首页 > 论文发表知识库 > 有关半导体的论文题目

有关半导体的论文题目

发布时间:

有关半导体的论文题目

半导体物理迅速发展及随晶体管发明使科家早50代设想发明半导体激光器60代早期组竞相进行面研究理论析面莫斯科列别捷夫物理研究所尼古拉·巴索夫工作杰19627月召固体器件研究际议美麻省理工院林肯实验室两名者克耶斯(Keyes)奎斯特(Quist)报告砷化镓材料光发射现象引起通用电气研究实验室工程师哈尔(Hall)极兴趣家火车写关数据家哈尔立即制定研制半导体激光器计划并与其研究员道经数周奋斗计划获功像晶体二极管半导体激光器材料p-n结特性敞弗搬煌植号邦铜鲍扩基础且外观亦与前者类似半导体激光器称二极管激光器或激光二极管早期激光二极管实际限制例能77K低温微秒脉冲工作8间才由贝尔实验室列宁格勒(现圣彼堡)约飞(Ioffe)物理研究所制造能室温工作连续器件足够靠半导体激光器则直70代期才现半导体激光器体积非米粒工作波依赖于激光材料般~微米由于种应用需要更短波器件发展据报导Ⅱ~Ⅳ价元素化合物ZnSe工作物质激光器低温已微米输波~微米室温连续器件输功率已达10毫瓦迄今尚未实现商品化光纤通信半导体激光预见重要应用领域面世界范围远距离海底光纤通信另面则各种区网者包括高速计算机网、航空电系统、卫通讯网、高清晰度闭路电视网等目前言激光唱机类器件市场其应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示及各种医疗应用等晶体管利用种称半导体材料特殊性能电流由运电承载普通金属铜电导体电没紧密原核相连容易电荷吸引其物体例橡胶绝缘体 --电良导体--电能自由运半导体名字暗示处于两者间通情况象绝缘体某种条件导电

我国半导体产业现状及前景分析全球半导体产业向亚太转移,我国半导体产业融入全球产业链全球半导体市场规模06年达到亿美元。主要应用领域包括计算机、消费电子、通信等。在电子制造业转移和成本差异等因素的作用下,全球半导体产业向亚太地区转移趋势明显。我国内地半导体产业发展滞后于先进国家,内地企业多位于全球产业链的中下游环节。我国半导体产业成为全球产业链的组成部分,产量和产值提高迅速,但是产品技术含量和附加值偏低。2007年半导体产业大幅波动,长远发展前景良好半导体产业的硅周期难以消除。2007年上半年,在内存价格上升等因素作用下,全球半导体市场增速明显下滑。至2007年下半年,由于多余库存的降低、资本支出的控制,半导体市场开始回升。预计2008年,半导体产业增速恢复到一个较高的水平。长远来看,支撑半导体产业发展的下游应用领域仍然处在平稳发展阶段,半导体产业的技术更新也不曾停滞。产品更新与需求形成互动,推动半导体产业持续增长。我国半导体市场规模增速远快于全球市场我国半导体市场既受全球市场的影响,也具有自身的运行特点。我国半导体应用产业中,PC等传统领域仍保持平稳增长,消费电子、数字电视、汽车电子、医疗电子等领域处于快速成长期,3G通信等领域处于成长前期。我国集成电路市场规模增速远快于全球市场,是全球市场增长的重要拉动元素。2006年,我国集成电路市场已经成为全球最大市场。我国半导体产业规模迅速扩大,产业结构逐步优化我国半导体产业规模同样快速提高。在封装测试业保持高速增长的同时,设计和制造业的比例逐步提高,产业结构得到优化。在相关管理部门、科研机构和企业的共同努力下,我国系统地开展了标准制定和专利申请工作,有效地保障本土企业从设计、制造等中上游产业链环节分享内地快速增长的电子设备市场。分立器件、半导体材料行业是我国半导体产业的重要组成部分集成电路是半导体产业的最大组成部分。分立器件、半导体材料和封装材料也是半导体产业的重要组成部分。我国内地分立器件和半导体材料市场和产业也处于快速增长之中。上市公司我国内地半导体产业上市公司面对诸多挑战。技术升级和产品更新是企业生存发展的前提。半导体材料生产企业有较强的定价能力,在保持产品换代的前提下,有较大的成长空间;封装测试公司整体状况较好;分立器件企业发展不均。全球半导体产业简况根据WSTS统计,2006年全球半导体市场销售额达2477亿美元,比2005年增长;产量为5192亿颗,比2005年增长;ASP为美元,比2005年下降。从全球范围来看,包括计算机(Computer)、通信(Communication)、消费电子(ConsumerElectronics)在内的3C产业是半导体产品的最大应用领域,其后是汽车电子和工业控制等领域。美、日、欧、韩以及中国台湾是目前半导体产业领先的国家和地区。2006年世界前25位的半导体公司全部位于美国、日本、欧洲、韩国。2005年,美国和日本分别占有48%和23%的市场份额,合计达71%。韩国和台湾的半导体产业进步很快。韩国三星已经位列全球第二;台积电(TSMC)的收入在2007年上半年有了很大的提高,排名快速升至第6,成为2007年上半年进入前20名的唯一一家台湾公司,这从一个侧面反映了台湾代工业非常发达。中国市场简况中国已经成为全球第一大半导体市场,并且保持较高的增长速度。2006年,中国半导体市场规模突破5800亿,其中集成电路市场达4863亿美元,比2005年增长,远高于全球市场的增速。我国市场已经达到全球市场份额的四分之一强。在市场增长的同时,我国半导体产业成长迅速。以集成电路产业为例,2006年国内生产集成电路亿块,同比增长。实现收入亿元,同比增长。我国半导体产业规模占世界比重还比较低,但远高于全球总体水平的增长率让我们看到了希望。中国集成电路的应用领域与国际市场有类似之处。2006年,3C(计算机、通信、消费电子)占了全部应用市场的,高于全球比例。而汽车电子的比例,比起2005年的有所提高,仍明显低于全球市场的。与此相对应的是,我国汽车市场销量呈增长态势,汽车电子国产化比例逐步提高。这说明,在汽车电子等领域,我国集成电路应用仍有较大成长空间。我国在国际半导体产业中所处地位我国半导体市场进口率高,超过80%的半导体器件是进口的。国内半导体产业收入远小于国内市场规模。2006年国内IC市场规模达5800亿,而同期国内IC产业收入是亿。我国有多个电子信息产品产量已经位居全球第一,包括台式机、笔记本电脑、手机、数码相机、电视机、DVD、MP3等。中国已超过美国成为世界上最大的集成电路产品应用国。但目前国内企业只能满足不到20%的集成电路产品需求,其他依赖进口。中国大陆市场的半导体产品前十名的都是跨国公司。这十家公司平均21%的收入来自中国市场。这与中国市场占全球市场规模的比例基本吻合。2006年这十家公司在中国的收入总和占到中国大陆半导体市场规模的。上述两组数字从另一个侧面反映出跨国公司占有国内较高市场份额。国内半导体市场对进口产品依赖性高。虽然我国半导体进口量非常大,但出口比例也非常高。2005年国内半导体产品有64%出口。这种现象被称为“大进大出”,主要是由我国产业链特点造成的。总的来看,我国IC进口远远超过出口。据海关统计,2006年我国集成电路和微电子组件进口额为1035亿美元,出口额为200亿美元,逆差巨大。由于我国具有劳动力竞争优势,国际半导体企业把技术含量相对较低、劳动密集型的产业链环节向我国转移。我国半导体产业逐渐成为国际产业链的一环。产业链调整和转移的结果是,我国半导体产业在低技术、劳动密集型和低附加值的环节得到了优先发展。2006年,我国IC设计、制造和封装测试业所占的比重分别是、和。一般认为比较合理的比例是3:4:3。封装测试在我国先行一步,发展最快,规模也最大,是全球半导体产业向中国转移比较充分的环节。而处于上游的IC设计成为最薄弱的环节。芯片制造业介于前两者之间,目前跨国公司已经开始把芯片制造逐步向我国转移,中芯国际等国内企业发展也比较快。这样的产业结构特点说明,国内的半导体企业多数并未直接面对半导体产品的用户—电子设备制造商和工业、军事设备制造商,甚至多数也没有直接分享国内市场。更多的是充当国际半导体产业链的一个中间环节,间接服务于国际国内电子设备市场。这种结构,利润水平偏低,定价能力不强,客户结构对于企业业绩影响较大。究其原因,还是国内技术水平低,高端核心芯片、关键设备、材料、IP等基本依赖进口,相关标准和专利受制于人。国内企业发展也不够成熟,规模偏小,设计、制造、应用三个环节脱节。与产业链地位相对应,我国大陆的企业多为Foundry(代工)企业,这与台湾的产业特点相类似。国际上大的半导体跨国公司多为IDM形式。2007全球半导体市场波动,未来增长前景良好半导体产业长期具有行业波动性硅周期性依然将长期存在。这是由半导体产业所处的位置决定的。半导体产业本身具有较长的产业链环节。同时,半导体产业本身是电子设备大产业链的一个中间环节。下游需求和价格变动等外在扰动因素、产业技术升级等内在扰动因素必然在整个产业链产生传导作用。传导过程存在延时,从而导致半导体公司的反应滞后。半导体产业只有提高自身的下游需求预见性,及早对价格、需求和库存等变动做出预测,从而尽量减小波动的幅度。但是,半导体产业的波动性将长期存在。2006年全球手机销售量增加21%2006年全球手机销售量为亿部,同比增长21%,其中,2006年四季度售出亿部,占全年。Gartner预测2007年手机销量为12亿部,比2006年增加2亿部。手机市场增长平稳。手机作为个人移 动终端,除了通信和已经得到初步普及的音乐播放功能外,将集成越来越多的功能,包括GPS、手机电视等等。3G的逐渐部署也极大促进手机市场的增长。手机用芯片包括信号处理、内存和电源管理等。图9反映了手机用内存需求的增加情况。2006至2011年全球数字电视机市场将增长一倍iSuppli预测,从2006年至2011年全球数字电视机半导体市场将增长一倍,从71亿美元增至142亿美元。数字电视机的芯片应用包括输入/输出电路、驱动电路、电源管理等方面。带动数字电视机增长的因素有多种,包括平板电视价格下降,新一代DVD播放机普及,高清电视推广等。此外,许多国家的政府都宣布了从模拟电视切换到数字电视广播系统的计划。例如,2009年2月17日,全美模拟电视将停播,全部切换为数字电视广播。中国内地半导体产业的“生态”环境中国大陆半导体产业作为国际产业链的一个环节,企业形态以代工型企业(foundry)为主,产业结构偏重封装测试环节,半导体制造快速发展,未来我国半导体产业与国际产业大环境的联系将愈发密切。总的来看,国内企业规模和市场份额相对较小,产品单一,企业发展和技术水平还不够成熟稳定,行业处于成长期。下游通信、消费电子、汽车电子等产业同样是正在上升的市场,发展程度低于国际先进水平,发展速度快于国际平均水平。各种因素共同作用,使得我国半导体产业发展并非完全与国际同步,具备自身的产业“生态环境”,具有不同的发展特点。2007年上半年,虽然全球市场增速只有2%,但我国内地依然保持了较高的增长速度。上半年中国集成电路总产量同比增长,达到亿块。共实现销售收入总额亿元,同比增长。收入增长与2006上半年的48%相比有所回落,部分是受国际市场的影响,但相当大的程度还是国内产业收入基数增大等因素及内在发展规律所致。我国半导体市场和产业规模增长远快于全球整体增速受益于国际电子制造业向我国内地转移,以及国内计算机、通信、电子消费等需求的拉动,我国内地半导体市场规模的增长远快于全球市场的增长速度,已经成为全球半导体市场增长的重要推动区域。作为半导体产业的重要组成部分,国内集成电路产业规模也是全球增长最快的。上世纪90年代初,我国IC产业规模仅有10亿元,至2000年突破百亿元,用了近10年时间;而从2000年的百亿元增至2006年的千亿元,只用了6年时间。今年年底,中国集成电路产业收入总额有望超过全球8%,提前实现我国“十一五”规划提出的“到2010年国内集成电路产业规模占全球8%份额”的目标。我国半导体应用产业处在高速发展阶段PC、手机等传统领域发展依然平稳,同时多媒体播放GPS和手机电视为手机等移 动终端带来了新的增长点。我国数字电视、3G、汽车电子、医疗电子等领域发展进程有别于国际水平,未来几年内将进入高速发展阶段,有力促进国内半导体需求。抢占标准制高点,充分利用国内市场资源其实,从目前的角度来看,我国市场规模的快速增长,国内企业在某种程度的程度还不是直接受益者。这是由国内半导体产业在国际产业链中所处的位置所决定的。这一情况在逐步改善,其中最重要的一点,就是我国在标准和专利方面取得突破。国内的管理部门、专家团队、科研机构和企业已经具有了产业发展的规划能力和前瞻性。在国内相关发展规划的指导下,产业管理部门、科研机构和企业的共同努力,促使3G通信标准TD-SCDMA、数字音视频编解码标准AVS标准、数字电视地面传输国家标准DTMB等系列国内标准出台;手机电视标准虽然尚未明确,但CMMB等国内标准已经打下了良好的基础。这些国有标准虽然未必使国内公司独享这些领域的半导体设计和制造市场,但是标准的制定主要是依靠国内科研机构和企业。在标准制定的过程之中,这些科研机构和企业已经系统地实现了相关技术,研发出了验证产品,取得先入优势。标准制定的同时,国内科研机构已经开展专利池的建设。这样,国内半导体产业就具备了分享这些领域的国内市场的有利条件。我们有理由相信,国内数字电视、消费电子等产业进一步发展,已经对国内半导体产业等上游产业具有了昔日不可比拟的带动能力,本土半导体公司可以更加直接的“触摸”到国内半导体应用产业了。产业链结构缓慢向上游迁移自有标准体系的建立,使国内半导体产业的发展具备了一定的优势。身处有利的“生态环境”内,我国半导体产业发展前景良好。目前,我国半导体产业结构已经在逐渐发生变化。2002年,中国IC设计、制造和封装测试业所占的比重分别为、、和,2006年,这一数字变为、和。设计、制造、封装测试三业并举,我国半导体产业才能产生更好的协同作用,国际公认的合理比例是3:4:3。我国半导体产业比例的改变,说明我国集成电路产业在向中上游延伸,但距离理想的比例还有差距。设计和制造业需要更快的提高。芯片设计水平和收入逐步提高从集成电路产业链的角度来看,只有掌握了设计,使产业链结构趋于合理,才能掌握我国IC产业的主动权,才能进入IC产业的高附加值领域。近年来,我国集成电路的设计水平不断提高。20%的设计企业能够进行微米、100万门的IC设计,最高设计水平已达90纳米、5000万门。虽然我国半导体产业很多没有直接分享国内3G、消费电子等领域的高成长。但是,这些领域确实对我国IC设计业的发展提供了良好的发展契机。例如,鼎芯承担了中国3G“TD-SCDMA产业化”国家专项,并在2006年成为中国TD产业联盟第一家射频成员;展讯通信(上海)有限公司是一家致力于手机芯片研发的半导体企业,2006年的销售额达亿元。内地排名第一的芯片设计企业是珠海炬力集成电路设计有限公司(晶门科技总部位于香港),MP3芯片产品做的比较成功,去年的销售额达到了亿美元。中星微电子和展讯通信公司先后获得国家科技最高奖—国家科技进步一等奖。芯片生产线快速增长我国新建IC芯片生产线增长很快。从2006年至今增加了10条线,平均每年增加6条。已经达到最高90纳米、主流技术微米的技术水平。12英寸和8英寸芯片生产线产能在国内晶圆总产能中所占的比重则已经超过60%。跨国企业加快了把芯片制造环节向国内转移的速度,Intel也将在大连投资25亿兴建一座芯片生产厂。建成投产后形成月产12英寸、90纳米集成电路芯片52000片的生产能力,主要产品为CPU芯片组。目前我国大尺寸线比例仍然偏小,生产线的总数占全世界的比例也还小于10%。“十一五”期间我国IC生产线有望保持快速增加。

半导体中的电子状态 电子状态指的是电子的运动状态又常简称为电子态,量子态等。半导体之所 以具有异于金属和绝缘体的物理性质是源于半导体内的电子运动规律。 半导体内 的电子运动规律又是由半导体中的电子状态决定的。 晶体是由周期性地排列起来的原子所组成的。 每个原子又包含有原子核和电 子。本章的目的就是研究这些粒子的运动状态。 周期性势场 晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。晶体内部 结构的周期性可以用晶格来形象地描绘。 晶格是由无数个相同单元周期性地重复排列组 成的。这种重复排列的单元称为晶胞。晶胞的选取是任意的,其中结构最简单,体积最 小的晶胞叫做原胞。三维晶格的原胞是平行六面体。二维晶格的原胞是平行四边形。一 维晶格的原胞是线段。原胞只含有一个格点,格点位于元胞的顶角上。 (例:二维晶格 和一维晶格的原胞) a r b Rm r′ a2 a1 c d 。。 二维晶格元胞 Rm=3a1+ a2 以任一格点为原点,沿原胞的三个互不平行的边,长度分别等于三个边长的一组矢 量称为原胞的基矢量,简称为基矢。记作 a1 , a2 , a3 。 晶格可以用基矢量来描述。矢量 1 Rm = m1a1 + m2 a2 + m3 a3 = ∑ mi ai i =1 3 ( m1,m2,m3 是任意整数 ) (1-1) 确定了任一格点的位置,称为晶格矢量。 r 和 r = r + Rm 为不同原胞的对应点。二者相 ' 差一个晶格矢量。可以说不同原胞的对应点相差一个晶格矢量。反过来也可以说相差一 个晶格矢量的两点是不同原胞的对应点。通过晶格矢量的平移可以定出所有原胞的位 置,所以 Rm 也叫做晶格平移矢量,晶体内部结构的周期性也叫做晶体的平移对称性。 晶体内部结构的周期性意味着晶体内部不同原胞的对应点处原子的排列情况相同, 晶体的微观物理性质相同。因此,不同原胞的对应点晶体的电子的势能函数相同,即 V (r ) = V (r ' ) = V (r + Rm ) (1-2) 式(1-2)是晶体的周期性势场的数学描述。图 1-1 给出一维周期性势场的示意图。 V1 , V2 , V3 …,分别代表原子 1,2,3,…,的势场,V 代表叠加后的晶体势场。周期性势场中的电子可以有两种运动方式,一是在一个原子的势场中运动,二是 在整个晶体中运动。比如具有能量 E1 或 E2 的电子在可以在原子 1 的势场中运动,根据 量子力学的隧道效应,它还可以通过隧道效应越过势垒 V 到势阱 2,势阱 3,…,中运 动。换言之,周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在 其它的原子附近运动, 即可以在整个晶体中运动。 通常把前者称为电子的局域化运动 (相 应的电子波函数称为原子轨道) ,而把后者称为共有化运动(相应的电子波函数称为晶 格轨道) 。局域化运动电子的电子态又称为局域态。共有化运动的电子态又称为扩展态。 晶体中的电子的运动既有局域化的特征又有共有化特征。 如果电子能量较低, 例如图 1-1 中的 E2,在该能态电子受原子核束缚较强,势垒 V-E2 较大。电子从势阱 1 穿过势垒进 入势阱 2 的概率就比较小。对于处在这种能量状态的电子来说,它的共有化运动的程度 就比较小。但对于束缚能较弱的状态 E1,由于势垒 V-E1 的值较小,穿透隧道的概率就 比较大。因此处于状态 E1 的电子共有化的程度比较大。价电子是原子的最外层电子, 受原子的束缚比较弱,因此它们的共有化的特征就比较显著。在研究半导体中的电子状 态时我们最感兴趣的正是价电子的电子状态。 2 V1 V2 V1 V3 V2 V3 V E1 V V V E2 1 2 3 原子 图 周期势场示意图 -2 -a 0 a 2 图 周期为 a 的一维周期性势场 图 周期势场示意图 周期性势场中电子的波函数 布洛赫(Bloch)定理 布洛赫( ) 布洛赫定理给出了周期性势场中电子的运动状态, 提供了研究晶体中电子运动的理 论基础。 单电子近似(哈崔 福克 Hartree-Fock 近似) 单电子近似(哈崔-福克 近似) 晶 体 是 由 规 则 的 ,周 期 性 排 列 起 来 的 原 子 所 组 成 的 ,每 个 原 子 又 包 含 有 原子核和核外电子。原子核和电子之间、电子和电子之间存在着库仑作用。 因 此 ,它 们 的 运 动 不 是 彼 此 无 关 的 ,应 该 把 它 们 作 为 一 个 体 系 统 一 地 加 以 考 虑 。也 就 是 说 ,晶 体 中 电 子 运 动 的 问 题 是 一 个 复 杂 的 多 体 问 题 。为 使 问 题 简 化 ,可 以 近 似 地 把 每 个 电 子 的 运 动 单 独 地 加 以 考 虑 ,即 在 研 究 一 个 电 子 的 运 动 时 ,把 在 晶 体 中 各 处 的 其 它 电 子 和 原 子 核 对 这 个 电 子 的 库 仑 作 用 ,按 照 它 们 的 几 率 分 布 ,平 均 地 加 以 考 虑 。也 就 是 说 ,其 它 电 子 和 原 子 核 对 这 个 电 子 3 的 作 用 是 为 这 个 电 子 提 供 了 一 个 势 场 。这 种 近 似 称 为 单 电 子 近 似 。单 电 子 近 似 方 法 也 被 称 之 为 哈 崔 -福 克 方 法 。 这 样 , 一 个 电 子 所 受 的 库 仑 作 用 仅 随 它 自 己 的 位 置 的 变 化 而 变 化 。或 者 说 ,一 个 电 子 的 势 函 数 仅 仅 是 它 自 己 的 坐 标 的 函 数 。于 是 它 的 运 动 便 由 下 面 仅 包 含 这 个 电 子 的 坐 标 的 波 动 方 程 式 所 决 定 2 2 + V (r )ψ (r ) = E ψ (r ) 2m 式中 2 2 — 电子的动能算符 2m ( 1-3) V (r ) — 电子的势能算符,它具有晶格的周期性 — 电子的能量 — 电子的波函数 E ψ (r ) = h , 2π h 为普朗克常数, 称为约化普朗克常数 布 洛 定 理 布 洛 定 理 指 出 : 如 果 势 函 数 V (r ) 有 晶 格 的 周 期 性 , 即 V (r ) = V (r + Rm ) 〔 公 式 ( 1-2) 〕则 方 程 式 ( 1-3) 的 解 ψ (r ) 具 有 如 下 形 式 ψ k (r ) = eik r uk (r ) 式 中 函 数 u k (r ) 具 有 晶 格 的 周 期 性 , 即 ( 1-4) uk (r + Rm ) = uk (r ) 以上陈述即为布洛定理。 ( 1-5) 布 洛 定 理 中 出 现 的 矢 量 Rm 为 式 ( 1-1) 所 定 义 的 晶 格 平 移 矢 量 。 矢 量 k 4 称 为 波 矢 量 ,是 任 意 实 数 矢 量 。 k = 2π λ 称为波数, λ 为电子波长。 k 是标志 电 子 运 动 状 态 的 量 。 由 式 ( 1-4) 所 确 定 的 波 函 数 称 为 布 洛 赫 函 数 或 布 洛 赫 波。 由于 ψ k (r + Rm ) = eik (r +R )uk (r + Rm ) m = = 即 eik Rm eik r uk (r ) eik Rmψ k (r ) ψ k (r + Rm ) = eik R ψ k (r ) m ( 1-6) 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 表 述 。 式 ( 1-6) 说 明 , 晶 体 中 不 同 原 胞 对 应点处的电子波函数只差一个模量为 1 的因子 e ik Rm 也就是说,在晶体中各 个 原 胞 对 应 点 处 电 子 出 现 的 概 率 相 同 ,即 电 子 可 以 在 整 个 晶 体 中 运 动 — 共 有 化运动。 我 们 现 在 考 察 波 矢 量 k 和 波 矢 量 k = k + Kn 标 志 的 两 个 状 态 。 ' 式中 K n = n1b1 + n2b2 + n3b3 = ∑ ni bi i =1 3 (1-7) 叫 做 倒 格 矢 ( reciprocal lattice vector) b1 , b2 , b3 叫 做 与 基 矢 a1 , a 2 , 。 a3 相 应 的 倒 基 矢 。 n1 , n2 , n3 为 任 意 整 数 。由 b1 , b2 , b3 所 构 成 的 空 间 称 为倒 空 间 (reciprocal space)或 倒 格 子 ( reciprocal lattice) b1 , b2 , b3 与 。 a1 , a 2 , a3 之 间 具 有 如 下 的 正 交 关 系 2π , i = j bi a j = 2πδ ij = 0, i ≠ j 且 ( i, j = 1, 2, 3) b1 = 2π (a 2 × a3 ) 5 b2 = b3 = 式中 2π (a3 × a1 ) 2π (a1 × a 2 ) = a1 ( a 2 × a 3 ) 为晶格原胞的体积。 (举例:晶格常数为 a 的一维晶格和它的倒格子: b = 2π / a 。 a ≈ , b ≈ 108 cm 1 )晶 格 平 移 矢 量 Rm 和 倒 格 矢 K n 之 间 满 足 如 下 关 系 eiKn Rm = 1 利用上式,有 i k + K n Rm e ( ) = eiKn Rm eik Rm = eik Rm 由 于 波 矢 量 k 是 标 志 电 子 状 态 的 量 ,可 见 ,相 差 倒 格 矢 K n 的 两 个 k 代 表 的 是 同 一 个 状 态 。 举 例 :倒 空 间 一 维 波 矢 量 ) ( 。因 此 ,为 了 表 示 晶 体 中 不 同 的 电 子态只需要把 k 限制在以下范围 0 ≤ k1 < 0 ≤ k2 < 0 ≤ k3 < 2π a1 2π a2 2π a3 即可。为对称起见,把 k 值限制在 6 或写作 π a1 ≤ k1 < ≤ k2 < ≤ k3 < π a1 π a2 π a2 π a3 π a3 π ≤ k i ai < π ( 1-8) 公 式 ( 1-8) 所 定 义 的 区 域 称 为 k 空 间 的 第 一 布 里 渊 ( 1st Brillouin Zone) 区。 布里渊区是把倒空间划分成的一些区域。布里渊区是这样划分的:在 倒 空 间 ,作 原 点 与 所 有 倒 格 点 之 间 连 线 的 中 垂 面 ,这 些 平 面 便 把 倒 空 间 划 分 成 一 些 区 域 ,其 中 ,距 原 点 最 近 的 一 个 区 域 为 第 一 布 里 渊 区( 1stBZ),距 原 点 次 近 的 若 干 个 区 域 组 成 第 二 布 里 渊 区 ,以 此 类 推 。这 些 中 垂 面 就 是 布 里 渊 区的分界面。 在 布 里 渊 区 边 界 上 的 k 的 代 表 点 , 都 位 于 到 格 矢 Kn 的 中 垂 面 上 , 它 们 满足下面的平面方程: k (Kn / Kn ) = 即 1 Kn 2 k Kn = 1 2 Kn 2 ( 1-9) k 取遍 k 空间除原点以外的所有所有 k 的代表点。可以证明,这样划分的布里渊区,具有以下特性: 1.每 个 布 里 渊 区 的 体 积 都 相 等 , 而 且 就 等 于 一 个 倒 原 胞 的 体 积 。 7 2. 每 个 布 里 渊 区 的 各 个 部 分 经 过 平 移 适 当 的 倒 格 矢 K n 之 后 ,可 使 一 个 布 里 渊区与另一个布里渊区相重合。 3. 每 个 布 里 渊 区 都 是 以 原 点 为 中 心 而 对 称 地 分 布 着 而 且 具 有 正 格 子 和 倒 格 子的点群对称性。布里渊区可以组成倒空间的周期性的重复单元。 根 据 以 上 分 析 ,对 于 周 期 为 a 的 一 维 晶 格 ,第 一 布 里 渊 区 为 [ 第二布里渊区为[ π π 2π π π 2π , )和[ , ) 余此类推。 。 a a a a , ) 。 a a 值得注意的是布里渊区边界上的两点相差一个倒格矢,因此代表同一个 状态。 常见金刚石结构和闪锌矿结构具有面心立方晶格,其第一布里渊区如图 1-2 所 示 。布 里 渊 区 中 心 用 Γ 表 示 。六 个 对 称 的 <100>轴 用 表 示 。八 个 对 称 的 <111>轴 用 ∧ 表 示 。 十 二 个 对 称 的 <110>轴 用 ∑ 表 示 。 符 号 X、 L、 K 分 别 表 示 <100>、 <111>、 <110>轴 与 布 里 渊 区 边 界 的 交 点 。 其 坐 标 分 别 为 X: 2π 2π 1 1 1 (1, 0, 0) , L: ( , , ) a a 2 2 2 K: 2π 3 3 ( , , 0) a 4 4 在六个对称的 X 点中,每一个点都与另一个相对于原点同它对称的点相 距 一 个 倒 格 矢 ,它 们 是 彼 此 等 价 的 。不 等 价 的 X 点 只 有 三 个 。同 理 ,在 八 个 对称的 L 点中不等价的只有四个。 L Γ Χ ky K kx 8 图 1-2 面 心 立 方 格 子 的 第 一 布 里 渊 区 图 下面我们来证明布洛赫定理。 引入电子的哈蜜顿算符 H=- 2 2 + V (r) 2m 则 波 动 方 程 ( 1-3) 可 以 简 写 成 Hψ (r) = Eψ (r) ( 1-10) 引 入 平 移 算 符 T ( Rm , 其 定 义 为 , 当 它 作 用 在 任 意 函 数 f( r ) 上 后 , 将 函 Rm) 数 中 的 变 量 r 换 成 ( r +Rm ,得 到 r 的 另 一 函 数 f( r +Rm ,即 Rm) Rm) Rm Rm Rm)f(r )=f( r +Rm Rm) T (Rm Rm r Rm (1-11) 平 移 算 符 彼 此 之 间 可 以 交 换 。 对 于 任 意 两 个 平 移 算 符 T (Rm Rm)和 T (Rn Rn), Rm Rn 有 =T(Rm+Rn) T(Rm)T(Rn) =T(Rn)T(Rm) =T(Rm Rn) 证明如下: T(Rm)T(Rn)f(r)=T(Rm)f(r T(Rm)T(Rn)f(r)=T(Rm) (r+ Rn) (r =f(r +Rn Rm r Rn Rm) Rn+Rm =T (r +Rn Rm T r Rn Rm)f( r ) Rn+Rm (1-12) 9 =T (r +Rm Rn T r Rm Rn)f( r ) Rm+Rn =T (Rn T Rn Rn)f(r + Rm r Rm) = T ( Rn T ( Rm f(r ) Rn) Rm) r 这 说 明 两 个 平 移 操 作 接 连 进 行 的 结 果 ,不 依 赖 于 它 们 的 先 后 次 序 ,即 平 移 算 符彼此之间是可以交换的。 在 周 期 性 势 场 中 运 动 的 电 子 的 势 函 数 V(r ) 具 有 晶 格 的 周 期 性 [ 公 式 r ( 1-2) ]因 而 有 2 2 T(R m )Hψ (r) = (∑ ) + V (r + R m ) ψ (r + R m ) 2 2m j ( x j + m j a j ) 2 2 = + V (r) ψ (r + R m ) 2m = HT(R m )ψ (r) 上 式 表 明 , 任 意 一 个 晶 格 平 移 算 符 T (Rm Rm)和 电 子 的 哈 密 顿 算 符 H 彼 此 间 两 两 Rm 可交换,即 Rm)H HT Rm) HT(Rm T (Rm H =HT Rm Rm (1-13) 根据量子力学的一个普遍定理,这些线性算符可以有共同的本征函数。 或者说,存在这样的表象,在此表象中,这些算符的矩阵元素同时对角化。 容易说明,为了选择 H 的本征函数,使得它们同时也是所有平移算符的 本 征 函 数 , 只 需 要 它 们 是 三 个 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 a T a 函 数 就 够 了 。 也 就 是 说 , 如 果 ψ ( r ) 是 基 本 平 移 算 符 T ( a j ) ,T ( a 2 ), T (a 3 ) T a 的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm)的 本 征 函 数 。 证 明 如 下 : 选 择 ( 1-3) Rm 10 的 解 ψ (r ) 是 基 本 平 移 算 符 的 本 证 函 数 , 即 T(a1 )ψ (r) = ψ (r + a1 ) = C (a1 )ψ (r) T (a2 )ψ (r ) = ψ (r + a2 ) = C (a2 )ψ (r ) T (a3 )ψ (r ) = ψ (r + a3 ) = C (a3 )ψ (r ) 或 T (a j )ψ (r ) = ψ (r + a j ) = C (a j )ψ (r ), ( j = 1, 2,3) 其 中 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 T ( Rm )ψ (r ) = m1a1 + m2 a2 + m3 a3 )ψ (r ) T( = ψ ( r + Rm ) = T ( a1 ) 1 T ( a2 ) 2 T ( a3 ) 3 ψ (r ) m m m = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3ψ ( r ) m m m =λ ψ ( r ) ( 1-14) 可 见 , 若 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 则 λ = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3 就 是 平 移 算 符 T (Rm Rm)的 本 征 值 。 因 此 , 若 ψ ( r ) 是 三 个 Rm m m m 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm) a T a Rm 的 本 征 函 数 。 我 们 就 这 样 来 选 择 波 动 方 程 ( 1-3) 的 解 , 使 它 们 同 时 也 是 所 有 平 移 算 符 的 本 征 函 数 。或 者 说 通 过 寻 找 平 移 算 符 的 本 征 函 数 去 找 到 波 动 方 程 ( 1-3) 的 解 。 11 由 于 平 移 算 符 T (Rm Rm)和 H 可 以 交 换 ,所 以 若 ψ ( r ) 是 H 的 本 征 函 数 ,则 经 Rm 过 平 移 后 的 函 数 ψ ( r + Rm ) 一 定 也 都 是 H 的 本 征 函 数 。 求 这 些 函 数 都 要 满 足 要 归 一 化 条 件 , 因 而 它 们 之 间 的 比 例 系 数 的 绝 对 值 必 须 等 于 1, 即 C (a1 ) m1 C (a2 ) m2 C (a3 ) m3 该式成立的充分必要条件是 =1 ( m1 , m2 , m3 是任意整数) C (a1 ) = 1, C (a2 ) = 1, C (a3 ) = 1 。 即要求这三个常数只可能是模量为 1 的复数。它们一般可以写成 C (a1 ) = ei 2πβ1 , C (a2 ) = ei 2πβ2 , C (a3 ) = ei 2πβ3 或者 C (a j ) = e 这里 i 2πβ j ( j=1, 2, 3) ( 1-15) β1 , β 2 , β3 为 三 个 任 意 实 数 。 以 这 三 个 实 数 为 系 数 , 把 三 个 倒 基 矢 线 性 组 合 起 来 , 得 到 一 个 实 数 矢 量 K: k = β1b1 + β 2b2 + β 3b3 根据正基矢与倒基矢之间的正交关系 3 (1-16) k a j = ∑ βi bi a j = 2πβ j i =1 可 以 把 式 ( 1-15) 改 写 成 C (a1 ) = eik a1 , C (a2 ) = eik a2 , C (a3 ) = eik a3 或者 12 C (a j ) = e 代替 ik a j ( 1-17) β1 , β 2 , β3 , 引 入 了 矢 量 K 。 在 量 子 力 学 中 ,如 果 算 符 代 表 一 定 的 物 理 量 ,其 本 征 值 是 实 数 ,相 应 的 算 符 为 厄 米 算 符 。平 移 算 符 只 是 一 种 对 称 操 作 ,不 代 表 物 理 量 ,不 具 有 厄 米 算 符的性质,因此其本征值可以是复数。 将 ( 1-17) 代 入 ( 1-14) 得 到 , ψ (r + Rm ) = eik R ψ (r ) m ( 1-18) 式 ( 1-18) 即 为 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 形 式 。 , 利 用 波 函 数 ψ ( r ) , 可 以 定 义 一 个 新 的 函 数 u (r ) , u (r ) = e ik rψ (r ) ( 1-19) 根 据 波 函 数 的 性 质 式 ( 1-18) 容 易 看 出 , 函 数 u (r ) 具 有 晶 格 的 周 期 性 : , u (r + Rm ) = e ik ( r + Rm )ψ (r + Rm ) = e ik rψ ( r ) = u (r ) ( 1-20) 于 是 , 由 式 ( 1-19) 可 以 将 周 期 性 势 场 中 电 子 的 波 函 数 表 示 为 , ψ (r ) = eik r u (r ) 其 中 u (r ) 具 有 晶 格 的 周 期 性 。 根 据 以 上 分 析 ,周 期 性 势 场 中 电 子 的 波 函 数 可 以 表 示 成 一 个 平 面 波 和 一 13 个 周 期 性 因 子 的 乘 积 。 平 面 波 的 波 矢 量 为 实 数 矢 量 k, 它 可 以 用 来 标 志 电 子 的 运 动 状 态 。不 同 的 k 代 表 不 同 的 电 子 态 ,因 此 k 也 同 时 起 着 一 个 量 子 数 的 作 用 。 为 明 确 起 见 , 在 波 函 数 上 附 加 一 个 指 标 k ,写 作 ψ k (r ) = eik r uk (r ) 至此,布洛赫定理得证。 相 应 的 本 征 值 — 能 量 谱 值 为 E=E( k ) 。 根 据 公 式 ( 1-21) 可 以 看 出 : ( 1-21) 1. 波 矢 量 k 只 能 取 实 数 值 ,若 k 取 为 复 数 ,则 在 波 函 数 中 将 出 现 衰 减 因 子 , 这样的解不能代表电子在完整晶体中的稳定状态。 2.平 面 波 因 子 e ik r 与自由电子的波函数相同, 描述电子在各原胞之间的 它 运动—共有化运动。 3.因 子 uk ( r ) 则 描 述 电 子 在 原 胞 中 的 运 动 — 局 域 化 运 动 。它 在 各 原 胞 之 间 周期性地重复着。 4.根 据 式 (1-18), ψ k (r + Rm ) 2 = ψ k (r ) 2 (1-22) 这说明电子在各原胞的对应点上出现的概率相等. 需 要 指 出 的 是 , 由 于 晶 体 中 电 子 的 波 函 数 不 是 单 纯 的 平 面 波 ,而 是 还 乘 以一个周期性函数。 以它们的动量算符 所 与哈密顿算符 H 是不可交换的。 i 因 此 , 晶 体 中 电 子 的 动 量 不 取 确 定 值 。由 于 波 矢 量 k 与 约 化 普 朗 克 常 数 的 乘 积 是 一 个 具 有 动 量 量 纲 的 量 , 对 于 在 周 期 性 势 场 中 运 动 的 电 子 ,通 常 把 14 p = k (1-23) 称 为 晶 体 动 量 crystal momentum) 或 电 子 的 准 动 量 (quasimomentum)” “ ( ” “ . 周 期 性 边 界 条 件 ( 玻 恩 - 卡 曼 边 界 条 件 ) 在 讨 论 电 子 的 运 动 情 况 时 ,我 们 没 有 考 虑 晶 体 边 界 处 的 情 况 ,就 是 说 我 们 把 晶 体 看 作 是 无 限 大 的 。对 于 实 际 晶 体 ,除 了 需 要 求 解 波 动 方 程 之 外 ,还 必 须 考 虑 边 界 条 件 。根 据 布 洛 赫 定 理 ,周 期 场 中 的 电 子 的 波 函 数 可 以 写 成 一 个 平 面 波 与 一 个 周 期 性 因 子 相 乘 积 。平 面 波 的 波 矢 量 k 为 任 意 实 数 矢 量 。当 考虑到边界条件后,k 要受到限制,只能取分立值。本节我们将根据晶体的 周期性边界条件,对 k 作一些更深入的讨论。 实 际 的 晶 体 其 大 小 总 是 有 限 的 。电 子 在 晶 体 表 面 附 近 的 原 胞 中 所 处 的 情 况 与 内 部 原 胞 中 的 相 应 位 置 上 所 处 的 情 况 不 同 ,因 而 ,周 期 性 被 破 坏 ,给 理 论 分 析 带 来 一 定 的 不 便 。 为 了 克 服 这 一 困 难 , 通 常 都 采 用 玻 恩 -卡 曼 的 周 期 性边界条件。 玻 恩 -卡 曼 的 周 期 性 边 界 条 件 的 基 本 思 想 是 ,设 想 一 个 有 限 大 小 的 晶 体 , 它 处 于 无 限 大 的 晶 体 中 ,而 无 限 晶 体 又 是 这 一 有 限 晶 体 周 期 性 重 复 堆 积 起 来 的 。由 于 有 限 晶 体 是 处 于 无 限 晶 体 之 中 ,因 而 ,电 子 在 其 界 面 附 近 所 处 的 情 况 与 内 部 相 同 ,电 子 势 场 的 周 期 性 不 致 被 破 坏 。假 想 的 无 限 晶 体 只 是 有 限 晶 体 的 周 期 性 重 复 ,只 需 要 考 虑 这 个 有 限 晶 体 就 够 了 ,并 要 求 在 各 有 限 晶 体 的 相 应 位 置 上 电 子 运 动 情 况 相 同 。或 者 说 ,要 求 电 子 的 运 动 情 况 ,以 有 限 晶 体 为 周 期 而 在 空 间 周 期 性 地 重 复 着 。于 是 ,问 题 便 得 到 了 解 决 。这 就 是 所 谓 周 期性边界条件。 设 想 所 考 虑 的 有 限 晶 体 是 一 个 平 行 六 面 体 , 沿 a1 方 向 有 N1 个 原 胞 , 沿 a2 方 向 有 N2 个 原 胞 , 沿 a3 方 向 有 N3 个 原 胞 , 总 原 胞 数 N 为 N=N 1 N 2 N 3 . ( ) 15 周 期 性 边 界 条 件 要 求 沿 aj 方 向 上 , 由 于 以 N ja j 为 周 期 性 , 所 以 ψ k (r + N j a j ) = ψ k (r ). ( j=1, 2, 3) ( ) 将 晶 体 中 的 电 子 波 函 数 公 式 ( ) 代 入 这 一 条 件 后 , 则 要 求 e ik ( r + N j a j ) uk (r + N ja j ) = eik r uk (r ). 考 虑 到 函 数 uk ( r ) 是一个具有晶体周期性的函数,因而,要上式成立,只需 ik N j a j e =1 即要求 k N j a j 为 2π的整数倍。 将波矢量 k 的表示式 k = β1b1 + β 2b2 + β 3b3 代入上式, 并利用正交关系 biaj=2πδij ,上面的条件可改写为 k N j a j = β j N j 2π = l j 2π , (l j 为任意整数)或者 β j = l j / N j , ( j = 1, 2, 3) 即 β1 = l1 / N1 , β 2 = l2 / N 2 , β3 = l3 / N 3 ,( l1 l2 l3 为任意整数) () 由于 l j 为整数,所以 β j 只能取分立值。将式()代入式() ,则发现在周期性 边界条件限制下,波矢量 k 只能取分立值, 3 l l l1 l j b1 + 2 b2 + 3 b3 = ∑ b j N1 N2 N3 j =1 N j k= () 16 ( l1 l2 l3 为任意整数) 。 而与这些波矢量 k 相应的能量 E (k)也只能取分立值,这给理论分析上带来很大 的方便。 在倒空间中每个倒原

关于半导体的论文题目

半导体物理迅速发展及随晶体管发明使科家早50代设想发明半导体激光器60代早期组竞相进行面研究理论析面莫斯科列别捷夫物理研究所尼古拉·巴索夫工作杰19627月召固体器件研究际议美麻省理工院林肯实验室两名者克耶斯(Keyes)奎斯特(Quist)报告砷化镓材料光发射现象引起通用电气研究实验室工程师哈尔(Hall)极兴趣家火车写关数据家哈尔立即制定研制半导体激光器计划并与其研究员道经数周奋斗计划获功像晶体二极管半导体激光器材料p-n结特性敞弗搬煌植号邦铜鲍扩基础且外观亦与前者类似半导体激光器称二极管激光器或激光二极管早期激光二极管实际限制例能77K低温微秒脉冲工作8间才由贝尔实验室列宁格勒(现圣彼堡)约飞(Ioffe)物理研究所制造能室温工作连续器件足够靠半导体激光器则直70代期才现半导体激光器体积非米粒工作波依赖于激光材料般~微米由于种应用需要更短波器件发展据报导Ⅱ~Ⅳ价元素化合物ZnSe工作物质激光器低温已微米输波~微米室温连续器件输功率已达10毫瓦迄今尚未实现商品化光纤通信半导体激光预见重要应用领域面世界范围远距离海底光纤通信另面则各种区网者包括高速计算机网、航空电系统、卫通讯网、高清晰度闭路电视网等目前言激光唱机类器件市场其应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示及各种医疗应用等晶体管利用种称半导体材料特殊性能电流由运电承载普通金属铜电导体电没紧密原核相连容易电荷吸引其物体例橡胶绝缘体 --电良导体--电能自由运半导体名字暗示处于两者间通情况象绝缘体某种条件导电

半导体封装工艺完全可以作为论文题目。因为半导体封装工艺是直接关系到器件和集成电路的稳定性、可靠性以及成品率等的大问题,还有很多需要研究的课题。与集成电路可靠性(失效率)有关的若干问题,请详见“”中的有关说明。

AAU3D打印很高兴为您解答本科的时候接触过一段时间微生物燃料电池,给一点个人建议,仅供参考,可能很多表述不够专业,请见谅关键词:半导体、微生物、光催化意思大概是微生物燃料电池中,将光催化与微生物催化耦合在一起,促使微生物光电系统产生电子转移并产氢。针对微生物燃料电池处理废水产电的优点,以及光催化技术在制氢过程中效率低和需要添加牺牲剂的缺点,提出一种新的低成本、无污染的微生物光电化学系统产电制氢技术,阴极光生电子与阳极生物氧化产生的电子在还原制氢中的协同作用机制。

半导体论文题目

半导体物理迅速发展及随晶体管发明使科家早50代设想发明半导体激光器60代早期组竞相进行面研究理论析面莫斯科列别捷夫物理研究所尼古拉·巴索夫工作杰19627月召固体器件研究际议美麻省理工院林肯实验室两名者克耶斯(Keyes)奎斯特(Quist)报告砷化镓材料光发射现象引起通用电气研究实验室工程师哈尔(Hall)极兴趣家火车写关数据家哈尔立即制定研制半导体激光器计划并与其研究员道经数周奋斗计划获功像晶体二极管半导体激光器材料p-n结特性敞弗搬煌植号邦铜鲍扩基础且外观亦与前者类似半导体激光器称二极管激光器或激光二极管早期激光二极管实际限制例能77K低温微秒脉冲工作8间才由贝尔实验室列宁格勒(现圣彼堡)约飞(Ioffe)物理研究所制造能室温工作连续器件足够靠半导体激光器则直70代期才现半导体激光器体积非米粒工作波依赖于激光材料般~微米由于种应用需要更短波器件发展据报导Ⅱ~Ⅳ价元素化合物ZnSe工作物质激光器低温已微米输波~微米室温连续器件输功率已达10毫瓦迄今尚未实现商品化光纤通信半导体激光预见重要应用领域面世界范围远距离海底光纤通信另面则各种区网者包括高速计算机网、航空电系统、卫通讯网、高清晰度闭路电视网等目前言激光唱机类器件市场其应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示及各种医疗应用等晶体管利用种称半导体材料特殊性能电流由运电承载普通金属铜电导体电没紧密原核相连容易电荷吸引其物体例橡胶绝缘体 --电良导体--电能自由运半导体名字暗示处于两者间通情况象绝缘体某种条件导电

论文题目是全文给读者和编辑和第一印象,文题的好坏对论文能否利用具有举足轻重的作用。如何进行物理学 毕业 论文的选题呢?下面我给大家带来优秀物理学毕业论文题目2021,希望能帮助到大家!

物理学毕业论文题目

1、物理学史与物理教学结合的理论与实践研究

2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究

3、二十世纪中国原子分子物理学的建立和发展

4、普通高中物理课程内容与大学物理课程内容的适切性研究

5、从现代物理学理论发展探讨孙思邈修道养生观

6、地震岩石物理学及其应用研究

7、碎屑岩地震岩石物理学特征研究

8、信息技术支持下的物理学与教的研究

9、物理学中对称现象的语境分析及其意义

10、本质直观视域下的量子引力学困境

11、复杂金融系统的相互作用结构与大波动动力学研究

12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究

13、经济物理学中的金融数据分析:统计与建模

14、农村高中物理学困生的差异教学研究

15、基于PD控制的拟态物理学优化算法的研究

16、多目标拟态物理学优化算法解集分布性研究

17、利用物理学史 教育 资源优化中学物理教学的研究

18、中学生与物理学家共同体概念形成过程的对比研究

19、物理学专业师范生PCK研究

20、物理学史融入高中物理教学的实践研究

21、莱布尼茨物理学哲学思想研究

22、运用高中物理教材栏目开展物理学史教育的实践

23、新课程下 高一物理 学困生转化策略

24、运用高中物理“学案教学”提高学生问题意识的实践

25、基于书目记录的《中图法》物理学类目调整 方法

26、物理学专业师范生教学技能训练现状调查与对策研究

27、高中物理学困生成因及转化策略研究

28、从物理学家的研究方法看物理学的进展

29、高中物理学困生学习动机的实证调查与影响因素分析

30、食管癌调强放疗物理学参数对放射性肺炎的评估价值

31、近代物理学史在高中物理教学中的应用

32、提升物理学困生自主学习能力的教学策略研究

33、物理学史在高中物理教学中的应用研究

34、关于培养学生物理学科素养的教学实践研究

35、高一物理学困生学习效率低下成因及转化策略

36、校本课程《生活中的物理学原理 DIY 》的开发与实践

37、高中物理教学中物理学史教育现状调查与研究

38、高中物理学困生学业情绪现状及影响因素的调查研究

39、利用物理学史促进高中生理解科学本质的实践研究

40、物理学史融入中学课堂教学的实践研究

2021中学物理论文题目

1、 中学物理教材的重难点内容表达方式的研究

2、 关于中学物理学习中学生素质培养之设想

3、 中学物理学习中互动作用的深入研究

4、 通过力学教学实现中学物理到大学物理的良好过渡

5、 一类变分问题在中学物理课外教学中的尝试

6、 在中学物理知识结构化中锻造学生核心素养

7、 浅谈中学物理探究教学的策略

8、 物理模型在中学物理教学中的作用研究

9、 浅谈中学物理学习中创造性思维的障碍与对策

10、 中学物理知识在甜樱桃保鲜中的应用

11、 浅谈中学物理教学中的“骆驼教学法”

12、 中学物理良性学习习惯的现状调查及分析

13、 函数图像法在中学物理中的应用

14、 中学物理异课同构教研活动设计研究

15、 中学物理教学中缄默知识的应用研究

16、 中学物理教学对大学物理教学的影响——以安阳师范学院为例

17、 物理实验在中学物理教学中的地位和作用

18、 中学物理活动教学的设计研究

19、 中学物理课堂环境评价量表的实证检测

20、 中学物理教学中概念的教学策略研究

21、 几何画板在中学物理教学中的应用

22、 引导式 反思 :将HPS教育融入中学物理教学的方式

23、 中学物理实验课堂环境的测评研究——以北京地区为例

24、 我国中学物理教育研究的进展与趋势——基于中国知网的文献计量学研究

25、 国际科学教育坐标中的我国中学物理教育研究:基于文献计量学的国际比较研究

26、 中学物理实验技能的评价研究

27、 中学物理教学中激发学生学习动机的策略研究

28、 突破中学物理教学难点的策略

29、 探究中学物理课堂的实际案例中如何引入新的教学模式

30、 中学物理“微实验”创设的价值思考

31、 中学物理实验教学的新思考

32、 提高中学物理教师信息技术应用技能的策略

33、 高师本科物理专业中学物理教学能力培养目标体系的研究

34、 刍议中学物理教科书中的举例说明题

35、 中学物理教学的问题情境创设

36、 3D虚拟增强现实技术在中学物理教学中的应用研究

37、 以藏族 文化 生活为例,开发藏区中学物理课程实验资源

38、 贯通大中学物理综合能力培养的物理学术竞赛教学模式

39、 中学物理在教学内容上的改革思考

40、 我国中学物理“时间观”课程教学的现实与改进

41、 中学物理教学中演示实验的应用策略

42、 中学物理教学中学生动手能力的培养

43、 新课程背景下农村中学物理实验教学的探索

44、 浅谈提高中学物理低成本实验教学的有效性

45、 浅谈中学物理“生活化”教学的策略

物理教学论文题目

1、 高中物理教学中常见电学实验问题分析

2、 以生活化教学模式提高初中物理教学的有效性

3、 工科专业大学物理教学现状与改革方向研究

4、 大学物理教学中创新型人才的培养与实践

5、 教学新范式下大学物理教学的几点思考

6、 基于翻转课堂理念的独立学院大学物理教学模式研究

7、 基于CDIO理念的大学物理教学改革探索

8、 统计物理教学中引入Jarzynski等式的必要性

9、 物理教学融入工匠精神的思考与实践

10、 让“陶花”在物理教学实践中绽放——浅议过程性评价和物理教学实践

11、 高中物理教学中培养学生的思维

12、 “蜂窝视频元”在高中物理教学中的应用实践研究

13、 中学物理教学中缄默知识的应用研究

14、 提高大学物理教学质量的 措施 与对策

15、 高分子物理教学中关于链段概念的讲解

16、 以提高人才培养质量为目标,探索新形势下大学物理教学策略

17、 基于翻转式课堂模式的大学物理教学研究

18、 中学物理教学对大学物理教学的影响——以安阳师范学院为例

19、 高分子物理教学中“结晶”概念的讲解

20、 引导式反思:将HPS教育融入中学物理教学的方式

21、 高中物理教学核心素养:演示实验创新

22、 数形结合思想在高中数学与物理教学中的应用研究

23、 浅析信息技术在初中物理教学中的应用——以欧姆定律学习为例

24、 新工科背景下大学物理教学研究

25、 地方本科院校大学物理教学改革模式探究

26、 高师本科物理专业中学物理教学能力培养目标体系的研究

27、 高中物理教学使用 思维导图 的几个误区

28、 中学物理教学的问题情境创设

29、 3D虚拟增强现实技术在中学物理教学中的应用研究

30、 MATLAB的可视化在物理教学中的应用

31、 案例教学法在“半导体器件物理”教学中的尝试与反思

32、 新工科背景下“类像思维”在半导体物理教学中的应用

33、 核心素养下的高校半导体物理教学改革路径研究

34、 材料专业大学物理教学内容的改革与实践

35、 为提高大学物理教学的学术水平而努力

36、 材料学专业固体物理教学中的抽象与形象思维转化

37、 大学物理教学研究现状与展望——基于10年核心期刊论文分析

38、 高考3+3新模式下中学与大学物理教学的衔接性校本研究:热学部分

39、 浅析STS教育在职业学校物理教学中的有效渗透

40、 智慧教育理念在大学物理教学改革中的应用研究

41、 混合教学模式在固体物理教学中的应用

42、 物理学思维方法在大学物理教学中的应用

43、 多媒体在应用型本科院校大学物理教学中的应用

44、 在物理教学中渗透生涯教育的探索——由新高考选考物理遇冷说开去

45、 浅谈初中物理教学中“弱势学生”激励策略

46、 “物理教学论实验”课程的“课例化”教学模式研究

47、 提高大学物理教学效果的策略

48、 利用虚拟实验改进物理教学

49、 基于建筑学学生思维特点的实践性建筑物理教学初探

50、 核心素养视角下初中物理教学的方法

优秀物理学毕业论文题目相关 文章 :

★ 物理学毕业论文题目

★ 物理学毕业论文选题

★ 物理学院毕业论文题目

★ 物理学毕业论文4000字

★ 物理学本科毕业论文

★ 物理学毕业论文

★ 有关物理学毕业论文

★ 物理学本科生毕业论文

★ 物理学毕业论文范文

★ 物理学理论研究论文

半导体封装工艺完全可以作为论文题目。因为半导体封装工艺是直接关系到器件和集成电路的稳定性、可靠性以及成品率等的大问题,还有很多需要研究的课题。与集成电路可靠性(失效率)有关的若干问题,请详见“”中的有关说明。

半导体类论文题目

AAU3D打印很高兴为您解答本科的时候接触过一段时间微生物燃料电池,给一点个人建议,仅供参考,可能很多表述不够专业,请见谅关键词:半导体、微生物、光催化意思大概是微生物燃料电池中,将光催化与微生物催化耦合在一起,促使微生物光电系统产生电子转移并产氢。针对微生物燃料电池处理废水产电的优点,以及光催化技术在制氢过程中效率低和需要添加牺牲剂的缺点,提出一种新的低成本、无污染的微生物光电化学系统产电制氢技术,阴极光生电子与阳极生物氧化产生的电子在还原制氢中的协同作用机制。

半导体封装工艺完全可以作为论文题目。因为半导体封装工艺是直接关系到器件和集成电路的稳定性、可靠性以及成品率等的大问题,还有很多需要研究的课题。与集成电路可靠性(失效率)有关的若干问题,请详见“”中的有关说明。

关于半导体论文

我今年近7O岁了,可以说半导体陪伴着我们长大,从小就爱听,听少儿节目,听老电影,听新闻,听小说,印象最深的是(欧阳海之歌)等等许多许多,收获很大,获得了知识,享受了快乐,直到现在我还是爱听半导体,现在主要听小品,相声,养生知识等等,因为半导体听起来方便,也不费眼晴,挺好的!

返回英国房价高

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

  • 索引序列
  • 有关半导体的论文题目
  • 关于半导体的论文题目
  • 半导体论文题目
  • 半导体类论文题目
  • 关于半导体论文
  • 返回顶部