首页 > 学术发表知识库 > 电流镜原理及科学应用毕业论文

电流镜原理及科学应用毕业论文

发布时间:

电流镜原理及科学应用毕业论文

用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖和样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。 近代以来,由于人们的观察视野已经延伸到了纳米领域,而光束在成像时总会受到有限大小的有效光阑的限制,所以此时光的衍射作用就不容忽略了。对于显微镜来说,其发光物一般距物像很近,这时应考虑菲涅尔衍射,物点成像后在像面上应成为一菲涅尔圆斑,不过通常情况下,我们可以用夫琅禾费圆斑进行近似替代。那么光学显微镜的分辨率最佳只能达到阿贝极限:0.2μm。即便如德国科学家施特芬·黑尔等科学家制作出的借助脉冲激光突破阿贝极限的光学显微镜,分辨率也仅停留在20nm,依然难以满足人们进军微观领域的需要。而且此显微镜价格高昂,在80万欧元左右。事实上,当年白春礼教授仅仅借助从国外带来的几个重要零件并加以组装就得到了STM。一台普通的STM价格都在10万RMB以下。因此我们需要寻找更经济且性能更好的显微镜来替代光学显微镜。 在这种情况下,扫描探针、光导镊子、高解析度电镜就应运而生。其中,运用探针进行进场操作的扫描探针显微技术无疑引起了人们最为广泛的关注。扫描探针显微术SPM 扫描探针显微技术主要是利用顶端约1-10Å的探针来3D解析固体表面纳米尺度上的局部性质。扫描探针显微镜SPMs就是一系列的基于扫描探针显微术而发展起来的显微镜,它包括STM、AFM、LFM、MFM等等。其中STM和AFM的发明使得各种扫描探针显微技术有了长足的发展,下面我们先来看一下迄今为止衍生出来的主要的扫描探针分析仪: 电子结构:扫描隧道电流镜STS STS用来在低温情况下测定电子结构; 光学性质:近场扫描光学显微镜NSOM NSOM打破了衍射限制,允许光进入亚微米波长范围(50-100nm),用于弹性和非弹性的光学扫描测定,也可以用于光刻技术; 温度:热扫描显微镜STHM STHM用温度传感器绘制出电子/光电子纳米器件的温度场,测定纳米结构的热物理性质; 介电常数:扫描电容显微镜SCM SCM主要应用在半导体上。由于半导体电容依赖于载流子的浓度,因此研究者可以用SCM绘制出掺杂剂在半导体中的分布图。它优越之处在于纳米尺度上的立体分辨能力; 磁性:磁力共振显微镜MFM MFM可以给磁域成像作为磁存储介质的综合性表征,MFM测定核与电子的自旋共振并具有亚微米级的解析力,这可能使它成为化学分析的基础; 电荷传递和亥姆霍兹层:扫描电化学SECM 生物分子折叠/识别:纳米机械显微镜 以前只能停留在总体的平均测定,现在可以更深入的测定生物系统的分子现象。扫描隧道显微镜STM 不过,以上各种仪器只是对STM和AFM的补充和发展。其中STM作为“主角”,意义尤为重大,被国际科学界公认为20世纪80年代世界十大科技成就之一。甚至有人将STM的发明的当年作为纳米科技元年。那么我们不妨具体看一下STM和AFM。 扫描隧道显微镜(scanning tunneling microscope)STM,也称作扫描穿隧式显微镜、隧道扫描显微镜。第一台STM诞生于瑞士的苏黎世研究所。STM可以让科学家观察和定位单个原子,它具有AFM更高的分辨率。STM平行方向的分辨率为0.04nm,垂直方向的分辨率达到0.01nm。此外STM在低温(4K)可以利用探针尖端精确操纵原子。因此STM不仅仅是探测工具,更是加工工具。 如图所示,STM主要构成有:顶部直径约为50-100nm的极细金属针尖(通常是金属钨),用于三维扫描的三个相互垂直的压电陶瓷(Px、Py、Pz),以及用于扫描和电流反馈的控制器。 STM的基本原理是量子的隧道效应。它利用金属针尖在样品的表面上进行扫描,并根据量子隧道效应来获得样品表面的图像。通常STM的针尖与样品的距离非常接近(大约为0.5-1.0nm),所以它们之间的电子云互相重叠。当在它们之间施加一偏值电压V(通常为2mV-2V)时,电子就可以因量子隧道效应实现针尖与样品之间的转移,从而在针尖与样品表面之间形成隧道电流。 其中,K是常数,在真空条件下约等于1,φ为针尖与样品的平均功函数,s为针尖和样品表面之间的距离,一般为0.3-1.0nm。 由于隧道电流I与针尖和样品表面之间的距离s成指数关系,所以,电流I对s的变化非常敏感。一般来说,如果s减小0.1nm,隧道电流I就会减小10倍。 既然STM是靠隧道电流I和距离s进行工作的,那么自然,STM有两种工作模式:恒电流工作模式和恒高度工作模式。恒电流模式就是在STM图像扫描时始终保持隧道电流恒定,它可以利用反馈回路控制针尖和样品之间距离的不断变化来实现。当压电陶瓷Px、Py控制针尖在样品表面上扫描时,从反馈回路中取出针尖在样品表面扫描过程中他们之间距离变化的信息(该信息用来反映样品表面的起伏),就可以得到样品表面的原子图像。由于恒电流模式时,STM的针尖是随着样品表面形貌的起伏而上下移动,针尖不会因为表面形貌起伏太大而碰撞到样品的表面,所以恒电流模式可以用于观察表面形貌起伏较大的样品。恒电流模式也是一种最常用的扫描模式。 恒高度模式则是始终控制针尖的高度不变,并取出扫描过程中针尖和样品之间电流变化的信息(该信息也反映样品表面的起伏),来绘制样品表面的原子图像。由于在恒高度模式的扫描过程中,针尖的高度恒定不变,当表面形貌起伏较大时,针尖就很容易碰撞到样品。所以恒高度模式只能用于观察表面形貌起伏不大的样品。 扫描隧道显微镜具有以下显著的特点:一是STM可以直接观测到材料表面的单个原子和原子在表面上的三维结构图像;二是STM在观测材料表面原子结构的同时得到材料表面的扫描隧道谱STS,从而可以研究材料表面的化学结构和电子状态。 此外,上面我们提到过STM不仅仅是探测工具,更是加工工具。也就是说,STM的针尖不仅可以成像,还可以用于操纵表面上的原子或分子。 用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖和样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。 STM的优越性还体现在STM实验还可以在多种环境中进行:大气、惰性气体、超高真空或液体。工作温度可以从绝对零度附近到上千摄氏度。这些都是以前任何一种显微技术都不能同时做到的。 不过在每一种显微电镜中,基础物理学都限制了其测定的范围。STM基于电子隧道,它的成像就受到隧道物理学或入射低能电子影响的弛豫过程限制。而且,STM所观察的样品一定要有一定程度的导电性,否则效果会很差。原子力显微镜AFM 相比之下,AFM具有更广泛的功能范围,可以响应探针与基质之间更多的力,如磁力、库伦力、色散力、摩擦力和核斥力等,也不会受到材料到点性质的影响。 在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬臂的形变之间遵循胡克定律:F=-k*x。其中,k为微悬臂的力常数。所以,只要测出微悬臂形变量的大小,就可以获得针尖与样品之间作用力的大小。针尖与样品之间的作用力与距离有强烈的依赖关系,所以在扫描过程中利用反馈回路保持针尖与样品之间的作用力恒定,即保持为悬臂的形变量不变,针尖就会随样品表面的起伏上下移动,记录针尖上下运动的轨迹即可得到样品表面形貌的信息。这种工作模式被称为“恒力”模式,是使用最广泛的扫描方式。 AFM的图像也可以使用“恒高”模式来获得,也就是在X,Y扫描过程中,不使用反馈回路,保持针尖与样品之间的距离恒定,通过测量微悬臂Z方向的形变量来成像。这种方式不使用反馈回路,可以采用更高的扫描速度,通常在观察原子、分子像时用得比较多,而对于表面起伏比较大的样品不适用。微观形貌检测技术 当然,任何一种发明都不是凭空产生的,都是在前人工作的基础上的改进。SPMs也不例外。在STM之前,就有几种微观形貌检测技术了,只不过它们的性能没有这么优越。 光学显微镜 投射电子显微镜TEM TEM和光学显微镜的原理极为相似,只是用波长极短的电子束代替了可见光现,用静电或磁透镜代替光学玻璃透镜,最后在荧光屏上成像。TEM的放大倍数极高,点分辨率可达0.3nm,线分辨率可达0.144nm,已达原子级分辨率。用TEM观察物体内部显微结构时,可看到原子排列的晶格图像,并已观察到某些重金属原子的投影图像。只是用TEM检测时,试件需在真空室内。 TEM是通过电子束投过试件而放大成像的,电子束在材料中的衰减系数极大,故试件必须加工的很薄,因此限制了TEM的使用范围。 表面轮廓仪 表面轮廓仪是用探针对试件表面形貌进行接触测量,这与SPM的工作原理极为相似,只是后者使用了更尖锐的探针和灵敏的探针位移检测方法。 扫描电子显微镜SEM SEM利用高能量、细聚焦的电子束在试件表面扫描,激发二次放电,利用二次放电信息对试件表面的组织或形貌进行检测、分析和成像的一种电子光学仪器。SEM的放大倍率在10—150000之间且连续可调,试件在真空室内还可按需要进行升降、平移、旋转或倾斜。 SEM在普通热钨丝电子枪条件下,分辨率为5-6nm,如果用场发射电子枪,分辨率可达2-3nm,不过分辨率还没有达到原子级别。 场发射形貌描绘仪 场发射原理在1956年由R.young提出,但直到1971年R.young和J.Ward才提出了应用场发射原理的形貌描绘仪。它在基本原理和操作上,是最接近STM的仪器。探针尖装在顶块上,可由X向和Y向压电陶瓷驱动,做X向和Y向扫描运动。试件装在下面的Z向压电陶瓷元件上,由反馈电路控制,保持针尖和试件间的距离。R.young使用的针尖曲率半径为几十纳米,针尖和试件间的距离为100nm。在试件上加正高压后,针尖与试件间产生场发射电流。探针在试件表面扫描,可根据场发射电流的大小,检测出试件表面的形貌。R.young用形貌描绘仪继续进行研究,发现当探针尖与试件间距离很近时,较小的外加偏压V即可产生隧道电流,并且隧道电流I对距离s极为敏感。他们观察到的I和V为线性关系,后人估计针尖与试件间的距离为1.2nm。可惜他们的研究到此为止,未在检测试件形貌时利用隧道电流效应,因而与STM的发明失之交臂。假如他能及时想到缩小针尖与试件表面间的距离,那么STM公布发表时的发明人名字就是R.Young了。可惜他没有意识到这一点,更没有去缩短那一点的该死的微小距离。 附:TEM与SEM的比较比较项目 显微镜类型 TEM SEM镜身长度 长,要能让电子加速 短,只需要保证与样品间的距离分辨率 高,能达到原子级别 低,停留在纳米级别投影图像 平面图形,无立体感 有极强的立体感图像背景 背景亮,试样处暗 背景暗,试样处亮工作原理 与光学显微镜类似 利用光电效应产生的电子获得立体图像收集器位置 在镜身底部 在镜身上部适用范围 5-500nm的薄片 可以比较厚能否区分晶体 能,可看到晶格图像 不包含结构信息,无法区分单晶多晶非晶能否收集到样品内部信息 可收集到样品内部信息 只能收集到样品表层信息能否动态观察 不能,样品固定 样品位置可以调节,可进行动态观察能否连续观察 开始工作后倍率相对固定 开始工作后可进行从低倍到高倍的连续观察

你图中的参考电流源应该是个限流电阻吧?BJT电路中是个电阻。BJT电路中短接为了BE间有压降,CE可以导通。这里也是产生通道用的。原理就是:两个一样的MOS管,GS电压相等,流过的电流相等。至于是可变电阻区还是放大区,你分析下?

很简单,是保证m1工作在饱和区,这样才可以用饱和区的公式,Iout才能得到精确的电流比值

电流镜的原理及应用毕业论文下载

电流镜是模拟集成电路中普遍存在的一种标准部件,它也出现在一些数字电路中。在传统的电压模式运算放大器设计中,电流镜用来产生偏置电流和作为有源负载。在新型电流模式模拟集成电路设计中,电流镜除了用来产生偏置电流外,还被广泛用来实现电流信号的复制或倍乘,极性互补的电流镜还可以实现差动一单端电流信号的变换。

两者之间无法进行转化,因为电压源和电流源是两种不同效用的装置。

电压源即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少。电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。

电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。

扩展资料:

电流源的分类:

1、可调电流源:直流电流源(主要参数有输出电流,额定输出工率,等等),输出电流可调的称为可调电流源。

2、脉冲电流源:脉冲电流镜电路采用高速场效应管实现对恒流源电流的复制和倍乘,降低脉冲电流源输出负载对前级深度负反馈部分的影响,提高电路的稳定性,并利用模拟多路复用器对电流镜栅极的控制,将脉冲信号传递到脉冲电流中,从而输出脉冲电流。

仿真实验表明,提出的脉冲电流源运行稳定可靠,输出的脉冲电流的幅值、重复频率和脉冲宽度均可数控调节,电流幅值稳定,脉冲前沿陡峭,可满足不同的激光器驱动和测试需求。

3、高精度电流源:提出了一种高精度的电流源电路,通过V/I变换,将由带隙基准电 压电路产生的与温度和电源电压无关的带隙基准电压转换成与温度和电压无关的高精度基准电流,并通过高精度电流镜结构产生所需的镜像电流,有效地抑制了由于 温度、电源电压、负载阻抗的变化及干扰对电流源的影响。

参考资料来源:百度百科-电压源

参考资料来源:百度百科-独立电压源

参考资料来源:百度百科-电流源

电磁学原理及应用论文

电磁学计算方法的比较胡来平,刘占军(重庆邮电学院光电工程学院 重庆 400065) 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

抽屉原理及其应用本科毕业论文

上网求助也么用,就算不会被揭发,良心也会遭到谴责,最后还是会害了你自己!何尝不自己试试呢,就算写不好也没关系,毕竟是靠自己的汗水&心血完成的!

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”

抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

第一抽屉原理:

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

一般表述:

在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。

在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”

用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有

[(m-1)/n]+1个元素。

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

这个问题可以用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。

根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。

如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。

不论哪种情形发生,都符合问题的结论。

六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

表现形式:

把它推广到一般情形有以下几种表现形式。

形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。

证明:(反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:

a1+a2+…+an≤1+1+…+1=n

所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。

形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。

证明:(反证法)假设结论不成立,即对每一个ai都有ai

a1+a2+…+an≤m+m+…+m=nm

所以,至少有存在一个ai≥m+1

知识扩展——高斯函数[x]定义:对任意的实数x,[x]表示“不大于x的最大整数”。例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1

形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。

证明:(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:

a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n

k个[n/k] ∴ a1+a2+…+ak

形式四:设把q1+q2+…+qn-n+1个元素分

为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。

证明:(用反证法)假设结论不成立,即对每一个ai都有ai

于是有:a1+a2+…+an≤q1+q2+…+qn-n

所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi

形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。(借由康托的无穷基数可将鸽巢原理推广到无穷集中。)

百度百科-抽屉原理

合理利用资源 发挥最佳效益记得是星期六的一天早上,爸爸带我去看望爷爷奶奶,爷爷奶奶生活在农村,生活来源主要靠养鸭为生,平时爷爷奶奶就吃住在鸭场,我到了爷爷奶奶处,免不了要看鸭舍,喂鸭子。鸭场沿河沟而建,其余三面是栅栏,围成一个长方形。我向爷爷喂鸭场地为什么不建成正方形而建成长方形,我还对爷爷说,‘我们老师说过,栅栏的长度一样时,围成的正方形面积要比长方形的面积要大,’爷爷笑呵呵地对我讲,‘你说的情况与我们这个喂鸭场地的情况不一样,你看我的这个场地,一面利用水沟围,三面利用栅栏围,不是四面,’接下我天真地说,‘水沟长着呢,为什么不围更长一些呢,那样面积不就更大了吗?’爷爷说,‘这就不一定了,’爷爷说,‘萍萍呀,听说你们已经学过长方形和正方形的面积计算了,今天正好我来考考你,我这个喂鸭场地,三面栅栏共长40米,你想想看我们这个喂鸭场的面积最大可以围成多大呢?’ 带着问题,我陷入深深的思考中,我采用列举的方法,推想:假设宽1米,长是38米,面积就是38平方米;宽2米,长是36米,面积就是72平方米,逐步列举…宽10米,长20米,面积是200平方米;再往下逐步推算面积,面积又逐步减少,另外我又列举了其他的数加以证实看看有什么特点,我从中摸索了这样一个规律,象这样利用一边是河沟围成的长方形面积比正方形面积大,也不是长越长面积越大,而是长的长度是两条宽的和时面积最大。带着成功的喜悦,我跟爷爷说,‘爷爷呀,你考我的问题,我想了一下,不知道对不对,’爷爷让我讲讲看,我说这个喂鸭场地面积最大是200平方米。爷爷高兴地说,‘一点都不错,我孙女是好样的。’ 从这个实例中,我感受到,在实际生活中,只有合理地科学地利用资源,才能发挥最大的效益,从中我也感受到,数学会给人们带来智慧创造财富,可以说是,生活中处处包含着数学,生活中处处离不开数学。切 西 瓜炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。 小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。 只用动动脑筋,世界上没有什么事可以难住你的。单价是多少我和好朋友王心怡一起出去买东西。 来到琳琅满目的商店,我和王心怡直奔文具区。我在商店里买了4块橡皮和3把小刀,共付6.05元;王心怡买了同样的2块橡皮和3把小刀,共付4.45元。买完后,我想考考王心怡,便问她:“你知道一块橡皮和一块小刀的单价吗?”王心怡想了想,便回答说:“一块橡皮0.8元,一把小刀0.95元。”“你光把答案算出来了,过程呢?”这可把王心怡难住了。王心怡过了一会儿对我说:“你等一会儿,我马上想想!”“我来算吧!很简单哦!”我胸有成竹的对王心怡说。“哦?你会?那你先来算算!”王心怡说。 我胸有成竹的对王心怡解释:“4块橡皮和3把小刀共付6.05元,2块橡皮和3把小刀共付4.45元。通过两组条件的对比,可以发现我比你多付6.05-4.45=1.60(元),是因为我比你多买了两块同样的橡皮,可用下列竖式来表示:4块橡皮的价钱+3把小刀的价钱=6.05元— 2块橡皮的价钱+3把小刀的价钱=4045元2块橡皮的价钱 =1.60元从而找到下列解法:解: (6.05-4.45)÷(4-2)=1.6÷2=0.8(元) ……… 橡皮的单价(4.45-0.8x2)÷2=2.85÷3=0.95(元) ……… 小刀的单价 你会了吗?王心怡?” “嗯!我会了!原来我们生活中有这么多数学,看来要把数学学好才行啊!我一定会努力学习的!”王心怡发奋图强说。我说:“我一定要探究数学中的奥秘!加油!”然后,我和王心怡就拿着自己的“战利品”回家了。妹妹的年龄其实,生活中处处都是数学,处处都与数学有关。只要我们肯观察,就会发现数学非常奇妙。 星期一傍晚,我正在温习数学和奥数。我突然想起妹妹的生日,在那里喃喃自语:“妹妹的年龄好象是6岁,又好象是5岁,到底是几岁呀?”我便决定去问妈妈。我走进妈妈的房间,好奇的问:“妈妈妹妹今年几岁呀?”妈妈顽皮地说:“聪明的宝贝,让我来考考你吧!”我要强的大声叫道:“考就考!谁怕谁?”妈妈开始一本正经的准备说了:“我给你一些条件,算出妹妹的年龄。你的外公比你的舅舅大26岁,你的舅妈比妹妹大26岁。妹妹一家今年一共126岁,而5年前妹妹一家一共107岁。亲爱的小宝贝快来算一算吧!” 不一会儿,我就将妹妹的年龄算出来了!我学着数学老师的样子,对妈妈说:“看着我的眼睛,妹妹呢她是4岁”妈妈又反问到:“宝贝你能算出外公,舅舅和舅妈的年龄吗?”“哈哈哈,早知道你会留一手,我是何等的聪明,不过我没留那么一手。”我笑着说。之后,妈妈暴笑了半天。过了一会儿,我又算出了答案说:“妹妹的爸爸是33岁,舅妈是30岁,外公是59岁。”妈妈夸我是个聪明的孩子。 亲爱的同学们,你们算出来了吗?在数学中,算年龄的一类问题叫做<<年龄问题>>。刚才我所算出来的思路是:一家四口,一个人5年应长大5岁四个人5年一共20岁,因此现在和5年前应相差20岁。而一家四口现在的和126岁减5年前的和107岁却是19岁,说明5年前有一个人还不在这个家,只有可能是妹妹。所以妹妹的年龄是5-1=4岁,舅妈的年龄自然就是4+26=30岁。舅妈的年龄加上妹妹的年龄与现在的总年龄126岁相减。就能算出舅舅和外公的年龄和,外公比舅舅大26岁,减去26岁,外公和舅舅的年龄就相等了。在除以2就算出舅舅的年龄,66除以2等于33岁,就是舅舅的年龄。外公的年龄就等于33+26岁,就等于59岁。其实,就这么简单。 生活离不开数学,数学离不开生活。因此我们要多多观察,多多学习,多多思考。月饼盒的学问今年国庆节,老师布置了一个特殊的作业:中秋节前带张白纸和家人一起到超市看月饼。 我怀着一颗好奇的心情,长假第一天就拉着妈妈到超市去。月饼销售区的月饼竟然有上百种,看得我目不暇接,唯一感叹:包装月饼的大礼盒太精美了!厂家一定在这上面花了很多心思。其它我就看不出有什么名堂,老师究竟让我们看什么呢?我疑惑地把所有月饼又细细观察一翻,发现各个大礼盒里面小月饼盒大多数是6个,8个装的,且都是分两行摆设布置。我指着月饼大礼盒问妈妈:“怎么里面的小盒子都摆成两行呢,为什么不放成一行呢?”“有什么感到奇怪的呢,这样设计不就是为了美观嘛!”妈妈笑着说。在妈妈的笑声中,我的脑海里闪出火柴盒的包装,难道这样设计也是为了节约纸的材料?那就来算算看,老师叫带的纸发挥作用了,然后我就请妈妈帮我到文具销售区找来笔和尺,量了一盒月饼大礼盒的长40厘米,宽28厘米,高4厘米,得出表面积(40×28+40×4+28×4)×2=2784平方厘米。如果里面的小月饼盒排布成一行,大礼盒长就是80厘米,宽14厘米,高4厘米,表面积是(80×14+80×4+14×4)×2=2992平方厘米。我恍然大悟,原来设计者是考虑到节约材料啊!我把我的发现告诉了妈妈,妈妈会心地说:“原来这样设计不仅是为了好看啊!看来你还真会学以致用啊!” 我很高兴,更来了探究的兴致,边思索边把这个大礼盒里面的两排小月饼盒垒起来,变成两层高。妈妈立刻制止我的这一举动:“会把下面一层装月饼的包装盒压了变形的。”“这样放,大礼盒的包装纸只要(40×14+40×8+14×8)×2=1984平方厘米,就更节约外包装纸了。”我不解地对妈妈说。妈妈点点头,打开其中一个月饼的小包装盒。一个小小的月饼躺在里面,小月饼盒容积比月饼的体积大多了,原来设计者用空余空间来充当小月饼,是月饼盒子容积大里面月饼小啊!那当然是不能把它们堆成两层,真的会压坏小月饼盒的。细细一比较:少用点做月饼的原料总比多用点外包装纸花的成本要低,我不得不佩服设计者的精心设计。 嘿嘿!原来身边处处都可能藏着数学,关键是我们是不是拥有一双会发现的眼睛。 我的推理在古代,古人通过在麻绳上打结或用摆石子、划线的方法计数来分配所打的猎物,后来慢慢演变成了今天的数学。数学来源于生活,也应用于生活。生活中处处都有数学,许多问题都是通过数学的方法来解决的。 国庆前夕,派出所的警察叔叔来给我们上法制教育课。在这节课上,警察叔叔给我们讲了一个案例。一次,他们抓到了四个偷窃嫌疑犯:甲、乙、丙、丁。在他们的供词中,只有一个人说的话是真的。甲说:“不是我偷的。”乙说:“就是甲偷的。”丙说:“反正我没偷。”丁说:“是乙偷的。”这四个人中,到底谁是真正的小偷呢?听了这个案例,大家都七嘴八舌地议论开了,答案各不相同。警察叔叔说:“这个问题看似复杂,其实很简单,只要大家运用你们所学的假设法就可以解决,找到真正的小偷。”于是,我仔细地分析了这四个人的话,做了如下的假设: 第一种情况:假设甲是小偷。那么甲说的是假话,乙说的是真话,丙说的也是真话,而丁说的就是假话。 第二种情况:假设乙是小偷。那么甲说的是真话,乙说的是假话,丙说的是真话,丁说的也是真话。 第三种情况:假设丙是小偷。那么甲说的是真话,乙说的是假话,丙说的是假话,丁说的也是假话。 第四种情况:假设丁是小偷。那么甲说的是真话,乙说的是假话。丙说的是真话,丁说的是假话。 通过分析,只有第三种情况符合,由此可以判断丙就是小偷。 警察叔叔听了我的分析,高兴地夸奖我是未来的小侦探,我的心里乐滋滋的! 生活无处无数学!数学,就像一座直插云霄的山峰,只有真正喜欢它的人才会有勇气去征服它!去攀登它!同学们,让我们行动起来吧,做勇敢的登山人! 秋游中的数学 在实际生活中的其实有许多数学问题,许多熟悉的数学知识都可以运用在生活中,就像老师说的“数学就在自己身边、身边到处存在着数学问题”。很多时候,生活中的数学比课堂上的数学更加生动有趣,不像书本上的数学枯燥无味。在生活中能够用所学的数学知识去解答问题能使我更加热爱数学,更加主动地去学习数学。 秋游是一件快乐的事情。在秋游前老师提出的问题,“要去秋游了,你们想做的第一件事是什么?”我们都异口同声的说明:“到商店去买吃的!”于是,一场别开生面的购物方案设计开始了。我们兴趣盎然,纷纷设计着方案,计算着钱数。在有趣的活动中体验着数学的价值和学习的乐趣。当秋游购物方案设计在我们的兴奋之中落下帷幕时,老师又说:“同学们,你们为秋游购物作出了不同方案的选择,其实,大家说的、做的、算的都离不开两个字,那就是“数学”!我恍然大悟,原来数学就在我们的身边,生活中处处有数学。 老师又提出问题:“如果你是一个旅行家,有500元要到三个旅游点去旅游,怎么样安排可以既经济又实惠。”当星期一在课堂上讨论这题时,我们都很兴奋。因为我们利用双体日,有的去旅行社询问旅游价格;有的打电话询问火车与轮船的价格;有的询问住宿的价格;……。这些都是我们平时从不关心的问题,但现在却成了我们交谈的热点。有时我们在具体讨论线路时,常常为线路的合理与价格的优惠而争得面红耳赤。在这一活动中,我们不仅要将已学应用题知识应用到实际中去,又要考虑实际生活中的各种问题,不仅提高了自己解决简单问题的能力,同时也让我们能从中了解了社会。 老师曾说过要体会“数学之美”,是的在数学中我们发现了数学的严密之美,感受到数学图形的对称之美,更体会到生活中数学的无处不在,能够把所学的知识应用到生活中能够学有所用让我真正发现了数学的美。瓦屋的秘密我有许多秘密,说个给你听听——瓦房的秘密,嘿嘿,失望吧?我的秘密保密。 瓦房的秘密是我在前些日子发现的,学校组织我们六年级学生到横溪秋游。让同学们认识大棚里许多反季节的蔬菜,还亲身体验了劳动的辛苦。劳动过后,大家在一起小憩时发现了一间又老又旧的瓦房。屋里有好多我们从未瞧见过的旧物,从标签上我们才知道了它们的名称:土灶,竹碗橱,木制织布机,木踏,凤凰床……我们觉得一切都是那么新奇,摸摸这,摸摸那。这时,我看见老师抬着头在朝屋顶上看,我的好奇心也想看个究竟:屋内顶不是平的,是用木头和柴帘搭成。这怎么能撑得住屋外顶上的瓦呢? “大家快出去,这屋顶不安全!”我慌忙地叫道。大家也惊慌起来,不知所措。老师安抚大家说:“同学们,不要慌,屋顶现在不会塌的,屋顶上的木头还完好无损呢?” “老师,木头好好的也不一定就能撑得住啊?”我不解地说。 “大家仔细看看中间的木头是怎么搭的?”同学们听了老师的话,一个个都睁大眼睛向上看去,并异口同声地说:“三角形。” “对,三角形。三角形具有稳定性,因此屋顶不易变形,安全性也就高了。对吧,老师?”我不禁问道。 “建筑者就是充分利用三角形这一稳定性,来加强屋顶的稳固性的。”原来瓦屋保存到现在的秘密就在这儿啊! 细细观察我们还会发现:自行车的脚撑,空调室外机的安装等等都是利用三角形的稳定性,是三角形给它们投了一份份不易倒塌的安全保险。数学的作用还真不小,它与我们的生活形影不离,我可得努力学好数学,让生活更丰富多彩。奇妙的图形密铺在生活中,我们常常会在生活中遇见数学.如窨井盖为何是圆形?伸缩门为什么是平行四边形等等。今天,我要给大家举一个图形密铺的例子。 丽丽搬新家了,她见她家的地砖有的是长方形,有的是正方形,有的是三角形,可是却没有漂亮的三角形,这是为什么呢?原来是因为长方形和正方形的四个角合起来是一个360度的,可以平铺在一起来,没有漏缝,而圆形它没有角度,所以不可以密铺.聪明的蜜蜂会做一个美丽的房子-----用六边形拼的房子,.因为六边形的一个内角是60度,所以1个六边形便可以密铺. 图形密铺如此奇妙使家变得更美丽.生活中我们还会遇见更多的生活中的数学,希望大家去观察,去发现,去思考.

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”

例子:

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

扩展资料:

第一抽屉原理:

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

参考资料:百度百科-----抽屉原理

抽屉原理及其应用数学毕业论文

数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。2指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ...... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。 根号与平方根与立方根 现在,我们都习以为常地使用根号,并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢? 古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。 与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。 直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求某数的平方根,就写作 ,如果想求某数的立方根,则写作 。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。 现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3^√的使用,比如25的立方根用“3^√”表示。以后,诸如“3^√”等等形式的根号渐渐使用开来。 由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也不是从天上掉下来的。 平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。(正数a的正的平方根,叫做a的算术平方根。)有时我们说的平方根指算术平方根。一个正数如果有平方根,那么必定有两个,它们互为相反数。如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。正数a的平方根可以记作“±√a”,a称为被开方数。正整数的平方根通常是无理数。 负数有平方根吗?其实,没有一个数的平方根是小于零的,所以负数没有平方根(没有意义)。 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。立方根,类似于平方根的表示方法,读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0) 求一个数a的立方根的运算叫做开立方。 所有实数都有且只有一个立方根。 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 在现实生活中,我们可以通过平方(立方)运算来寻求平方根(立方根),并可以用来验证开平方(开立方)的正确性。

数学论文小学数学教学中的环境教育渗透“环境保护,教育为本”。保护和改善环境关系到中华民族的存亡与兴衰,也取决于一代又一代人的不懈 努力。不断培养和提高下一代的“绿色伦理”观念,是历史和社会赋予我们每个教育工作者的义务和职责。近 几年,我校注重把环境教育渗透于各学科的教学之中,在“环境保护教育”方面办出了自己的特色,使保护环 境成了全校每个师生的共识。这里我想结合数学教学,谈谈对小学生渗透环境教育的几点体会:一、要善于挖掘教材内在的环境教育因素由于小学生无论在生理或心理方面都处在逐步发展阶段,他们的思维也由具体形象思维向抽象逻辑思维过 渡,他们的认识活动很大程度上依赖于具体直观。所以新编小学数学教材图文并茂,有80%以上的插图都蕴含着 丰富的环境教育内容,准确地把握插图中环境教育因素,能使学生更易理解、接受。如:一年级小朋友从进学 校第一天第一堂数学课,就要受到良好的环境教育。在“准备课”第2页上就看到环境优美的生活环境:1座大 桥、2只蝴蝶、3幢楼房、4只彩球、5位小朋友、6朵白云、7棵松树、8个字(请您爱护花草树木)、9只小鸟、 10朵鲜花……在学生练习数数的同时教育学生要爱护我们周围的一草一木,一山一水,爱护公共设施,不随地 吐痰,不乱扔纸屑杂物等,使我们生活的环境多姿多彩,生气勃勃。第一册第10页和第17页的“校园一角”插 图,让学生知道美好的校园环境需要我们大家共同来营造,爱护学校的花草、树木、校舍、操场、游泳池…… 是我们每个小朋友义不容辞的责任。结合熊猫、羚羊、松鼠、企鹅、白鹭、猴子等动物的插图,使学生知道动 物是人类的朋友,地球上不能只有人类,野生动物灭绝之时,就是我们人类灭亡之日,所以我们要爱护身边的 动物,特别是野生动物,同时知道熊猫是我国的国宝,东北虎、亚洲象、中华鲟等是我国一级保护动物,目前 它们濒临绝迹。随着学生认识水平的提高,知识的拓宽,针对学生的年龄特征和接受能力,教材中的环境教育内容也逐步 抽象、充实,从居住环境到校园环境,从自然环境到人工环境,从水、大气、土地到动、植物,从资源、人口 到地球、宇宙,教材中有50%以上的应用题都作了一定的反映。如:1.每个窗台放2盆花,5个窗台一共放多少盆花?(第三册)2.同学们采集标本,捕到9只蜻蜓,捕到蝴蝶的只数是蜻蜓的3倍,捕到蝴蝶多少只?(第四册)3.一条蚕吐丝1500米,5条蚕大约吐丝多少米?(第五册)4.大林有55张风景邮票,动物邮票比风景邮票少29张,两种邮票一共有多少张?(第六册)5.沿海堤有一条防风林带,宽是48米,东港村境内的防风林带占地8640平方米,这段防风林带的长是多少 米?(第七册)6.一个自然保护区天鹅的只数是丹顶鹤的3倍,已知天鹅和丹顶鹤共96只,天鹅和丹顶鹤各有多少只?(第 八册)7.1996年江苏省海水产品量达79.5万吨,淡水产品大约是海水产品产量的2.09倍,1996年江苏省水产品产 量大约有多少万吨?(第九册)8.园林工人铺草坪,第一组6人铺了37平方米,第二组7人铺了43平方米,哪个小组铺得多?(第十册)79.织女星每秒运行14千米,是牛郎星运行速度的—,牛郎星每秒运13行多少千米?(第十一册)10.在比例尺是1:25000000的中国地图上,量得北京到上海的距离是4.21厘米,北京到上海的实际距离大约 是多少千米?(第十二册)类似以上题目,虽然《小学数学教学大纲》中没有明确规定对学生进行环境教育的要求,但它们已内在显 示了环境与人们的生活、生产密切相关。解答好这样的题目,学生的环境保护意识就会在潜移默化中得到升华 。二、要善于搜集环境教育的统计数据随着社会的飞速发展,社会的信息量和信息传递的速度是按指数规律增长的,但教科书由于编写时间和容 量的限制,一些对儿童有影响的信息不可能都反映出来,因此,要在数学教学中自觉地、有目的地进行有效的 环境教育,善于搜取当代社会与数学紧密联系的新颖信息,显得十分重要。这就要求我们平时广泛阅读书报, 时时留心有关数据,以便在数学教学中适时提供环境教育的数据。如:环境与生活:1.一个人平均每天呼吸14千克空气,是一天食物重量的10倍或饮水重量的4倍。12.血液里绝大部分是水,肌肉里有一半以上是水,骨头里—是水,4人体是个“大水桶”。3.一公顷生长旺盛的草坪,每天可以吸收900千克的二氧化碳,放出600千克氧气。一个人平均每天要消耗 250克氧气,呼出900克二氧化碳。照这样计算,一个人必须拥有一个教室大小的草坪,才能满足人体对氧气的 需求。14.世界上一半以上的药物模仿天然植物合成,—的药物直接从植物4中提取或以植物为原料。环境与社会的经济发展:1.我国有960万平方千米的土地,居世界第三位,但我国“地大人更多,物博人均少”,占世界陆地—的土 地却要养活超过世界—的人口。1 110 52.一只燕子在6个月里可以吃掉50万只害虫,一头猫头鹰一年中会吃掉1000只田鼠,而1000只田鼠一年要吃 掉2吨粮食,一只灰喜鹊可以保护1300平方米的松林免遭松毛虫的侵害。3.最近,新疆罗布泊地区打出了第一口淡水井,井深465米,日出水量达452立方米,为当地矿产、旅游业 的发展打下坚实的基础。4.1997年,宁波市共接待境外游客10.05万人次,比上年增长13.7%,旅游创汇6.34亿美元,比上年增长18 .4%。环境污染的危害:1.1997年12月中旬,急剧排放的烟尘和有毒气体使沈阳4天内有2000多人急性中毒。2.1支烟产生的烟雾需一个房间的空气来混合,人才不会受伤害。3.去年北京市洗车用水就洗掉了13个昆明湖,造成首都饮用水紧张。4.目前太空有2000个废弃卫星,1400个用过的火简助推器和1100个游弋的小型物体,这些太空垃圾随时会 撞坏卫星。如此等等,教者向学生提供这些数据信息时,要正确处理好智育与环境教育的关系;要有助于学生“环保 ”意识的提高;要将有意识的教育寓于无意识的受教育之中,做到自然、贴切、力求渗透,以达到“随风潜入 夜,润物细无声”的境界。切忌生搬硬套,牵强附会。三、要善于依据学生的年龄特征,适时、适量地渗透环境教育内容儿童从出生到成人,他们的身体和心理经历着一个发展的过程,在这个过程中,每一个年龄阶段都表现出 与其它年龄阶段相区别的一些典型的特征。所以,教者就应该依据学生不同年龄特征,向学生渗透不同的环境 教育内容。如:“地球上最大的洋是太平洋,它的平均深度是4028米,最小的洋是北冰洋,它的平均深度比太平洋少2718 米。北冰洋平均深度多少米?”(第四册)。二年级的学生练习后,只须让学生知道海洋可向人类提供丰富的 海产品,我们要爱护它。“黄海盐场每块盐田长100米,宽80米,500块这样的盐田占地多少公顷?”(第八册 )这时针对中年级学生求知欲强的特点,可适当向学生介绍海洋是全球气候的调节者,是动植物的故乡,是资 源的宝库,它需要全人类以最大的爱心去关心它、保护它。“地球表面的总面积有5.1忆平方千米,其中海洋面 积有3.61亿平方千米,海洋的面积占总面积的百分之几?”(第十一册)随着年龄和知识的增长,这时可告诉 他们:海洋是“21世纪人类的第二粮仓”,我们要开发和利用海洋生物、矿产资源,但在开发海洋的同时,又 要特别注意保护和改善海洋资源和环境,让浩瀚蔚蓝的海洋千秋万代,为人类造福,否则,会严重影响人们的 生产、生活和健康。如今年4月香港发生的一次赤潮,直接经济损失超过1亿港元。所以我们要与自然建立和谐 的生活关系。总之,在环境保护成为人们关心的焦点的今天,作为我们每一个教育工作者都要不断更新教育理论,增强 环境教育的责任感和使命感。因此,在小学数学教学中,就要结合数学课的特点,在完成本学科的基础知识和 三种能力培养任务的同时,对学生渗透必要可行的环境教育,使每个学生知道“我们有一个共同的家——地球 ,我们要像珍惜生命一样珍惜她。”

上面都有,可以参考,希望能帮助到你。

  • 索引序列
  • 电流镜原理及科学应用毕业论文
  • 电流镜的原理及应用毕业论文下载
  • 电磁学原理及应用论文
  • 抽屉原理及其应用本科毕业论文
  • 抽屉原理及其应用数学毕业论文
  • 返回顶部