中420份是有效问卷的话,则你有420条针对30个变量的有效数据。然后做信度效度检验,描述性统计分析,因子分析,假设通过因子分析提取出4个主成份(因子),分别为F1,F2,F3,F4,这个时候对因子命名并将其生成新的变量,然后再将F1,F2,F3,F4和Y做回归分析,得到回归方程,通过R方和系数检验表来判断方程和系数的有效性。这个时候你就能得到影响消费者态度的是哪些因素了。PS:你这里的因变量消费者态度需要量化,在设计问卷的时候要考虑如何量化才有利于后续的分析。

数据可以找找,非得要弄问卷调查吗

毕业论文常用数据分析方法

毕业论文采用的研究方法有哪些

毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我为大家整理的一些关于毕业论文采用的研究方法有哪些的资料,大家一起来看看吧!

1、调查法

调查法是现在用户在撰写论文过程中使用最多的研究方法,调查法主要是通过用户系统化的搜集有关研究课题的现在状况或者历史状况进行综合分析得到研究成果的方式。

2、观察法

观察法,顾名思义就是用户借助自己的感官和一些其它的辅助工具对研究对象进行直接的观察,记录数据内容,以此来获得研究论文课题的方式,很多大型的科研机构等都是采用这种方法进行课题研究。

3、实验法

实验法相信只有接触过化学课程的用户都是可以理解的,实验法主要是通过控制实验对象的各方面要素来明确研究对象间的关系,这是现在很多用来发现研究对象间关系的方法之一。

4、文献法

文献法主要是通过不断的搜集该课题相关的'文献资料,进行系统全面的分析,以此来得到研究数据的方法,但是用户一定要知道挑选的论文文献资料一定要全面,这样才能全面的分析研究成果。

1、归纳方法与演绎方法 :归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。

门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。

2、分析方法与综合方法 :分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。

分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。

3、因果分析法 :就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。

要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

毕业论文中,其中有一部分价值论文的研究方法,那么写毕业论文有哪些研究方法?1.外部观察法对研究的事物进行直接性的观察,按照被研究事物的属性,性质,特点进行描述,获得被观察事物的第一手资料,在观察的过程中,能够不断的扩大人们对研究事物的感性认知,启发思维。2.定性分析法主要是对研究对象进行本质的分析,运用演绎、归纳的手法,抽象和概括的方式对研究对象进行深度的剖析,进入事物的里层,理解内部的规律和本质。3.文献研究法通过文献大量的查阅资料,全面深刻的了解外部对此研究的深入内容,与自我研究进行比对,有助于多角度的理解研究的事物和研究进展,对研究事物形成整体性的轮廓感知,以便后期的深入研究。4.跨学科研究法一部分的理论内容,往往会涉及到多个学科的知识,在科学的发展规律中,科学成为了一个高度分化又高度综合的集合,其学科之间的联系紧密,在方法,内容及其概念等方面有朝一致化发展的趋势,借助不同学科的理论知识,对研究事物进行交叉性的研究,能够获得详细且具体的内容成果。以上是写毕业论文有哪些研究方法的回答,希望能给各位同学带来帮助。

论文研究方法中数据分析的方法

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。1、聚类分析:聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。2、因子分析:因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。3、相关分析:相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系。4、对应分析:对应分析也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。5、回归分析:回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析。6、方差分析:又称“变异数分析”或“F检验”,方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。想要了解更多关于数据分析的相关信息,推荐选择十方融海。十方融海作为技术创新型企业,坚持源头核心技术创新,为用户提供听得懂、学得会、用得上的产品。该机构的解决方案和社会价值获得了主流媒体报道,与厦门大学、深圳大学、华南理工大学等高校达成校企合作,探索产教融合、成人教育新模式。用科技推动教育改革,让教育创造美好生活。

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

常用的一些数据分析方法主要是通过一些数据的排列以及排比总结平均等等,这些导致的

常用的列了九种供参考:

一、公式拆解

所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。举例:分析某产品的销售额较低的原因,用公式法分解

二、对比分析

对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。

三、A/Btest

A/Btest,是将Web或App界面或流程的两个或多个版本,在同一时间维度,分别让类似访客群组来访问,收集各群组的用户体验数据和业务数据,最后分析评估出最好版本正式采用。A/Btest的流程如下:

(1)现状分析并建立假设:分析业务数据,确定当前最关键的改进点,作出优化改进的假设,提出优化建议;比如说我们发现用户的转化率不高,我们假设是因为推广的着陆页面带来的转化率太低,下面就要想办法来进行改进了

(2)设定目标,制定方案:设置主要目标,用来衡量各优化版本的优劣;设置辅助目标,用来评估优化版本对其他方面的影响。

(3)设计与开发:制作2个或多个优化版本的设计原型并完成技术实现。

(4)分配流量:确定每个线上测试版本的分流比例,初始阶段,优化方案的流量设置可以较小,根据情况逐渐增加流量。

(5)采集并分析数据:收集实验数据,进行有效性和效果判断:统计显著性达到95%或以上并且维持一段时间,实验可以结束;如果在95%以下,则可能需要延长测试时间;如果很长时间统计显著性不能达到95%甚至90%,则需要决定是否中止试验。

(6)最后:根据试验结果确定发布新版本、调整分流比例继续测试或者在试验效果未达成的情况下继续优化迭代方案重新开发上线试验。流程图如下:

四、象限分析

通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常与产品分析、市场分析、客户管理、商品管理等。比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。

高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。低点击率低转化的广告,可以放弃了。还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。

象限法的优势:(1)找到问题的共性原因

通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;

(2)建立分组优化策略针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。

五、帕累托分析

帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

百分比在 70%(含)以内,划分为 A 类。百分比在 70~90%(含)以内,划分为 B 类。百分比在 90~100%(含)以内,划分为 C 类。以上百分比也可以根据自己的实际情况调整。

ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

六、漏斗分析

漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。

整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。

从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。

七、路径分析

用户路径分析追踪用户从某个开始事件直到结束事件的行为路径,即对用户流向进行监测,可以用来衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,其最终目的是达成业务目标,引导用户更高效地完成产品的最优路径,最终促使用户付费。如何进行用户行为路径分析?

(1)计算用户使用网站或APP时的每个第一步,然后依次计算每一步的流向和转化,通过数据,真实地再现用户从打开APP到离开的整个过程。(2)查看用户在使用产品时的路径分布情况。例如:在访问了某个电商产品首页的用户后,有多大比例的用户进行了搜索,有多大比例的用户访问了分类页,有多大比例的用户直接访问的商品详情页。(3)进行路径优化分析。例如:哪条路径是用户最多访问的;走到哪一步时,用户最容易流失。(4)通过路径识别用户行为特征。例如:分析用户是用完即走的目标导向型,还是无目的浏览型。(5)对用户进行细分。通常按照APP的使用目的来对用户进行分类。如汽车APP的用户可以细分为关注型、意向型、购买型用户,并对每类用户进行不同访问任务的路径分析,比如意向型的用户,他进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,依据访问路径的相似性对用户进行分类,再对每类用户进行分析。

以电商为例,买家从登录网站/APP到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。用户行为路径图示例:

八、留存分析

用户留存指的是新会员/用户在经过一定时间之后,仍然具有访问、登录、使用或转化等特定属性和行为,留存用户占当时新用户的比例就是留存率。留存率按照不同的周期分为三类,以登录行为认定的留存为例:第一种 日留存,日留存又可以细分为以下几种:(1)次日留存率:(当天新增的用户中,第2天还登录的用户数)/第一天新增总用户数(2)第3日留存率:(第一天新增用户中,第3天还有登录的用户数)/第一天新增总用户数(3)第7日留存率:(第一天新增用户中,第7天还有登录的用户数)/第一天新增总用户数(4)第14日留存率:(第一天新增用户中,第14天还有登录的用户数)/第一天新增总用户数(5)第30日留存率:(第一天新增用户中,第30天还有登录的用户数)/第一天新增总用户数

第二种 周留存,以周度为单位的留存率,指的是每个周相对于第一个周的新增用户中,仍然还有登录的用户数。

第三种 月留存,以月度为单位的留存率,指的是每个月相对于第一个周的新增用户中,仍然还有登录的用户数。留存率是针对新用户的,其结果是一个矩阵式半面报告(只有一半有数据),每个数据记录行是日期、列为对应的不同时间周期下的留存率。正常情况下,留存率会随着时间周期的推移而逐渐降低。下面以月留存为例生成的月用户留存曲线:

九、聚类分析

聚类分析属于探索性的数据分析方法。通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。聚类结果要求组内对象相似性较高,组间对象相似性较低。在用户研究中,很多问题可以借助聚类分析来解决,比如,网站的信息分类问题、网页的点击行为关联性问题以及用户分类问题等等。其中,用户分类是最常见的情况。

常见的聚类方法有不少,比如K均值(K-Means),谱聚类(Spectral Clustering),层次聚类(Hierarchical Clustering)。以最为常见的K-means为例,如下图:

可以看到,数据可以被分到红蓝绿三个不同的簇(cluster)中,每个簇应有其特有的性质。显然,聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当我们对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。

  • 索引序列
  • 数据分类方法毕业论文
  • 毕业论文中的数据分析方法
  • 本科毕业论文数据分析方法
  • 毕业论文常用数据分析方法
  • 论文研究方法中数据分析的方法
  • 返回顶部